-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Non-premptive Fixed Priority schedulingwith FIFO
arbitration:uniprocessor and distributed cases

Steven Martin, Pascale Minet, Laurent George

» To cite this version:

Steven Martin, Pascale Minet, Laurent George. Non-premptive Fixed Priority schedulingwith FIFO
arbitration:uniprocessor and distributed cases. [Research Report] RR-5051, INRIA. 2004. inria-

00071532
HAL Id: inria-00071532
https://hal.inria.fr /inria-00071532
Submitted on 23 May 2006
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50453228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00071532
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--5051--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Non-premptive Fixed Priority scheduling
with FIFO arbitration:
uniprocessor and distributed cases

Steven MARTIN — Pascale MINET — Laurent GEORGE

N° 5051
December 2003

THEME 1

apport
derecherche

Zd I N RIA

ROCQUENCOURT

Non-premptive Fixed Priority scheduling
with FIFO arbitration:
uniprocessor and distributed cases

Steven MARTIN* | Pascale MINET! , Laurent GEORGE?

Théme 1 — Réseaux et systémes
Projet HIPERCOM

Rapport de recherche n® 5051 — December 2003 — 27 pages

Abstract: In this paper, we focus on non-preemptive Fized Priority scheduling. We are
interested in the worst case response time of flows, both in uniprocessor and distributed
cases. On a processor, the number of available priorities is generally limited. If this num-
ber is less than the number of flows to be considered, several flows have to share the same
priority. Such flows are assumed to be scheduled arbitrarily in the classical approach. We
assume in this paper that these flows are scheduled riro. This assumption leads us to revisit
classical results in the uniprocessor case. As we obtain response times less than or equal
to the classical results, any flow set feasible with the classical approach is feasible with our
approach. The converse is false, as shown by an example. Moreover, we determine the
conditions leading to shorter response times. We then establish new results in a distributed
context. We show how to compute an upper bound on the end-to-end response time of any
flow. For this, we use a worst case analysis based on the trajectory approach.

Key-words: Fixed priority scheduling, worst case response time, end-to-end response
time, deterministic guarantee, quality of service, trajectory approach.

* Ecole Centrale d’Electronique, LACCSC, 53 rue de Grenelle, 75007 Paris, steven.martin@ece.fr
T INRIA Rocquencourt, 78153 Le Chesnay Cedex, pascale.minet@inria.fr
¥ Université Paris 12, LITA, 120 rue Paul Armangot, 94400 Vitry, george@univ-parisi2.fr

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Ordonnancement non-préemptif par priorités fixes
avec arbitrage FIFO:
cas uniprocesseur et distribué

Résumé : Dans ce rapport, nous nous intéressons a ’ordonnancement non-préemptif par
Priorités Fizes. Nous montrons comment calculer le temps de réponse pire cas de flux en
mono-processeur puis en environnement, distribué. Sur un processeur, le nombre de priori-
tés disponibles est généralement limité. Si ce nombre est plus petit que le nombre de flux
considérés, plusieurs flux doivent partager la méme priorité. De tels flux sont ordonnan-
cés arbitrairement dans I’approche classique. Nous supposons dans ce rapport que ces flux
sont ordonnancés FIFO. Cette hypothése nous conduit & revisiter les résultats classiques
en mono-processeur. Comme nous obtenons des temps de réponse inférieurs ou égaux aux
résultats classiques, tout jeu de flux faisable avec ’approche classique est faisable avec notre
approche. La réciproque est fausse, comme le montre I’exemple présenté. De plus, nous
déterminons les conditions conduisant & des temps de réponse plus courts. Nous établissons
ensuite de nouveaux résultats dans un environnement distribué. Nous montrons comment
calculer un majorant du temps de réponse de bout-en-bout pour chaque flux. Pour cela,
nous avons recours & une analyse pire cas basée sur ’approche par trajectoire.

Mots-clés : Ordonnancement par priorités fixes, temps de réponse pire cas, temps de
réponse de bout-en-bout, garantie déterministe, qualité de service, approche par trajectoire.

Non-premptive Fixed Priority scheduling with FIFO arbitration 3
Contents
1 Introduction 4
2 Fixed Priority scheduling in a uniprocessor context 5
2.1 Notations and preliminary results L. 5
2.2 Classical results e 6
2.3 Flows of the same priority scheduled FIFO 7
2.3.1 Computation of the latest starting time 8
2.3.2 Analysis of the latest starting time 9
2.3.3 Worst case response time Lo Lo 11
3 Comparative evaluation in the uniprocessor case 12
3.1 Example 12
3.2 Comparison with classical results 12
4 Response time computation in the distributed case 13
5 Fixed priority scheduling in a distributed context:
Line case 15
5.1 Notations and preliminary results L. 16
5.2 Computation of the latest starting time 17
5.3 Analysis of the latest starting time o000 20
5.4 Worst case end-to-end response time e 22
5.5 Evaluation of the delay due to packets belonging to Ap(i) 23
6 Comparative evaluation in the distributed case 24
6.1 Worst case end-to-end response time by the holistic approach 24
6.2 Examples 24
7 Conclusion 26

RR n° 5051

4 Martin, Minet and George

1 Introduction

Fized Priority scheduling has been extensively studied in the last years [1, 2]. It exhibits
interesting properties:

e The impact of a new flow 7; is limited to flows having priorities smaller than this of ;.
e It is easy to implement.

e It is well adapted for service differentiation: flows with high priorities have smaller
response times.

In this paper, we focus on non-preemptive Fixed Priority scheduling. Indeed, with regard to
flow scheduling, the assumption generally admitted is that packet transmission is not pre-
emptive. We compute the worst case response time obtained with Fixed Priority scheduling.
As the number of available priorities is limited on a processor, several flows have to share the
same priority if this number is less than the number of flows considered. We propose, unlike
the classical approach that arbitrarily schedules flows sharing the same priority, to schedule
such flows according to FIFO. That is why we first revisit classical results in the uniproces-
sor case. Our solution enables to improve the worst case response times of such flows. As
we will see, a packet cannot be delayed by other packets of the same priority released after it.

Then, we focus on the distributed case. The use of Fixed Priority scheduling in such a case
presents the additional advantage of not requiring clock synchronization, unlike FEarliest
Deadline First [3, 4]. We extend our results assuming that all the flows follow the same
sequence of nodes (the same line). Our results on the worst case end-to-end response time
obtained with Fixed Priority scheduling can be used in various configurations:

e In a Differentiated Services architecture [5], several classes are defined, each having its
own priority. The highest priority class, that is the Ezpedited Forwarding (EF) class, is
scheduled Fixed Priority with the other classes. Moreover, if packets belonging to the
EF class need to be differentiated, different priorities can be assigned to these packets.
Hence, a Fixed Priority scheduling can be used to provide the requested differentiation.

e In an Integrated Services architecture [6], a priority is assigned to each flow. Fixed Pri-
ority scheduling is used to provide shorter response times to high priority flows.

e In an hybrid architecture, some flows are managed per class, whereas others are managed
individually.

In the three configurations mentionned, several flows can share the same priority. Assuming

that flows sharing the same priority are scheduled Fir0O, we show how to compute a bound
on the end-to-end response time of any flow, using the trajectory approach.

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 5

The rest of the paper is organized as follows. In section 2, we revisit classical results on non-
preemptive Fixed Priority scheduling in the uniprocessor case, assuming that flows sharing
the same priority are scheduled FiIFO. In Section 3, we illustrate the benefit brought by our
approach with an example and give the condition for which the worst case response time is
improved. We then focus on the distributed case. Section 4 briefly discusses related work
in the computation of worst case end-to-end response time. In section 5, we show how to
compute an upper bound on the end-to-end response time of any flow, based on a worst
case analysis, when all the flows follow the same sequence of nodes (the same line). Then,
in Section 6, we compare our results, obtained by applying the trajectory approach, with
the exact worst case end-to-end response times and with the results provided by the holis-
tic approach. The exact values are obtained by a simulation tool we have designed. This
simulation tool does an exhaustive analysis. Finally, we conclude the paper in section 7.

In this paper, we assume that time is discrete. [7] shows that results obtained with a
discrete scheduling are as general as those obtained with a continuous scheduling when all
flow parameters are multiples of the node clock tick. In such conditions, any set of flows is
feasible with a discrete scheduling if and only if it is feasible with a continuous scheduling.

2 Fixed Priority scheduling in a uniprocessor context

We first recall in Section 2.1 some notations and preliminary results used in hard real-time
scheduling. Then, we give in Section 2.2 several properties and results established in the
uniprocessor case for the non-preemptive Fixed Priority scheduling algorithm. Finally, in
Section 2.3, we assume that when several flows share the same priority, they are scheduled
FIFO. This assumption leads us to revisit classical results in the uniprocessor case. The
worst case response time of any flow is then improved.

2.1 Notations and preliminary results
We consider a set 7 = {71, ...,7} of n sporadic flows. Each flow 7; is defined by:

e T;, the minimum interarrival time (called period) between two successive packets of 7;;
e (;, the maximum processing time of a packet of 7;;

e J;, the maximum release jitter of packets of 7;.

This characterization is well adapted to real-time flows (e.g. process control, voice and video,
sensor and actuator). Moreover, for any packet g, we denote 7(g) the index number of the
flow which g belongs to.

Due to the scheduling model, to any flow 7; is assigned a fixed priority P;. Then, we denote:
o hp(i) = {j € [1,n],j # i, such that P; > P,};
e hp(i) = {j € [1,n] such that P; < P;}.

RR n° 5051

6 Martin, Minet and George

As said in the Introduction, packet scheduling is non-preemptive. Hence, despite the high
priority of any packet m, a packet with a lower priority can delay m processing due to
non-preemption. Indeed, if a packet m of any flow 7; is released while a packet m' belonging
to hp(i) is being processed, m has to wait until m’ completion. It is important to notice
that the non-preemptive effect is not limited to this waiting time. Indeed, the delay in-
curred by packet m directly due to m’ may lead to consider packets with a higher priority
than m released after m but before m starts its execution. The following lemma establishes
the maximum delay incurred by a packet directly due to another packet with a lower priority.

Lemma 1 In the uniprocessor case, the mazimum delay incurred by any packet of
any flow 7; directly due to packets € hp(i) is equal to: max(0; Cmgz,: — 1), where
Craz,i = maX;cpo {05} — 1 if hp(i) # 0, 0 otherwise.

Proof: See [4].]

We now recall some definitions about busy periods.

Definition 1 An idle time t is a time such that all packets arrived before t have been
processed at time t.

Definition 2 A busy period is defined by an interval [t,t') such that t and t' are both idle
times and there is no idle time € (t,t).

Definition 3 An idle time t of level i is a time such that all packets with a priority greater
than or equal to i and arrived before t have been processed at time t.

Definition 4 A busy period of level i is defined by an interval [t,t') such that t and t' are
both idle times of level i and there is no idle time of level i € (¢,t').

Let W;(t) denote the latest starting time of the instance of 7; released at time ¢.
Let R; denote the worst case response time of flow 7;.

2.2 Classical results

Classical results have been established assuming that flows sharing the same priority are
scheduled arbitrarily. We recall them here, in order to make a comparison with our results,
established when flows sharing the same priority are scheduled FiFO. A packet m of flow 7,
generated at time ¢, can be delayed by:

e packets of flows in hp(i) arrived at a time less than or equal to W;(t);

e a packet of a flow in hp(i).

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 7

Property 1 In the uniprocessor case, when all the flows are scheduled according to the fized
priority algorithm, the worst case response time of any flow T; meets:

R; = maxy—o. K {Wz(k‘ -T; — Jz) —k- Tz} +C; + Ji, where:

Wilk T = J5) = jenpioy (1+ | LELEHL) - €5 4 k- C; + max (0; Crmaz — 1),

with K the smallest integer value such that W;(K -T; — J;) + C; + J; < (K +1) - T;.

Proof: See [4].]

2.3 Flows of the same priority scheduled FIFO

Unlike the classical approach, we now adopt Assumption 1.
Assumption 1 Flows sharing the same priority are scheduled FIFO.

With this assumption, the worst case response time of any flow can be improved. A packet
m of flow 7;, generated at time ¢, can no longer be delayed by packets of other flows having
the same priority as 7; arrived after m. Hence, m processing is delayed by:

e packets of flows having a priority strictly greater than P; and arrived at a time < W;(#);
e packets of flows having a priority equal to P; and arrived at a time < ¢;
e a packet of a flow in hp(i);
Then, we denote:
e gp(i) = {j € [1,n], such that P; > P;};
e sp(i) = {j € [1,n],j # 1, such that P; = P;};
e hp(i) = {j € [1,n] such that P; < P;}.

Definition 5 For any flow 7, the processor utilization factor for the flows belonging to gp(3)
is denoted Ugy;y. It is the fraction of processor time spent to process packets belonging to

gp(i). It is equal to 3 ;.. (Ci/T;).

RR n° 5051

8 Martin, Minet and George

We determine in Subsection 2.3.1 the latest starting time of any packet m belonging to flow
7;. This time can be computed as a limit of a series, that we study in Subsection 2.3.2.
Thanks to this analysis, we give in Subsection 2.3.3 an upper bound on the worst case
response time of flow ;.

2.3.1 Computation of the latest starting time

We first determine the scenarios that lead to the worst case response time of flow ;.

Lemma 2 In the uniprocessor case, when all the flows are scheduled according to the Fized
Priority algorithm, flows having the same priority being scheduled FIFO, then the worst case
response time of any flow T; is reached in the first busy period of a scenario where:

o V flow 7; € gp(i) U sp(i), the first packet of 7; is released at time —J; and all other
packets of flow ; are periodic, with period T);

e a packet of the flow 7; belonging to hp(i), if any, with the mazimum processing time is
released at time —1;

e the first packet of flow T; is released at time t9, with —J; <19 < —J; + T; and all other
packets of T; are periodic, with period T;.

Proof: Let us consider the first busy period of a scenario I in which a packet m of flow 7,
released at time ¢, is processed. The processing of packet m can be delayed by:

1. packets belonging to flow 7; € gp(i), released before m starts its execution.
2. packets belonging to flow 7; € sp(i), released before time ¢.
3. packets belonging to flow 7;, released before m.

4. a packet with a priority lower than P;.

We now modify scenario I to worsen the response time of packet m. The workload generated
by packets of the first and second category is maximized when all flows 7; € gp(i) U sp(3)
are first released at time —J; and then periodically, with period 7. In the same way, the
workload generated by packets of the third category is maximized when the first packet of
flow 7; is released at time t?, with —J; < t? < —J; + T; and all other packets of 7; are
periodic, with period T;. Finally, to maximize the delay due to a packet belonging to hp(i),
a packet of the flow 7; € hp(i), if any, with the maximum processing time is released at time
—1. In this new scenario, the response time of packet m is either left unchanged or worst. W

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 9

Lemma 3 In the uniprocessor case, when all the flows are scheduled according to the Fized
Priority algorithm, flows having the same priority being scheduled FIFO, then for any packet
of any flow T;, released at time t, its latest starting time is given by:

Wit)= (1%%}?*‘%)-0#) (1+V+JJ>-C]- [‘“JCﬁmax(o Craz.i —1).

Jj€gp(i) j€sp(i)

Proof: To compute the latest starting time of packet m, we identify the busy period of level
P; that affect the delay of m, that is the one in which m is processed. We define f as the
first packet processed in this busy period with a priority greater than or equal to P;. Due
to the non-preemptive effect, the execution of f can be delayed once by a packet with a
priority less than P;.

For the sake of simplicity, we number consecutively the packets of the considered busy period
of level P;. Hence, we denote m' — 1 (resp. m' + 1) the packet preceding (resp. succeed-
ing) m'. Moreover, we consider the release time of packet f as the time origin. The latest
starting time of packet m is then equal to the processing time of packets f to m — 1, plus
max(0; Craz,i — 1). Then, we get: Wi(t) = >/ ; Crg) — Ci + max(0; Cragz,i — 1)

The term > 7" C>(g) is bounded by the maximum workload generated by flows belonging
to gp(i) in the interval [0, W;(t)], plus the maximum workload generated by flows belonging
to sp(i) in the interval [0,t], plus the maximum workload generated by packets of flow 7; in
the interval [0,#]. By definition, the maximum workload generated by:

e flows 7; € gp(i) in the interval [0, W;(?)] is equal to: -, .y (L+ [(Wi(t) + J;)/T;]) - C;

e flows 7; € sp(i) in the interval [0, 1] is equal to: > o+ [+ T)/T5]) - C

j€sp(

e flow 7; in the interval [0,¢] is equal to: 1 + | (¢t + J;)/Ti]) - C;.]

2.3.2 Analysis of the latest starting time

We now focus on the following series that we denote W;:

wOW = 8 Ot 3 (14 [F])- 0t [F] Ot max(0; Conami - 1)

j€gp(i) Jj€sp(i)

wet @) = ¥ <1+{#D Ci+ Y (1+[‘+" J) .C; +[J -Ci + max(0; Craz,i — 1).

Jj€gp(4) Jj€sp(4)

RR n° 5051

10 Martin, Minet and George

To prove the existence of W;(t), solution of the equation given in Lemma 3, we show that if
Condition 1 is met, W; is convergent. Then, Lemmas 4 and 5 show that only a limited set
of release times of flow 7; has to be tested to obtain the latest starting time of a flow packet.

Condition 1 IfUgy,;) < 1, where Uyy;) denotes the utilization factor for the flows belonging
to gp(i), then the series W; is convergent.

Proof: The series W; is a non-decreasing series as the floor function is non-decreasing.
Moreover, this series is upper bounded by: X/(1 — Uy,(;)), where:

X =Y iconti (1+ :1,—]) Ci+ Y jespii) (+ [t“ J) -Cj+ [#J -C; +max(0; Crraz,i — 1).

Indeed, by recurrence, we have: W.(O)(t) < X, that is less than or equal to: X/(1 — Ugyiy),

K3
assuming Ug,;) < 1. We now assume that the recurrence is true at rank p and show that it

is true at rank p + 1. Then, Wi(p+1)(t) meets:

> (1+{%§”’J’D-0j+ > (1+[5E]) -+ | 5] - 6+ max(05 Oz - 1),

Jj€gp(i) Jj€sp(3)

A0S % + 3 (1_‘_;_;)_0]._'_ » (1 [H—J J) C, +[t+JJ C; +max(0; Craz,i—1),

jegn(i) 7 jegp(i) j€sp(i)
< W()(t) ng(z) +X < X- ng(l)/(yp(%)) +X = X/(l - ng(i))-

The series W; is non-decreasing and upper bounded. Hence, this series is convergent. H

Lemma 4 In the uniprocessor case, when all flows are scheduled according to the fixed pri-
ority algorithm, flows having the same priority being scheduled FIFO, the worst case response
time of any flow 7; is obtained for a packet released at time t € S, where S is the ordered
set of timest=Fk; - T; —J; > —J;, j € sp(i) U {i} and k; € N.

Proof: We consider the series W; and prove the lemma by recurrence. By assumption, no
packet of 7; can be released before time —J;. Hence, we only consider times ¢t > —J;. By
definition, if ¢; and ¢, are two consecutive times of set S: Vj € sp(i) U {i}, V' € [t1,12),
Lt + J;)/T;] = (1 + J;)/T;]. Hence, the lemma is met at rank 0: Wi(o)(t") = WZ-(O) (t1)-
Assuming that the recurrence is true at rank p, we show that it is true at rank p+ 1. Indeed,
WP (t') equals:

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 11

EJ'Egp(i) (1+ {%;)MJ) Cj +E;ew(¢)(1+ [t 7 J) Cj +[J Ci+max(0; Crmaz,i—1)

w® (41)+J; fat tt+;
= Ve (1+ {% Cit+ 2 jesntiy <1+ [: J) G +[STt J Ci+max(0; Craz,i—1)
= WP (). u

Lemma 5 In the uniprocessor case, when all flows are scheduled according to the fized
priority algorithm, flows having the same priority being scheduled FIFO, if a packet of T;
released at time t € S meets: W;(t) + C; < t+ T;, then it is useless to compute the response
time of a packet released at time t + a - T;, a € N*.

Proof: Let us consider a fixed j € sp(i) U {i}. Let m’ be the packet of flow 7; released at
time t € S. We compute the response time of m' and distinguish two cases:

o If W;(t)+ C; > t+ T, the packet of 7; released at time ¢t + T; is delayed by the processing
of previous packets of 7;. Hence, the response time of this packet must be computed.

o If W;(t) + C; < t+T;, the packet of 7; released at time ¢t + T; is processed without being
delayed by previous packets of 7;. According to Lemma 2, this packet is not processed in
the worst case conditions. Hence, the worst case response time of 7; will not be reached
by this packet. |

2.3.3 Worst case response time

With the previous lemmas, we can now establish the following property, that gives the
worst case response time of any flow 7;.

Property 2 In the uniprocessor case, when all flows are scheduled according to the fized

priority algorithm, flows having the same priority being scheduled FIFO, and condition 1 is
met, the worst case response time of any flow 7; is equal to:

R; = maxics {W;(t) — t} + C;, where:

Wi = % (1+[mgE]) o & (0|5) O[5

J€gp(i) j€sp(i)

J C +max(0, Cm’i—l),

S' denotes the ordered set of times t = k; -
t = kj . Tj - Jj + a - T; such that Wi(tl) + C;
and a € N*,

T; — J; > —Ji, excluding the times
<t +T,, with j € sp(i) U {i}, k; € N

Proof: This property can be deduced from Lemmas 3, 4 and 5. |

RR n° 5051

12 Martin, Minet and George

3 Comparative evaluation in the uniprocessor case

In this section, we present an example that illustrates the improvement we get on the
worst case response time when applying Assumption 1. Then, Property 3 highlights the
benefit brought by a FIFO scheduling of flows sharing the same priority.

3.1 Example

In this example, we consider five flows, without release jitter, whose characteristics are
given in Table 1. The load is equal to 100%. There is only one flow in the priorities 3 and
2, whereas three flows share the lowest priority 1.

Table 1. Improvement on the worst case response time

Our results Classical results

T1 1|4 (20| 30 24 28 32 36
T2 1|4 (20| 30 24 28 32 36
T3 1| 4|20 30 24 28 32 36
T4 2 | 4 |20] 15 11 15 11 15
Ts 3] 8 |40 11 3 11 3 11

As expected, results show that for priorities 2 and 3, there is no difference between our
results and the classical ones. Indeed, there is only one flow for each of these two priorities.
Concerning the lowest priority, we get a worst case response time of 28, whereas the classical
response time is 36. We get an improvement higher than 22%.

As with our approach, all flows meet their deadline, this flow set is feasible. However, it is
not feasible with the classical approach as the flows 71,7 and 73 do not meet their deadline
30. This example shows the interest of our approach.

3.2 Comparison with classical results

Property 3 highlights the benefit brought by a FirO scheduling of flows sharing the
same priority by establishing the conditions that lead to shorter response times. Table 2
summarizes the worst case response time of any flow 7; when flows sharing the same priority
are scheduled (i) arbitrarily, denoted classical results and (ii) FIFO, denoted our results.
Property 3 The response time of any flow 7; is shorter than the classical result as soon as:

dk € [O,K], Wz(k . Tz - Jz) Z max (minj@p(i) (TJ) ;k . Tz - J,'),
where K denotes the smallest integer value such that: W;(K -T; — J;))+C; < (K +1)-T;— J;.

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 13

Proof: Let us consider packet m of flow 7; released at time ¢t = k-T; — J;, with k € [0, K]. If
W;(t) > max (minjeSp(i) (T5) ;t), then, with the classical approach, m is delayed by packets
of flow 7; € sp(i), released after time ¢ and before W;(¢). With FIFO scheduling for flows of
the same priority, m would not have been delayed by these packets released after it. |

Table 2. Response time in the uniprocessor case with and without Assumption 1

Classical results

R; = maxy—o. K {W,(k -T; — J,) —k- Ti} + C; + J;, where:

Wik -Ti—J)= 3 (1+ [W““TT%”“J) .Cj +k-C; + max (0; Craz; — 1),

j€hp(i)

with K the smallest integer value such that Wi;(K - T; — J;) + C; + J; < (K + 1) - T;.

Our results

R; = maxies {W;(t) — t} + C;, where:

Wiy = ¥ (1+[2H|) o+ 3 (1+ | SH2]) 0+ | B | Citmax(0; Craza—1),

Jj€gp(i) Jj€sp(d)

with &' the ordered set of times t = k; - T; — J; > —J;, excluding the times
t = ki T, —J;+a T; such that Wi(t’) +C; < t + T3, jESp('i)U{i}, k; €N and o € N*.

As with our approach, we obtain response times less than or equal to the classical results,
any flow set feasible with the classical approach is feasible with our approach. The converse
is false, as shown by the example given in Section 3.1.

4 Response time computation in the distributed case

To determine the maximum end-to-end response time, several approaches can be used:
a stochastic or a deterministic one. A stochastic approach consists in determining the mean
behavior of the considered network, leading to mean, statistical or probabilistic end-to-end
response times [8, 9]. A deterministic approach is based on a worst case analysis of the
network behavior, leading to worst case end-to-end response times [10, 11].

In this paper, we are interested in the deterministic approach as we want to provide a deter-
ministic guarantee of worst case end-to-end response times for any flow in the network. In
this context, two different approaches can be used to determine the worst case end-to-end
delay: the holistic approach and the trajectory approach.

RR n° 5051

14 Martin, Minet and George

e The holistic approach [12] considers the worst case scenario on each node visited by a flow,
accounting for the maximum possible jitter introduced by the previous visited nodes. If no
jitter control is done, the maximum jitter will increase throughout the visited nodes. In this
case, the minimum and maximum response times on a node h induce a maximum jitter on the
next visited node h + 1 that leads to a worst case response time and then a maximum jitter
on the following node and so on. Otherwise, the jitter can be either cancelled or constrained.

o the Jitter Cancellation technique consists in cancelling, on each node, the jitter of a
flow before it is considered by the node scheduler [11]: a flow packet is held until its
latest possible reception time. Hence a flow packet arrives at node h + 1 with a jitter
depending only on the jitter introduced by the previous node h and the link between
them. As soon as this jitter is cancelled, this packet is seen by the scheduler of node
h + 1. The worst case end-to-end response time is obtained by adding the worst case
response time, without jitter (as cancelled) on every node;

o the Constrained Jitter technique consists in checking that the jitter of a flow remains
bounded by a maximum acceptable value before the flow is considered by the node
scheduler. If not, the jitter is reduced to the maximum acceptable value by means of
traffic shaping.

As a conclusion, the holistic approach can be pessimistic as it considers worst case scenarios
on every node possibly leading to impossible scenarios.

o The trajectory approach [13] consists in examining the scheduling produced by all the vis-
ited nodes of a flow. In this approach, only possible scenarios are examined. For instance,
the fluid model (see [14] for aPs) is relevant to the trajectory approach. This approach pro-
duces the best results as no impossible scenario is considered but is somewhat more complex
to use. This approach can also be used in conjunction with a jitter control (see [15] for EDF,
and [14] for GPs). In this paper, we adopt the trajectory approach without jitter control in
a distributed system to determine the maximum end-to-end response time of a flow.

We can also distinguish two main traffic models: the sporadic model and the token bucket
model. The sporadic model has been used in the holistic approach and in the trajectory
approach, while the token bucket model has been used only in the trajectory approach.

e The sporadic model is classically defined by three parameters: the maximum processing
time, the minimum interarrival time and the maximum release jitter, (see section 5). This
model is natural and well adapted for real-time applications.

e The token bucket [10, 14, 15] is defined by two parameters: o, the bucket size and p, the
token throughput. The token bucket can model a flow or a flow aggregate. In the first case, it
requires to maintain per flow information on every visited node. This solution is not scalable.
In the second case, the choice of good values for the token bucket parameters is complex

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 15

when flows have different characteristics. A bad choice can lead to bad response times, as
the end-to-end response times strongly depend on the choice of the token bucket parame-
ters [15, 16]. Furthermore, the token bucket parameters can be optimized for a given config-
uration, only valid at a given time. If the configuration evolves, the parameters of the token
bucket should be recomputed on every node to remain optimal. This is not generally done.

In this paper, we adopt the trajectory approach with the sporadic traffic model and we
establish new results that we compare with those provided by the classical holistic approach.

5 Fixed priority scheduling in a distributed context:
Line case

We investigate the problem of providing a deterministic end-to-end response time guar-
antee to any flow in a distributed system. The end-to-end response time of a flow is defined
between its ingress node and its egress node. We want to provide an upper bound on the
end-to-end response time of any flow. As we make no particular assumption concerning the
arrival times of packets in the distributed system, the feasibility of a set of flows is equivalent
to meet the requirement, whatever the arrival times of the packets in the distributed system.
Moreover, we assume the following models.

Scheduling model

We consider that all the nodes in the distributed system schedule packets according to the
fixed priority algorithm. Moreover, we assume that packet scheduling is non-preemptive.
Therefore, the node scheduler waits for the completion of the current packet transmission
(if any) before selecting the next packet.

Network model

We consider a distributed system where links interconnecting nodes are supposed to be
FIFO and the network delay between two nodes has known lower and upper bounds: Lmin
and Lmaz. Moreover, we consider neither network failures nor packet losses.

Traffic model

We consider a set 7 = {7y, ..., 7} of n sporadic flows. Each flow 7; follows a sequence of
nodes whose first node is the ingress node of the flow. In the following, we call line this
sequence. Moreover, a sporadic flow 7; following a line £ consisted of ¢ nodes, numbered
from 1 to g, is defined by:

e T;, the minimum interarrival time (called period) between two successive packets of 7;;

e C!', the maximum processing time on node h of a packet of 7;;

e J!, the maximum jitter of packets of 7; arriving in the distributed system.

RR n° 5051

16 Martin, Minet and George

We consider that all flows follow the same line £ in the distributed system, that is the same
sequence of nodes consisting of ¢ nodes numbered from 1 to ¢. To determine the end-to-
end response time of any packet m belonging to any flow 7;, we first extend the worst case
analysis performed in Section 2.3 in order to compute the latest starting time of paket m in
node g, the last node visited. Then, the mathematical expression of this latest starting time,
that is an iterative expression, is analyzed. Finally, we propose a bound on the end-to-end
response time.

5.1 Notations and preliminary results

In addition to the notations presented in Section 2, we use the following ones:

L line consisting of ¢ nodes numbered from 1 to g and followed by all the flows;
slow the slowest node of line £, that is: V flow 7;, V¥ node h € £, C}' < Cstov;

W/ (t) the latest starting time of the packet of 7; entered the system at time ¢;

RF the worst case end-to-end response time of flow 7; in the distributed system;
Mil’q the minimum time taken by a packet of flow 7; to go from node 1 to node g¢;
LR-h+1 - the network delay experienced by packet m between nodes h and h + 1;

H l.l’h the maximum delay incurred by flow 7; directly due to flows € hp(i)
while visiting nodes 1 to h.

Moreover, on any node h, the processing time of any packet m’ is less than or equal to:

e O}z =max; p,>p,{C}} if the priority of m/ is greater than or equal to P;;
o Ok i =max; p p{CI'} if the priority of m' is less than P;.
If there is no flow belonging to hp(i), then CL_— . = 0.

We now recall the definition of the processor utilization factor for a set of flows.

Definition 6 For any node h, for any flow 7; visiting h, the processor utilization factor for
the flows belonging to gp(i) is denoted ng(i). It is the fraction of processor time spent by
node h to process packets belonging to gp(i). It is equal to Engp(i) (C]’-l/Tj).

As explained in Section 2.1, any packet m of flow 7; can be delayed by a packet with a
lower priority due to non-preemption. The following lemma gives an upper bound on the
maximum delay incurred by m and directly due to packets belonging to hp().

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 17

Lemma 6 When all the flows follow the same line L consisting of q nodes numbered from
1 to q, then the mazimum delay incurred by any packet m of any flow 1; directly due to
packets belonging to hp(i) meets: Hz-l’q < >}, max (0; C’%,i — 1), where C%J denotes
the mazimum processing time on node h of a packet with a priority less than P;.

Proof: By definition, no packet of flows belonging to hp(i) can be processed in a busy period
of level P;, except the first packet of this busy period (cf. Lemma 1). Hence, the maximum
delay incurred by any packet m of flow 7; directly due to packets belonging to hp(i) can not
be greater than max (0; Cl,. ; — 1) on each node h visited. [

5.2 Computation of the latest starting time

Lemma 7 When all the flows follow the same line L consisting of ¢ nodes numbered from 1
to q and these flows are scheduled according to the Fized Priority algorithm, flows having the
same priority being scheduled FIFO, then for any packet belonging to any flow 7;, entered
the distributed system at time t, its latest starting time in node q is given by:

max(0; Wi (t)-M}?)+J}

slow t+J1 slow
Wi) = 2jeniiy (1 + { 7; D'le 2 jesputi} (1 + { v J)'le +Ai,

where A = Eq he1 C,’ﬁmx,i — Clq —+ Hil’q —+ (q — 1) - Lmazx.

h#slow

Proof: To determine the latest starting time of packet m, we identify the busy periods of
level P; that affect the delay of m. For this, we consider the busy period of level P;, denoted
bp!, in which m is processed on node ¢ and we define f(q) as the first packet processed in bp]
with a priority greater than or equal to P;. Due to the non-preemptive effect, the execution
of f(g) can be delayed once by a packet with a priority less than P;.

g -

O —1

?
[F [T TEEy]] | | [[[[m]
\ t

N I L 5)

| 1 '@]

[1
& _
q [] It 1] [\ [fay [T [T m]

Wi

Figure 1: Starting time of packet m in node ¢

RR n° 5051

18 Martin, Minet and George

The packet f(g) has been processed in a busy period on node ¢ — 1 at least of level P;. Let
bp?~" be this busy period. We then define f(q — 1) as the first packet processed in bp?™"
with a priority greater than or equal to P;. And so on until the busy period of node 1 in
which the packet f(1) is processed (see figure 1).

For the sake of simplicity, we number consecutively the packets of the considered busy
periods of level P;. Hence, we denote m' — 1 (respectively m' + 1) the packet preceding
(respectively succeeding) m'. Moreover, in the following, we consider the arrival time of
packet f(1) in node 1 as the time origin.

By adding parts of the considered busy periods, we can now express the starting time of
packet m in node ¢, that is:

the processing time on node 1 of packets f(1) to f(2) + L;é)
+ the processing time on node 2 of packets f(2) to f(3) + Lf’(3)
+ ..
+ the processing time on node g of packets f(q) to (m —1).

+ Hz1 Y the maximum delay directly due to packets € hp(i) while visiting nodes 1 to q.

By convention, f(g+1) = m. Then, the starting time, in node g, of packet m entered the dis-

tributed system at time ¢ meets: W;i(¢) < >J_; (Eg(h;z}l;) —C?+H;""+(q—1)+ Lmaa.
By definition, on any node h, packets f(h) to f(h + 1) have a priority higher than or equal
to P; since all the busy periods we consider are at least of level P;. We now consider the

term)} 1(2; (hf+,11; (g)) — C} and distinguish the nodes visited by the flows before node

slow and those visited after. Thus, we get Z‘,’LZI(Z; (hsz,llg Ch(g)) less than or equal to:

h=1 \ g=f(h) 9= (slow) h=slow+1 \g=f(h)+1

~ /N /. v

nodes visited before slow node slow nodes visited after slow

slow—1 [f(h+1)—1 f(slow+1) q f(h+1)
h h 1 h h
> Y. Cro+Clamsny |+ D, Gy + D > Clg+Cliymy |-

For any node h € [1, ¢g], for any packet m' visiting h, the processing time of m’ on node h is
less than Cszow) Then, as packets are numbered consecutively from f(1) to f(g+ 1) = m,
we get inequation (1). By considering that on any node h, the processing time of a packet
with a priority greater than or equal to F; is less than or equal to C,’}mw ; = Max;j/p;>p, {C]’-‘},
we get inequation (2).

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 19

slow—1f f(h+1)—1 N f(slow+1) slow q f(h+1) A a T slow q
> X Clg)+ X G+ X > Clg|—Cis L oxgy-¢f (1)
=1\ e=in 9=f Galow) h=slow+1\g=f () +1 g=F(1)

slow—1 h q h q h
Cromeny T 2 Clyan < X COmas (2)
h=1 h=slow+1 h;:iw

By (1) and (2)7 we get: E%:l (Ez(hf_tllz; Ch) C < Eg F() Cr(g) Cq+zq h=1 ngam i

h#slow

The term 7" £y O g’)" is bounded by the maximum workload generated by flows 7; belong-

ing to gp(i) in the interval [0, max(0; W1(¢t)— M]1 'h)], plus the maximum workload generated
by flows belonging to sp(7) in the interval [0, ¢], plus the maximum workload generated by
flow 7; in the interval [0,¢]. Indeed, any packet entered the distributed system before f(1)
does not interfere with the considered packets processed in the selected busy periods.

It is the same for any packet belonging to gp(i) and arriving in node ¢ after m starts its
execution. Then, a packet of any flow 7; € gp(i) does not delay m if it arrives in node 1
after the time: W/(t) — M 11 7 where M Jl ' denotes the minimum time taken by a packet of
flow 7; to go from node 1 to node g. In the same way, because links are FIFO and packets of
the same priority are scheduled FIFO, any packet belonging to sp(i) and arriving in node 1
after m does not delay m. Thus, we get > - 9=F(1) Cslo (g) less than or equal to:

max H g - }’q 1
Z <1+\‘ (0 w; (;) M;)+JJ J) _leow + E (1+ \‘H—J J)'C]“Slow + (1+ [t+J J)‘Cflow-

j€h(i) ! jesp(i)
Hence, the latest starting time of packet m in node ¢ meets:

max(0; Wi (t)—M;?)+J}

_ VY4 j 2
Wi(t) = Zjehp(i) (1 + { T; : - J) 1% ow+zj€szo(i)u{i} (1 + {

t+J

1) e

where A; = Eq he1 Cmam)i Cq Hil’q + (q - 1) - Lmaz. |

h#slow

RR n° 5051

20 Martin, Minet and George

5.3 Analysis of the latest starting time
We now focus on the following series that we denote Wj':

w0 = £ ocprs o (1|5 o a

Jj€gp(i) j€sp(i)u{i}

j€gp(i) ’

(») 1 1
(p+1) max (O;Wf (t)—M; "1) +J;
®=> (IJ{ T

C;low|_ E (1+ {t+J J)_C;low_'_Ai’
j€sp(i)u{i} B

with 4; = 37 ,-, C, —CY+ H + (¢ —1) - Lmaa.

h#slow

ma,:c i

As in Section 2.3.2, we first prove the existence of W/ (t), solution of the equation given in
Lemma 7. Then, we show that only a limited set of arrival times in the distributed system
has to be tested to obtain the latest starting time of a flow packet in node g. We finally
show how to compute the worst case end-to-end response time of any flow ;.

Condition 2 If Usll)‘a‘)’ < 1, where USZ (i) denotes the utilization factor on node slow for the
flows belonging to gp(i), then W] is convergent.

Proof: The series W] is a non-decreasing series as the floor function is non-decreasing.
Moreover, this series is upper bounded by: X/(1 — SII)?“;) where:

X = Yep (1+ j—) CF + ety (14 [m [)-cpow+ 4,

Indeed, by recurrence, we have: W.‘I(O) (t) < X, that is less than or equal to: X/(1 — U;Il)?g‘)’),

K3

assuming U Sllfz“)) < 1. We now assume that the recurrence is true at rank p and show that it

(p+1)
is true at rank p + 1. Then, W/) (t) meets:

q(P)

max(0; W (=M} 9) 47} . b l
Ejegp(i) (1 + { T i i J) -Cf ow 4 Ej@p(i)u{i} (1 + { T, J) Cs ow 4 A

») cylow . t+J] .
S (t) ° Ejegp(l) TJ +E]Egp(l) (1 +) CS o +E j€sp(i)u{i} (1 + \‘ T; J)) CJS ow +Az
< WITO-UEEHX S XUES/O-UEDAX = X0 -0k,

The series W/ is non-decreasing and upper bounded. Hence, this series is convergent. M

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 21

Lemma 8 Let S be the ordered set of timest = k-T; —.J}, where k € N and j € sp(i)U{i}.
Let t1 and ty be two consecutive times of S. Then, Vt' € [t1,t2), Wi (') = Wi(t1).

Proof: We consider the series W/ and prove the lemma by recurrence. Let S be the or-
dered set of times ¢ such that: t = k-T; — J}, where k € N and j € sp(i) U {i}. By
definition, if ¢; and ¢, are two consecutive times of set S: Vj € sp(i) U {i}, V' € [t1,12),
L(#' + J})/T;] = [(t1 + J})/T;]. Hence, the lemma is met at rank 0. Assuming that the

(»+1)
recurrence is true at rank p, we show that it is true at rank p+1. Indeed, W} () equals:

® 1 1
max(0; W (¢') =M ;) +J; i o4t .
Ejegp(i) (1 ’ { B]] J) O A Yiewitn (1 * { T; J J) -7 4+ A

() 1, 1)
max(0; Wi (81)=M;) +J; 1 t1+J} 1
= Eiey?(i) (1 + { T; : : J) -CFY + ZjESP(i)U{i} (1 + { T 2 J) -G + Ay

(p+1)
= w2 (th). [

Lemma 9 For any timet > 0, for any flow 7; € T, we have: W;(t+ B3l°v) < W;(t) + Bg°ov,
where B denotes the length of the longest busy period of level P; on mode slow.

Proof: We consider the series W/ and prove the lemma by recurrence. By definition, we
have: Bslow = Bglow |Ty]-Cstow. Moreover, asV (a,b), [a+b| < |a]+b],
we get:

Jj€gp(i)Usp(i)u{i} [

slow 1 1 slow
£ (=)o < s (u]5E)oerr s []oper

jesp(@Ufi} T jesp(@®Uu{i} i jesp@ufiy’ 7

1
< Z (1+ \‘H;.]J J)_leow 4+ Bflow-

T jesp(i)u{s) i

(0) (0)
Hence, the lemma is met at rank 0: W1 (¢t + Bflov) < Wi ~(t) + Bf'**. Assuming that

(p+1)
the recurrence is true at rank p, we get W} ! (t + Bf'°ow) equals to:

max(0: g(p) slowy_ prliq 1 slow 1
> <1+ { ax(0; W (t+f,1)—M])+J]J) Cfeuy 3 <1+ {t+B,Tj +JJJ)_C;zow+Ai

j€gp(i) ! j€sp(i)u{i}

RR n° 5051

22 Martin, Minet and George

(p) 1 slow 1 slow 1
max(0; Wi —M;?)+B? J} s !
< E <1+{ ax(i (1) - J)+ +J; J)'C;IOW'F Z (1 + {t+B,Tj +J; J>_0;10w+Ai
j€gp(i)

’ jesp(i)U{i}

(p) 1 1
max(0; W1 =M D4 J] t+J1
SE 1+ ax(i ;j) J)+J; .Cj‘?low_i_' E ' (1_'_\‘ TjJJ)'C;low—f_Bflow
Jj€gp(i) jesp(i)u{i}
()
< w" () + Bgov. -

5.4 Worst case end-to-end response time

The worst case end-to-end response time of any packet m belonging to flow 7; is equal
to the latest starting time of m in node ¢, plus C{, minus ¢, the arrival time of packet m
in the distributed system. More precisely, it is equal to: W/ (t) + C{ —t. The worst case
end-to-end response time of flow 7; is equal to the maximum of the worst case end-to-end
response times of its packets. Moreover, to compute this worst case response time, we have
only to consider times ¢ equal to: k-T; — JI < Bf'**, with k € N and j € sp(i) U {i}
(see Lemmas 8 and 9).

Property 4 When all the flows follow the same line L consisting of ¢ nodes numbered from
1 to q and are scheduled according to the Fixed Priority algorithm, flows having the same
priority being scheduled FIFO, the worst case end-to-end response time of any flow T; meets:

Rmaaf = maxies {W](t) + C{ — t}, where:

t+J]

D.c;zow+2j€sp(,.)u{i}(1+[TD_C;zow LA

max(0; W/ (£)—M;*)+J]

Wi () = 3 jenpi) <1+{ T
Ai =3 wei Cligai = Cl+ Hy" + (¢ — 1) - Lmaz;

h#slow

S' denotes the ordered set of times t such that: —J} <t =k-T; — Jj < Bf'°", with k € N
and j € sp(i) U {i}.

Proof: This property can be deduced from Lemmas 7, 8 and 9. |

It is important to notice that the cardinal of set S’ only depends on flows having the same
priority as 7; and flow 7;. We can also notice that in the single node case, this bound is exact.

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 23

Lemma 10 In the single node case, the bound given by property 4 is this given in Property 2.
Indeed, we get:

1 1 1
Wity = ¥ (1+{%3‘LJJ‘J)-C}+) (1+{%J)-C}+[t;j}J-C}+max(0;C%’i—l).

Jj€gp(i) Jj€sp(4)

5.5 Evaluation of the delay due to packets belonging to hp(i)

We improve in this section the bound given in Lemma 6 on the maximum delay incurred
by 7; directly due to packets belonging to hp(i) in the particular case when network delay
is constant and the processing time on node h is equal to C* for any flow. This case is
frequently encountered as along a path, all the packets have the same size, equal to the
minimum Mazimum Transmission Unit (MTU) on the path, leading to avoid the segmen-
tation and reassembling on the intermediate nodes. This alleviates the processing on any
intermediate node.

For instance, in IPv6, the Path MTU Discovery determines this minimum MTU. In the case
of a single line, this leads to consider a processing time equal to C" for any flow on any node
h. Moreover, point-to-point links are an example of links providing constant network delays.

Lemma 11 On any node h € [1,q], the processing time of any flow being equal to C"* and
the network delay being constant, the interarrival time of two successive packets on any node
h € (1,q] is at least equal to maxy—; ,_1{C*}.

Proof: As the network delay is constant, the interarrival time of two successive packets
on any node h € (1,q] is equal to their interdeparture time on node h — 1. Let k be the
slowest node among nodes 1 to h — 1. As the processing delay on any node is constant, the
interdeparture time on node k is at least equal to C*. As on any node k + 1 to h — 1, the
processing time is less than or equal to C*, the interarrival time on node h is at least equal
to C*. |

Lemma 12 When, on any node h € [1,q], the processing time of all flows is equal to C*
and the network delay is constant, then for any flow 7; visiting nodes 1 to h+ 1, h € [1,q),
the mazimum delay directly due to packets belonging to hp(i) meets:

Hil,h-l-l = Hil’h if Ohl< manzl..h{Ck}

TNAT,t

Hilah“l‘l S Hilyh + max <07 Cﬂ —]_) Oth@rwise,

where Hil’l = max (0§ C%,z’ - 1)'

RR n° 5051

24 Martin, Minet and George

Proof: We assume that on any node h € [1,g], the processing time of all flows is equal to
C" and the network delay is constant. We consider a flow 7; and distinguish two cases:

e O™ < maxy—.., C*. By applying Lemma 11, no additional delay due to packets be-
longing to hp(i) is incurred by 7;. Hence, Hil’thl = Hz.l’h.

o O™ > maxy—;., C¥. By applying Lemma 11, an additional delay due to packets
belonging to hp(i) is incurred by 7; on node h + 1. Hence, we have:

H}M < HP' o max (0;CREL — 1). m

maz,i

6 Comparative evaluation in the distributed case

We first recall the computation principle of the worst case end-to-end response time in
the distributed case when applying the holistic approach. Then, we give several examples
that illustrate how close our results are to the exact results. We also compare our results to
these obtained by the holistic approach.

6.1 Worst case end-to-end response time by the holistic approach

We now apply the holistic approach to compute the worst case end-to-end response time
of any flow 7;, when all flows follow the same line £. We denote Rmaz? (respectively Rmz‘n;.‘)
the maximum (respectively the minimum) response time experienced by packets of any flow

7; in node h and J]h its worst case jitter when entering node h.

The holistic approach proceeds iteratively and starts with node 1. Knowing the value of J}
for any j € [1,n], we compute Rmaz} using Property 2 and Rmin} = Cj, Vj € [I,n]. We
proceed in the same way for any node h, h € (1, q].

Knowing the value of JJh = Ek:l..hfl(Rm’m? - Rmzn?) + (h—1) - (Lmaz — Lmin), Vj € []., TL],
we compute Rmaz using Property 2 and Rmin!t = C}.

A bound on the end-to-end response time of flow 7; is given by:
Z?L:l Rmaz? - 2%22 th' + (q -].) - Lmaz.

6.2 Examples

In this section, we give examples of bounds on the end-to-end response times of flows in
a distributed system, when all flows follow the same line consisting of 5 nodes. We assume
that 7 = {71, 7,73, 74,75}, all the flows having a period equal to 36 and entering the dis-
tributed system without jitter. The load is equal to 83,33%. Moreover, there is only one
flow in the highest priority 3, whereas two flows share priority 2 and priority 1. Finally, we
have Lmaz = Lmin = 1.

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 25

As part of this paper, a simulation tool has been developed for providing the exhaustive so-
lution of a real-time scheduling problem in a network. Indeed, once the different parameters
have been specified, all the possible scenarios are generated and traffic feasibility is checked
for each of them. The simulation result is a file containing the exact worst case end-to-end
response time of each flow.

We consider four configurations: the processing times of the packets (i) decrease node after
node, (ii) increase node after node, (iii) are not ordered and (iv) are the same in any node
visited. The following tables give for each configuration and for any flow 7;, i € [1,5], the
exact value of its worst case end-to-end response time and the value computed according
to the trajectory approach. To show the improvement of our results compared with those
obtained by the classical technique, we also include in these tables the value computed ac-
cording to the holistic approach.

Table 3. Worst case end-to-end response time of any flow 7, ¢ € [1, 5]

(i) Processing times decrease node after node (ii) Processing times increase node after node
Ci=6,07=50=4,C/=3,0) =2 Ci=207=30C=4,C{ =5 (7 =6
| Flow | P; || Exact |Trajectory| Holistic | | Flow | P; || Exact |Tra,jectory| Holistic |
T1 1 48 48 200 1 1 48 48 261
T2 1 48 48 200 T2 1 48 48 261
T3 2 41 41 86 T3 2 45 51 85
T4 2 41 41 86 Ta 2 45 51 85
Ts 3 29 29 39 Ts 3 36 39 39
(iii) Processing times are not ordered (iv) Processing times are the same in any node
Cl=30=50C}=2C=60C =4 Ci=6,C{=6,0!=6,C{=6,C/ =6
| Flow | P; || Exact |Trajectory| Holistic | | Flow | P; || Exact |T&‘a,jectory| Holistic |
T1 1 48 48 238 T1 1 58 58 622
To 1 48 48 238 T2 1 58 58 622
T3 2 44 47 89 T3 2 51 51 149
T4 2 44 47 89 T4 2 51 51 149
Ts 3 34 35 39 Ts 3 39 39 59

We observe that the values provided by the trajectory approach are exact for all flows in con-
figurations (i) and (iv). In configurations (ii) and (iii), the values provided by the trajectory
approach are exact only for the lowest priority flows. This can be explained by the overes-
timation of Hz-l’q, the delay directly due to flows belonging to hp(i), in such configurations.

RR n° 5051

26 Martin, Minet and George

The bounds provided by the holistic approach are very pessimistic for small priority flows.
For instance, in configuration (iv), the value provided by the holistic approach is 11 times
the exact one. Even for the highest priority flow, the bound can be pessimistic, as we can
see in (iv), where it is equal to 1.5 time the exact value.

7 Conclusion

In this paper, we have established new results for Fixed Priority scheduling in the unipro-
cessor and distributed cases. By assuming that flows sharing the same priority are scheduled
FIFO, we have revisited classical results in a uniprocessor context. As our solution enables
to improve the worst case response times, any set of flows feasible with the classical solution
is feasible with ours. The converse is false, as shown by an example. Moreover, we have
determined the conditions leading to shorter response times. Then, we have established
new results in a distributed context. We have shown how to compute an upper bound on
the end-to-end response time of any flow with a worst case analysis using the trajectory
approach. Thus, we have determined the worst case end-to-end response time of any flow
and we have compared these results with the exact values and those provided by the clas-
sical holistic approach. We have shown that the bound given by the trajectory approach is
reached in various configurations, whereas the holistic approach provides only a bound that
can be very pessimistic.

References
[1] K. Tindell, A. Burns, A. J. Wellings, Analysis of hard real-time communications, Real-
Time Systems, Vol. 9, pp. 147-171, 1995.
[2] J. Liu, Real-time systems, Prentice Hall, New Jersey, 2000.

[3] K. Jeffay, D. F. Stanat, C. U. Martel, On non-preemtive scheduling of periodic and
sporadic tasks, IEEE Real-Time Systems symposium, pp. 129-139, San Antonio, USA,
December 1991.

[4] L. George, N. Rivierre, M. Spuri, Preemptive and non-preemptive scheduling real-time
uniprocessor scheduling, INRIA Research Report No 2966, September 1996.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture for
Differentiated Services, RFC 2475, December 1998.

[6] R. Braden, D. Clark, S. Shenker, Integrated services in the Internet architecture: an
overview, RFC 1633, June 1994.

[7] S. Baruah, R. Howell, L. Rosier, Algorithms and complezity concerning the preemptive
scheduling of periodic real-time tasks on one processor, Real-Time Systems, 2, p 301-
324, 1990.

INRIA

Non-premptive Fized Priority scheduling with FIFO arbitration 27

[8] V. Sivaraman, F. Chiussi, M. Gerla, End-to-end statistical delay service under GPS
and EDF scheduling: a comparaison study, INFOCOM’2001, Anchorage, April 2001.

[9] M. Vojnovic, J. Le Boudec, Stochastic analysis of some expedited forwarding networks,
INFOCOM’2002, New York, June 2002.

[10] F. Chiussi, V. Sivaraman, Achieving high utilization in guaranteed services networks
using early-deadline-first scheduling, IWQoS’98, Napo, California, May 1998.

[11] L. George, D. Marinca, P. Minet, A solution for a deterministic QoS in multime-
dia systems, International Journal on Computer and Information Science, Vol.1, N3,
September 2001.

[12] K. Tindell, J. Clark, Holistic schedulability analysis for distributed hard real-time sys-
tems, Microprocessors and Microprogramming, Euromicro Journal, Vol. 40, 1994.

[13] J. Le Boudec, P. Thiran, Network calculus: A theory of deterministic queuing systems
for the Internet, Springer Verlag, LNCS 2050, September 2003.

[14] A. Parekh, R. Gallager, A generalized processor sharing approach to flow control in
integrated services networks: the multiple node case, IEEE ACM Transactions on Net-
working, Vol.2, N2, 1994.

[15] L. Georgiadis, R. Guérin, V. Peris, K. Sivarajan, Efficient network QoS provisioning
based on per node traffic shaping, IEEE/ACM Transactions on Networking, Vol. 4,
No. 4, August 1996.

[16] V. Sivaraman, F. Chiussi, M. Gerla, Traffic shaping for end-to-end deloy guarantees
with EDF scheduling, IWQoS’2000, Pittsburgh, June 2000.

RR n° 5051

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

