
HAL Id: inria-00071559
https://hal.inria.fr/inria-00071559

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building a JMX management interface inside OSGi
Eric Fleury, Stéphane Frénot

To cite this version:
Eric Fleury, Stéphane Frénot. Building a JMX management interface inside OSGi. RR-5025, INRIA.
2003. �inria-00071559�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50453201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00071559
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
50

25
--

F
R

+
E

N
G

ap por t
de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Building a JMX management interface inside OSGi

Eric Fleury — Stéphane Frénot

N° 5025

Decembre 2003

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Building a JMX management interface inside OSGi

Eric Fleury
�

, Stéphane Frénot
�

Thème 1 — Réseaux et systèmes
Projet ARÈS

Rapport de recherche n° 5025 — Decembre 2003 — 12 pages

Abstract: The “pervasive computing” will allow users to be able to utilize various applications
through functional objects anytime and anywhere. Since pervasive computing is intrinsically highly
dynamic and heterogeneous, applications should becomes “context-dependent ” and able to change
their functionality depending on dynamically changing user context. In a pervasive computing con-
text, one must pay attention to the management part, inherent to the service deployment process. A
automatic way to instrument and allow remote management control of distributed services becomes
mandatory. This paper describes a supervising architecture for service oriented application in order
to design and deploy context aware applications suitable to a ubiquitous Internet.

Key-words: JMX, OSGi, Service Oriented Programming (SOP), Management, Instrumentation,
Supervision

�
eric.fleury@@insa-lyon.fr�
stephane.frenot@insa-lyon.fr

Fabrication d’une interface de gestion JMX dans OSGi

Résumé : L’informatique pervasive permettera aux utilisateurs d’utiliser différentes applications
n’importe où et n’importe quand. Du fait du caractère intrinsèquement dynamique et héterogène du
matériel, les applications devraient être indépendantes du contexte et devraient pouvoir changer de
fonctionnalités en fonction du contexte d’utilisation. Dans un contexte d’informatique pervasive, la
question de la gestion des applications et un élément clé, directement lié au processus de déploie-
ment de services. La possibilité d’instrumenter et d’administrer à distance les services distribués
devient une nécessité. Ce papier décrit une architecture de supervision pour des applications orien-
tées services afin de permettre la conception et le déploiement d’applications sensibles au contexte
et donc adaptée au futur internet ubiquitaire.

Mots-clés : JMX, OSGi, Programmation Orientée Service (POS), Administration, Instrumentation,
Supervision

JMX over OSGi 3

1 Introduction

We believe that future Internet appliances will be small ubiquitous devices connected by different
networks. The principal idea of pervasive networking is to change the role of communication net-
works. Currently, they are mostly used to interconnect static computers such as servers and worksta-
tions. Even if laptops or other portable devices are becoming wide spread, managing their mobility
is still awkward and requires considerable user attention and effort.

Issues such as adaptation to the intrinsic dynamicity of such pervasive systems, context aware-
ness, mobility and management are really challenging tasks once we try to build universal service
framework. In order to design and deploy such kind of generic service framework [?, ?, ?], we must
provide a light environment that will be based on a strong service oriented architectures that will be
component oriented. Based on all these strong requirements, we find OSGi has a good candidate.

However, when designing and deploying dynamic context aware services in a distributed envi-
ronment, even when relying upon advanced programming concept as SOP, one must pay attention
to the management part, inherent to the service deployment process. A automatic way to instrument
and allow remote management control of distributed services becomes mandatory.

In conjunction with the concept of service oriented architecture, we propose a complete manage-
ment infrastructure for component oriented application. Our target is the management of distributed
application deployed within a service oriented architecture, i.e., the management of servers and of
all underlying services. Thus, hot plug services can be deployed or redeployed dynamically. All
management information attached to a service will also be automatically deployed for each new ser-
vices. Inside each service, we need to systematically offer commands allowing the deployment, the
configuration and the instrumentation in order to be able to administrate remotely every service. We
will details in the section 2 our approach and its initial implementation based on OSGi and JMX.

This paper is organized as follow. The section 2 describes our approach based on the comple-
mentary use of OSGi and JMX. A discussion and plans for future works are presented in section 3.

2 JMX Management for OSGi platforms

In this section, we will present our integration of JMX inside OSGi. The main goal of this integration
is to enable the management and instrumentation of OSGi components through a remote access
provided by the JMX platform. We present the OSGi platform, the JMX platform and how we made
the automatic instrumentation of OSGi services.

2.1 OSGi

The Open Service Gateway initiative (OSGi [?]) is an industry plan for a standard way to connect
devices such as home appliances and security systems to the Internet. The "Service Gateway" is
an application server in a computer that acts as gateway between the Internet and a home or small
business’s network of devices. The OSGi plans to specify the application programming interface
for programmers to use and to allow communication and control between service providers and the
devices within the home or small business. OSGi API is build on the Java programming language. In

RR n° 5025

4 Fleury & Frénot

this context OSGi provides a standardized infrastructure for Service Oriented Programming (SOP)
on top of Java.

The OSGi specification defines the following elements:

The core framework The core framework is the central piece of the OSGi gateway. It is a dae-
mon that guarantees the execution of the different hosted components. It authorizes and provides
the bindings between clients requesting access to services and components implementing the corre-
sponding service. In summary its main role is to record and to manage locally all the activity of the
platform. From a Java point of view it can be viewed as a "super classloader" system that is able to
manage class execution and association between components residing on the platform [?].

The standard services OSGi provides standard services for component execution, interaction and
management. Theses services are only specified from an interface point of view. The standard
services are: Package admin, Service tracker, Log Service, HTTP Service, Device Access, Configu-
ration Admin, Metatype, Preference and User admin service.

A simplistic component model The OSGi component model relies on rather few concepts. The
first one is the bundle concept. The bundle is the deployment unit. It is a jar resource file that can
be installed on the framework. The bundle can specify several elements, thanks to a manifest file
that describes it. The manifest file can declare services that the bundle offers, Java packages that the
bundle makes available and finally it can declares natives libraries that can be used by Java classes.

From the component point of view, the core frameworks manages the life cycle of components.
It controls whether the components are authorized to install, execute and exploit other component
services. When component are deployed on the framework the manifest is read and service depen-
dencies are controlled. If a service depends on a specific package provided by another service the
frameworks make available that package to the requesting service. On the other side, if a bundle
exporting a specific Java package is stopped, then the framework automatically stops all bundles that
rely on that package.

Finally Java and OSGi provide a robust security mechanism for classes instantiation. The Java
standard security manager is improved to integrate the life cycle management of OSGi components.
Components can be downloaded from the Internet. The OSGi security manager enables a fine man-
agement of the components.

There are many implementation of the OSGi specification from many industrials (IBM’s SMF [?],
Sun’s reference implementation JES [?], OpenSugar [?]). For our purpose we choose an open source
OSGi implementation called Oscar [?]. Oscar is declared to be mostly compatible with OSGi speci-
fication.

In order to provide an external management layer to OSGi, we choose to implement JMX as
an OSGi service. That service will provide a JMX view of the services managed by the OSGi core
framework.

INRIA

JMX over OSGi 5

2.2 JMX: The management layer for OSGi

The Java Management Extensions Instrumentation and Agent [?] is an architecture, the design pat-
terns, the APIs, and the services for application and network management and monitoring in the Java
programming language. As for the OSGi specification the JMX architecture defines a component
model managed by two layers: the agent and the instrumentation.

The agent layer This level represents the main JMX application (the MBean Server) which reg-
isters the different resources to manage and/or instrument. In JMX this is the main part of the
specification; the agent manages all the resources and can gives access to them. The agent level
on one side performs action on managed resources and on the other side gives an HTML/HTTP
access to them. That remote access enables the resource management and instrumentation from any
web client. Moreover the agent level, provides some standard services to management and instru-
mentation aware applications. Those services enable the notification of new administrable resources
(through a notification mechanism), they enable the positioning of counters, timer and gauges that
automatically instrument the resource and triggers notifications on some events.

The instrumentation layer The instrumentation layer is responsible of interactions with resources.
At that level resources are modeled as MBeans. MBeans are JMX components that wrap access to
the resources. They provide a Java interface that declares methods that can be used for management
and instrumentation of the resource. Each managed resource is seen as a component managed by the
agent level. JMX defines different kinds of MBeans (standard, dynamic, open and model) that can
model in different ways the resources.

The JMX architecture enables the instrumentation and management of any kind of application,
provided one can make a MBean component for its management.

2.3 JMX dynamic instrumentation of OSGi services

Both OSGi and JMX are rather similar since they both rely on a framework for component execution
(the bundlecontext for OSGi, the Agent layer for JMX), they both provide standard services for com-
ponent management and finally they both provide some kind of simple component model suitable
for application development. Nevertheless we consider these two platforms as complementary rather
than concurrent. For OSGi its main advantages are that it can manage complex components depen-
dencies, it has a more complete component life cycle model, and finally the fact that the security
model is augmented from Java. On the other side JMX enables remote interaction with compo-
nents through HTTP/XML access and it enables easy integration of instrumentation capabilities on
MBeans. We decide to have OSGi as the main execution platform for component and bundelize
JMX in order to get its facilities. This architecture is shown in Fig. 1

In this figure we can see that every service is packaged as an OSGi service. In particular JMX is
just another OSGi service. The JMX service manages internally MBeans that represent other OSGi
services.

In our approach we want to give access to OSGi services through JMX. The main steps to achieve
this are:

RR n° 5025

6 Fleury & Frénot

Service
1

 Service
2

Mbean
for
S1

Mbean
for
S2

JMX Service

OSGi

JMX

Figure 1: JMX inside OSGi main view

INRIA

JMX over OSGi 7

bundelize JMX:
In this step we need to launch a JMX platform from OSGi. We have put MX4J (an open source
JMX implementation [?]) in an OSGi bundle. This bundle makes available the JMX packages
and an OSGi service that can be used to dialog with the JMX agent layer.

MBeanify Running OSGi Services:
In this step we query OSGi in order to get all registered services and generate a DynamicM-
Bean for each one.

Fig. 2 represents services involved in the beanification process.

DynamicMBeanClass
«DynamicMBean»

bundleContext
instance
dAttributes[]
dConstructors[]
dOperations[]
dMBeanInfo

Service
«ServiceIfc»

«JmxWrapperIfc»

+getMBeanServer(): MBeanServer
+getMBeanNames(domain:String): String []

«IntrospectorIfc»

+getServiceMethods(instance:Object,interfaceName:String): Method []
+getServiceMethodParameterTypes(m:Method): Class []
+getServiceMethodReturnType(m:Method): Class

«MBeanFactoryIfc»

+createMBeanService(interfaceName:String,on:ObjectName,instance:Object): void
+destroyMBeanService(name:ObjectName): void

ServiceNotifier

+serviceChanged(event:ServiceEvent): void
+createMBeanService(sr:ServiceReference,objectClass:String[]): void
+destroyMBeanService(sr:ServiceReference,objectClass:String[]): void

Figure 2: Services

The system relies on four services.

• The "JmxWrapper Service"

It wraps the original JMX service into an OSGi bundle. The bundle embeds the original
MX4J jar, and provides access to the MBeanServer singleton. External services can request
that service in order to get all registered MBeans.

RR n° 5025

8 Fleury & Frénot

• The "MBeanFactory"

That service extracts the OSGi service interface, builds a dynamic MBean that acts as a
proxy for the OSGi service and finally register the MBean at the MBeanServer (through the
JmxWrapper Service).

• The "Introspector"

The service is used by the MBeanFactory in order to extract the methods from the OSGi
service interface.

• The "Service Notifier"

It is not a service, it listens to service registration/unregistration on the OSGi framework and
asks the MBeanFactory create/destroy the corresponding MBean. Fig. 3 illustrates the se-
quence diagram that occurs when starting the Notifier service.

ServiceNotifier
«ServiceNotifierIfc»

User

start

BundleContext

getJMX

instance

getAllRunningServices

«create»

DynamicMBeanClass
«DynamicMBean»

bundleContext
instance
dAttributes[]
dConstructors[]
dOperations[]
dMBeanInfo

Service
«ServiceIfc»

introspect

serviceIfc

serviceListener

Figure 3: UML sequence diagram

INRIA

JMX over OSGi 9

When the user starts the notifier, it looks for the JMX agent service (the MBean server). Then
for each service registered in the framework, the notifier service asks for the creation of a wrapping
DynamicMBean. Then, each service becomes available for JMX management.

When the notifier is started, every OSGi service becomes available through JMX management.
For instance Fig. 4 represents the main JMX access to OSGi services.

We have defined two JMX naming domains. The "Domain:Service" represents the
services that generates the dynamic MBeans. The "Domain:OsgiOscarService" rep-
resents the dynamically instrumented OSGi services. The two remaining JMX Domains
("Domain:HtmlAdaptor" and "Domain:JMImplementation" are domains related to
MX4J implementation.

In order to manage the OSGi shell we have developed a simple JMXShell service that provides all
commands to manipulate Oscar’s shell. We can notice in the previous figure (Fig. 4) the last line that
gives access to that service. If we click on the "Service:name= shellmbean.ShellMbeanService@861f24"
hyper link, we get the following web page (Fig. 5).

Through that web page, we can manipulate the Oscar shell. Every methods of the OSGi service
interface is available inside the HTML form. In order to invoke the "ps -l" command, we need to
type the "-l" option in the textfield area and click on the "invoke" button (not visible on the Figure).
If we invoke the "ps -l" Oscar command, we obtain the next web page (see Fig 6).

The "ps -l" command displays all bundles currently deployed on the OSGi gateway.
Our integration of JMX inside OSGi enables us to manipulate every OSGi platform and its

services through a simple URL access. Every interaction is made with a web navigator that interacts
with the JMX bundle provided by the OSGi platform. All our bundles and developments are open
source and are available on http://ares.insa-lyon.fr/~dan/jmx_osgi/

3 Conclusion

We have presented the implementation of an automatic way to instrument and allow remote man-
agement control of services within a service oriented architecture. Our implementation is based on
the complementary use of OSGi and JMX. Indeed, our integration of JMX inside OSGi enables the
management and the instrumentation of OSGi components through a remote access provided by the
JMX platform.

From a performance point of view, the MBean indirection cost is only paid when there is a
management and/or instrumentation operation. In the standard execution scheme, calls are not going
through the Mbeans.

Possible extension of this work is open to investigation. We are currently working on taking into
account the last release of OSGi that offers several improvements. However, the version 3 of OSGi
still does not consider remote service management. Our approach offers a large flexibility and allows
us to deploy an instrumentation framework of distributed services applications. Our continuing work
in this area is to design a more ambitious framework and to propose a peerware that will enable to
connect several OSGi platforms. Using such a paradigm, our approach still provides a global remote
management of all OSGi platforms. The underlying idea that we are currently implementing is
to use a middleware concept to exchange information based on a peer-to-peer approach. In order

RR n° 5025

10 Fleury & Frénot

Figure 4: JMX main page

INRIA

JMX over OSGi 11

Figure 5: Access to one OSGi service

RR n° 5025

12 Fleury & Frénot

Figure 6: Execution of the ps command

to inter connect several OSGi platforms together and still taking benefit from the Java advantage
(portability, safety and security features, increased productivity) we plan to use JXTA [?]. Based on
this well defined paradigms and clearly identified tools, we are close to the main goal stated in the
introduction.

We are also working on improvements of our integration of JMX inside OSGi. Our first imple-
mentation is a coarse grain service since we choose to implement JMX as an OSGi wrapper service.
A finer grain integration is under consideration to reduce the overall size by deleting redundant ser-
vices. For instance, a service such as HTTP is provided by both JMX/MX4J and OSGi/Oscar. This
more integrated plateform should have better performances than the current coarse grain implemen-
tation.

The last ongoing work is to integrate the CIM Application Management Model which is an in-
formation model that describes the details commonly required to manage software products and
applications. We want to integrate the CIM model into our approach in order to use more sophisti-
cated management platform instead of the basic JMX HTTP adapter. Note that the aim of the JSR
146 WBEM Services: JMX Provider Protocol Adapter is to define how JMX instrumentation can be
mapped to CIM and the definition of a JMX Provider Protocol Adapter for WBEM Services.

Finally, open questions remains in the management area of service oriented application. What
kind of information provided by the middleware are worth exploitable and useful for the applica-
tion? How a distributed service can provide its own supervising characteristics and integrates itself
automatically in existing supervising applications?

INRIA

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

