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Ensuring the Drawability of Extended Euler Diagrams
for up to 8 Sets

Résumé : Cet article montre de maniére constructive I’existence d’une représentation sous
forme de diagramme appelée diagramme d’Euler étendu de toute collection d’ensembles
Xi,... X, pour n < 9. Ces diagrammes sont adaptés pour représenter les inclusions et
intersections d’ensembles : chaque ensemble X; et chaque intersection non vide d’un sous
ensemble des X7, ..., X,, est représentée par une région unique du plan. A partir d’une des-
cription du diagramme, nous définissons un graphe dual G et étudions les propriétés de ce
graphe pour construire une représentation planaire des X1, ..., Xj,.

Ces diagrammes sont destinés & étre utilisés pour visualiser les résultats d’une requéte com-
plexe sur une base de données indexée de documents multimédia. Ce type de représentation
permet & ’utilisateur de percevoir & la fois le résultat de sa requéte et la pertinence de la
base de données vis & vis de la requéte.

Mots-clés : diagrammes d’Euler, diagrammes de Venn, hypergraphes, planarité de graphe,
visualisation de données
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1 Introduction

In the 18th century, Leonard Euler has proposed a general notation for representing sets
relations, known as Euler Diagrams (cf. [Eul75]). An Euler diagram is a planar subdivision
built from a collection of Jordan curves, each curve being associated to a set and each region
to a non-empty intersection of sets. Euler Diagrams have been used in various applications
(cf. [GKH99]). Our main goal here is to use them in a database visualization context.
Indeed, enhancing the visualization of the results of queries in databases becomes a challeng-
ing and useful task [Con94,CT95,CCLC97|. Euler diagrams gives an intuitive representation
of the relationship of a collection of datasets. Moreover, if elementary queries are associ-
ated with sets, these representations generate maps of the database according to the user’s
viewpoint.

For example, if a user is looking for documents on writers or painters of the XIxth
century on a given database and if he obtains the diagram of figure 1 as a result, he can infer
information both on his request and on the content of the database. Indeed, the diagram
shows in particular that this database will not be relevant if he looks for information on
painters from the xxth century, because all the painters present in this database are either
poets or from the xIxth century.

Fig.1. A diagram associated with a query

Venn diagrams representing all the possible intersections between the initial sets [Rus01]
are not adapted to our purposes. In fact, we want that each region drawn in the diagram
corresponds to non empty list of selected documents. This constraint is motivated by the fact
that most of the professional TV archives indexed databases are associated to a thesaurus
containing exclusive indices. This characteristic implies that many combination of elementary
request do not select any document. Then, we propose a graphic representation which is an
extension of Euler diagrams (cf. [Eul75,LP97]).

In such an application, we must be able to represent by Euler diagrams any collection of sets
and their non empty intersections. More precisely, our goal here is to show by a constructive
method the existence of an extended Euler diagram for any collection of intersections of up
to eight sets. We will notice that when the number of sets is greater or equal to nine, such
a planar representation may not exist.

This paper is structured as follows:

- In section 2, we first define the extended Euler diagram representation for a col-
lection of intersections Y; of a set of sets X;. Then, we present its dual representation,
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4 Verroust & Viaud

the L _connected labelled graph associated to X; and describe the process transforming a
L _connected labelled graph in an extended Euler diagram.

- In section 3, we show that any collection of intersections of up to 8 sets has a planar
L _connected labelled graph representing it .

2 Diagram representation

Given X = {X;1,X>,..., Xk} a collection of non empty distinct sets, we want to build a
graphic representation which shows information about the sets and their intersections on a
plane. Let Y = {Y1,Y, ..., Yor } the collection of all possible intersections between the X;.
Euler diagrams [Eul75] could be used but appear to be too restrictive for our purpose. In
fact, an Euler diagram consists of simple closed curves called contours associated with sets
which split the plane into zones. Each set X; is associated with an unique contour, X; being
represented by the interior of the contour.

The concrete Euler diagrams proposed in Flower and Howse’s approach [FH02] are very
well defined but even more restrictive. In fact, concrete Euler diagrams are Euler diagrams
with few more constraints. The first constraints introduced at the curve level, make hypoth-
esis on the set of intersections being drawn : each segment of curve delimits the interior and
the exterior of exactly one set , and each intersection of curves is the crossing of exactly two
contours. The introduction of “exactly” is very useful to specify formally the problem and
its dual formulation with graphs, but eliminates the cases in which the set of subsets built
from the intersections of the X; does not have such properties.

We propose an extension of Euler/Venn diagrams which increases the number of set X being
potentially drawable. As we will see in the next section, our diagrams can be related to the
notion of vertex-planarity introduced by Johnson and Pollak [JP87] for hypergraphs.

In this paper and according to our purposes, for any collection X of up to eight elements,
we want to represent by an extended Euler diagram the collection of non empty Y;. Such
diagrams are characterized by the following properties:

- An intersection point may intersect more than 2 contours,

- A curve segment may be part of more than one contour,

- Each non empty Y; is associated with a unique zone,

- each set X; is associated with a set of zones whose union forms a connex planar region
which may contain holes.

Those properties are used to define formally the extended Euler diagrams £D (in section
2.1) and its dual representation, the L _connected labelled graph G (in section 2.2). Section
2.3 describes the process to transform a L__connected labelled graph G representing X in
an extended Euler diagram: making the hypothesis that G is planar, we compute a draw-
ing D(@) of G and introduce special vertices in D(G) to obtain a triangular mesh D;(G).
Finally, from D(G), we generate an Extended Euler diagram which is a representation of
X.

INRIA



Ensuring the Drawability of Extended Euler Diagrams for up to 8 Sets 5

2.1 Extended Euler diagrams

Definition 1. Let L be a finite set of labels and C a set of Jordan curves in R2.

We say that C islabelled by L when each curve ¢ of C is associated with a couple (\(c), sign(c))
where \(c) € L and sign(c) € {+,—}.

To each labelled curve ¢ of C corresponds a zone ((c) defined by:

- if sign(c) = +, then ((c) = int(c)

- if sign(c) = —, then ((c) = ext(c)
C1
A
Fig.2. A: a zone with two holes sign(ca) = sign(c3) = —; B: an extended Euler diagram

with m(z1) = {a}, m(z2) = {a, b,c} and m(z3) = {c}.

Definition 2. An extended Euler diagram is a triple (L,C, Z) whose components are de-
fined as follows:

1. L is a finite set of labels
2. C is a set of Jordan curves labelled by L and verifying:
(a) Vi€ L,3c € C, Ac) =1 and sign(c) = +.
This curve ¢ is unique and will be called the envelope of I (Ceny(1)).
(b) if AMc) = A(c), ¢ # ¢ and sign(c) = sign(c’) then ¢ and ¢' do not intersect
(c) if Mc)=A(c"), c# " and sign(c) = +, then sign(c') = — and ¢’ C int(c)
3. Z is a set of zones corresponding to the planar partition defined by the curves of C.
Each zone z of Z is associated to a set of labels m(z) defined by
(a) m(z) = {l € LIVc € C, if Mc) =1 then z C {(c)}
(b) if m(z) = m(2') and m(z) # 0, then z = 2’
We note Zy the set of zones associated to an empty set of labels.
Zy contains at least the zone zg = (V{1 5ign(c)=+} €2E(C)-

The set of extended Euler diagrams is noted ED.

As a mater of fact, we have introduced Jordan curves to define zones, but those notions are
equivalent. In the following, we will use rather the zones formalization.

Definition 3. Let X = {X1,Xs,..., X} be a set of non empty distinct subsets of X,
Y = {Y1,Ys,...,Y;,} the set of all possible non empty intersections between the X; (m < 2%).
We say that the extended Euler diagram (L,C,Z) is a diagram representation of X if and
only if:

1. there is a bijection ¢ : L — X; l— x

RR n°® 4973



6 Verroust & Viaud

2. ¢:Z\Zy > Y; z =y defined by ¢(z) =y =gz ¥(1) is @ bijection.

Remark 1. Extended Euler diagrams can be related with Johnson and Pollak’s notion of
planarity for hypergraphs [JP87].

Let H = (V, E) be an hypergraph and X = {X1,..., X} be a set of non empty distinct
subsets of X’ such that there are:
- a one-one map ¢ from the set of hyperedges E and X = {X;, ..., X},
- a map o between V and the set of all possible non empty intersections between the X,
Y = {¥1,Ys,...,Y,u}
satisfying: Vv € V, v belongs to the hyperedge e of E if and only if o(v) C e(e).
If an extended Euler diagram (L, C, Z) is a diagram representation of X, then (L,C, Z) is
a vertex-based diagram representing the hypergraph H = (V,E) and H is vertex-planar
according to Johnson and Pollak’s definition.

Rather than working with extended Euler diagrams, we will use a dual representation: the
L connected labelled graphs defined in the next section.

2.2 L_connected labelled graphs
Definition 4. A labelled graph is a triple G(L,V, E) where:

1. L is a finite set of labels
2. V is a set of labelled vertices, i.e.:
(a) each vertex v is labelled with a set of labels m(v) C L
(b) two distinct vertices v and w of V' have distinct sets of labels.
3. E is a set of edges such that:
(a) each edge e = (v,w) of E is labelled with a set of labels m(e) = m(v) N m(w)
(b) ife € E then m(e) # 0

In the rest of the paper, L(WW) will be the set of labels associated to the vertices of W, i.e.
L(W) = U,ew m(v), where W is a set of labelled vertices.

Definition 5. Let G(L,V, E) be a labelled graph.

— Let 1 be a label of L. We say that G(L,V,E) is 1 _connected if and only if the subgraph
G' of G(L,V,E) on the set V' of vertices of V' having | in its set of labels is connected.
— G(L,V,E) is said L_connected if and only if it is | connected for all l in L.
— G(L,V,E) is said L.__complete when E is defined by:
E = {(v,w)|lv e V,w € V and m(v) N m(w) # 0}
— A vertexv of V is said L_connectable to a subset W of V' if and only if m(v) C L(W).

These definitions are illustrated in figure 3.

Remark 2. Given L and V, there exists only one L complete labelled graph noted G(L, V, E.)
and any L _connected labelled graph G(L,V, E) is a subgraph of G(L,V, E.).

INRIA
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A B
ab ab
bc be
ac ac
ad
cd ad / od
bd bd

Fig. 3. Let us take L = {a,b,¢,d}, V = {ab,ac,ad, be,bd, cd},

E = {(ab, ac), (ab, bc), (be, cd), (cd, bd), (bd, ad), (ad, ac), (ac, be), (bd, be) },

E. = EU {(ab, bd), (ab, ad), (ac, cd), (ad, cd) }.

A: G(L,V,E) is a L_connected labelled graph; B: G(L,V,E.) is the corresponding
L_ complete graph; C: ab is L_connectable to W = {ad, bd, cd, ac}.

In the following, we will note:

- G the set of L__connected labelled graphs

- GY(L,V) the set of L_connected labelled graphs associated to a given set of label L and
a set V of labelled vertices: GY(L,V) = {G(L,V, E)|G(L,V,E) € G}

- GK(L,V) the set of planar graphs belonging to GY(L, V).

Definition 6. The mapping dual : ED — G;(L',C, Z) — G(L,V, E) is defined by:
G(L,V,E) = dual((L',C, Z)) if and only if

(i) there is a one to one mapping between L' and L
(i1) there is a bijection 6 : Z — V;z — v such that m(z) = m(6(2))
(iii) e = (v,w) € E if and only if §~1(v) and §~1(w) are adjacent along a portion of curve
of non null lenght in the planar partition formed by C'.

Fig.4. An extended Euler diagram (L,C, Z) and its dual. We have m(a) = m(z1) = {a},
m(abe) = m(z2) = {a,b,c}, m(c) = m(z3) = {c}, m(bc) = m(z4) = {b,c} and m(b) =
m(zs) = {b}.

Let X = {X1,X5,..., X} be a set of non empty distinct sets and ¥V = {¥1,Y5,...,Yor }
the set of all possible intersections between the X;. Extended Euler diagrams and labelled
graphs are introduced to built a planar representation of X. More precisely:

RR n°® 4973



8 Verroust & Viaud

Definition 7. Let Y' = {¥1,Y5,...,Y,,} be the subset of Y which elements are the non
empty intersections between the X; (m < 2¥) We say that the L connected labelled graph
G(L,V,E) is a graph representation of X if and only if:

1. there is a bijection A\ : L - X = {X1,.. Xp}; l— 2
2. x:V =Y vy defined by x(v) =y = (Nigm(z) A1) is a bijection.

In the following, we will note ED(X) the subset of ED composed of diagram representations of
X and Gp(X) the set of planar L _connected labelled graph which are a graph representation
of X.

Remark 3. If (L,C,Z) is a diagram representation of X, then dual((L,C,Z)) is a graph
representation of X.

We want to find a planar representation of the set Y’ of non empty elements of Y such that:

— each element v of Y corresponds to a unique zone Z,.
— for each X;, if v C X; and v is not the unique element of Y’ included in X;, then we can
find w in Y, w C X;, w # v such that Z, and Z,, are adjacent.

We will see in the next section that if we find an element of Gp(X) we can built such a
planar representation.

2.3 From L _connected labelled graphs to extended Euler diagrams

As our purpose here is mainly to show the existence of an extended Euler diagram represent-
ing X once a planar L__connected labelled graph representing X is found, we will describe
informally the process of building a extended Euler diagram from a planar L. _connected
labelled graph and illustrate it with figure 5.

Let G(L,V,E) be an element of Gp(X). To have a better control on the drawing of the
resulting diagram we introduce special edges and vertices during the process:

1. A straight-line drawing D(G) of G is obtained (cf. [BETT99]).

2. We temporary remove the dangling edges from each internal face of D(G).

3. For each internal face F' of D(G) which is not triangular, we insert a special vertex
representing the empty set and connect it with all the vertices of F' (cf. figure 5 (A)).
These special vertices are introduced only to control the drawing of the diagram. Then
the dangling edges are reinserted in one of the new triangular face subdividing F'.

We now have a triangulation Fi, ..., F}, representing G(L,V, E) and we compute a new
drawing of it.

4. If a triangular face F; = (v1,v2,v3) contains at least a dangling edge connected to
v;, a special vertex vy representing the empty set is inserted and edges connecting the
extremities of the dangling edges and vy are created. If v; j«; is not connected to a
dangling edge then vy and v; are connected (cf. figure 5 (C)).

This leads to a new planar graph G' and a new drawing D(G")

INRIA



Ensuring the Drawability of Extended Euler Diagrams for up to 8 Sets 9

Fig.5. The construction of an extended Euler diagram from a drawing of a planar
L_connected graph (L = {a,b,c,d,e} and V = {d,ad,ab,ae,ace,ac,be, bed, abd}). Each
internal empty region is drawn in grey and is associated to a red vertex. A: a drawing of
a L _connected labelled graph without the dangling edge (d,ad). B: the empty region as-
sociated to a non triangular face. C: the dangling edge (d, ad) is drawn. D: the graph and
its associated regions. E: the extended Euler diagram with internal regions associated to an
empty set of labels. F: the resulting extended Euler diagram after deformation.

5. Each vertex of G’ is associated to a planar region labelled by its set of labels. The regions
of the plane corresponding to an empty set of labels are associated to the new vertices
(cf. figure 5 (B) and (D)). We obtain an extended Euler diagram (L,C’, Z') that may
contain regions associated to an empty set of labels.

6. The internal regions associated to an empty set of labels are then deformed to a region
reduced to a point as in figure 5 (E). As G is L connected, each zone assopciated to a
given label is connected. We thus obtain an extended Euler diagram (L, C, Z) such that
G(L,V,E) = dudl((L,C, Z)). (cf. figure 5 (F)).

G(L, V,, E) d'rciv)(l) D(G) ezteni()2,3,4) D(GI)
N dual l | diag(5)

(L,c,z) "I (1,0, 2

The previous paragraph was an informal proof of the following proposition:

Proposition 1. If there is a planar L _connected graph G(L,V,E) representing X, then
there is an extended Euler diagram (L,C,Z) representing X. This diagram is such that
G(L,V,E) = dual((L,C, Z)).

Remark 4. A dangling edge (v, w) connected to v appears when m(w) is included in m(v).
Then to obtain the most intuitive diagram representation, the dangling edges should appear

RR n°® 4973



10 Verroust & Viaud

on the external face of D(G'), as it is done in figure 8. Such criteria should be considered as
one of the visual criteria mentioned in the conclusion.

3 The planarity problem

Given a set of labels L and a set of labelled vertices V', to draw an extended Euler diagram,
we need to find at least one element in gg(L, V), i-e. a set of edges E such that the labelled
graph G(L,V, E) is planar and L. connected.

To prove the planarity of a graph, we will use the graphs K, and K, ,, n > 2

- K, is the complete graph defined on n vertices: in K,,, every vertex is adjacent to every
other vertex

- K, ,, is the complete bipartite graph consisting of two disjoint vertex sets V = {v1, ..., vn},
W = {w;...,w,} and the edge set E = {v;, w;|1 > i,j > n}

and Kuratowski’s characterization of planar graphs [Kur30]:

Theorem 1. A graph is planar if and only if it does not contain a subdivision of K5 or
K33 as a subgraph.

We already know that, if card(V') = 2¢¢74(L) the diagram to draw is a Venn diagram which
has a planar representation (cf. [Rus01]) for any value of card(L). But this property does
not hold in the general case.

In fact we have!:

Proposition 2. Let k be the cardinality of L. When k > 9, there exists at least a set of
labelled vertices V' for which all the graphs of GY(L,V) are non planar.

Proof. Suppose L = {a,b,c,d,e, f,g,h,i} and

Upery m(v) = {{a,b,c},{d,e, f},{g,h,i},{a,d,g},{b,e, h},{c, f,i}}. Then GV(L,V) con-

tains only one L_ connected labelled graph which is a K3 3 (cf. figure 6). O
abed
abc adg
aefg dgij
def beh
et ofh ghi cfi

Fig.6. Two non planar L connected labelled graphs: on the left a K5 and on the right a
Ks3

Let us now state some results on sets of labelled vertices and L. connected planar graphs.

Definition 8. Let V be a set of labelled vertices and v and w two vertices of V,
- v and w are said label _disjoint when m(v) Nm(w) = §
- v is said label _included in w when m(v) C m(w)

! The following proposition is another version of the planarity results for Euler’s Circles presented
by Lemon and Pratt in [LP97].

INRIA
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Proposition 3. Let G(L,V,E) be a L_connected planar graph and W be a set of vertices
such that V.C W and every vertex w of W\V is label included in o vertex of V. Then
GY(L,W) contains a planar graph.

Proof. To prove that GX(L, W) is not empty, we will built a graph G(L, W, E') containing
G(L,V,E) by adding successively the vertices of W\V and show that the construction
ensures that it is a L__connected planar graph.

Let w € W\V and v a vertex of V such that w is label _included in v. Then if we add
the edge e = (v,w) to G(L,V, E) we obtain a L connected graph (L,V U {w}, E U {e})
which is still planar because the addition of e cannot contribute to add a K33 or a K in
(L, VU{w}, EU{e}). By augmenting the same way the graph G(L,V, E) for each w € W\V,
we obtain at the end a L.__connected planar graph on W. O

Corollary 1. Let W be a set of labelled vertices on L and V = {v € W|card(m(v)) > 2}.
If GX(L,V) is mot empty, then G (L, W) is not empty.

Proof. Let suppose that G(L, V) contains a L_ connected planar graph G(L,V, E).

W\V can be partitioned in two subsets:

Wi = {v € W|card(m(v)) = 1 and v is label _included in a vertex w of V'}

Wy = {v € W|card(m(v)) =1 and v is label _disjoint of any vertex w of V'}

Using proposition 3, if W, is not empty, we built a planar L _connected labelled graph
G(L,V UW,E").

As the vertices of Wy are label disjoint of all the vertices of V', the graph G(L,V U Wy U
Wa, E') is a planar L connected labelled graph. O

Using the previous corollary, we will restrict ourselves to sets of labelled vertices V on L
satisfying:

(H1) Yv,w € V, if v is label _included in w then v = w.

(H2) any vertex v of V has more than one label in m(v).

For a set V' of labelled vertices satisfying (H1) and (H2), we proceed as follows to show
that G¥(L, V) is not empty when card(L) < 9:

1. we choose a subset Vp of vertices of V' among those satisfying L(Vy) = L(V) and build
a L_ connected planar graph Go(L, Vp, Ep) on Vy (cf sections 3.1 and 3.2).

2. we build a partition of V =V UV, U...U Vg, k < card(Vp).
This construction is described in section 3.3.

3. for each V;, we show how to extend Go(L, VoUV;...UV;_1, E;_1) to obtain a L connected
planar graph G(L, Vo UV1...UV;, E;).
This is the subject of section 3.4.

3.1 Choice of Vj

Given V and L, let T(V) be the set of subsets T' of V such that L(T) = L(V') and 75(V)
be the subset of 7 (V) formed by the elements T' of 7 (V) having a minimum number of
vertices.

RR n°® 4973



12 Verroust & Viaud

Definition 9. Given T and T' in To(V), we rename the vertices of T and T' w.r.t. the
cardinality of their associated sets of labels, i.e. T = {vo,v1...vp} and T' = {vg, v]...v,} with
card(m(v;)) > card(m(v;)) and card(m(v;)) > card(m(v})) when i <j.

We say that T >, T' if and only if:

3k < p,Vi < k,card(m(v;)) = card(m(v})) and card(m(vy)) > card(m(v},)).

Tmaz(V) is the set composed by the maximal elements of To(V') for >1..
Using the definition of 7max (V') and the hypothesis (H1) and (H2) on V we have:

Proposition 4. Given Vi € Tmaz(V)

1. Yo € Vo, 3l € m(v) s.t. I ¢ L(Vo\{v})

2. If V' € Vi, then we can not have neither

(a) IV’ CV, s.t. L(V') C L(V”) and card(V") > card(V")

nor

(b) AV? CV, s.t. L(V") C L(V?) and card(V') = card(V?) and V' <, V”
3. card(Vy) < card(L)

In the following, for a given set of labels L and a set of labelled vertices V on L satisfying
(H1) and (H2),

- if W is a subset of V and v € W, we note Luy (v) = {l € m(v)|Yw € W,w # v,l ¢ m(w)}
and Lu(W) = Uyew Luw (v)

- Vo denotes an element of Tmax (V).

3.2 Construction of a L connected planar graph on V; for card(L) < 9

Definition 10. Given a L _connected graph G(L,V, E), an edge e of E is said:

- L_irreducible if G(L,V, E\{e}) is not L_ connected.

- totally L _irreducible if G(L,V, E.\{e}) is not L_ connected.

A L connected graph G(L,V, E) is said L._minimal if all the edges of E are L_irreducible.

Let us notice that when e is totally L_irreducible, e is included in every graph of GY(L, V)
and m(e) contains at least one label of L which is present in only two vertices of V.

Proposition 5. If card(L) < 9,G5(L, V) is not empty.

Proof. Let G(L,Vy, Ey) be aL._minimal and I connected graph of GY(L,V;). We know by
proposition 4 that card(Vp) < card(L). Then, as card(L) < 9 we have the following cases to
consider:

— card(Vo) < 4. GY(L,Vy) = GH(L, Vo) because we need at least 5 vertices to build a non
planar graph.

— card(Vp) = 5. G(L,Vy,Ey) # K;. If it was the case, K5 would be L _minimal and
any edge e of K5 would be totally L _irreducible. Then, as K5 has 10 edges, we must have
card(L) > 10 which contradicts the hypothesis.

— card(Vp) = 6. We have card(Lu(Vp)) > 6 and card(L) < 8. Then L contains one or two
labels which do not belong to Lu(Vp).
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Ensuring the Drawability of Extended Euler Diagrams for up to 8 Sets 13

If L\Lu(Vp) = {l}, then Ej consists in a path joining the vertices having [ in their set of
labels. Then G(L,Vj, Ep) is planar.

If L\Lu(Vp) = {I,I'}: to build a L. connected graph on six vertices connecting two labels,
we need less than 10 edges (we will see in figure 12, that only 5 edges are necessary). Then
such graph cannot contain any K33 or K.

— card(Vp) = 7. As L\ Lu(Vp) = {l}, Ep consists in a path joining the vertices having [ in
their set of labels. O

3.3 Creation of a partition of V

Definition 11. Given Vi an element of Tmaz(V) and v a vertex of V\Vy, we call W(v, Vp)
the set of subsets W of Vy such that v is L_connectable to W. Let Wazn(v,Vp) be the
subset of W(v, V) whose elements have the minimal number of vertices. We build a partition
{Vo, V1, Va,..,Vp} of V' where each V;,i > 0 is defined by: V; = {v|3W € Wrzn (v, V) and
card(W) = i}.

One shall notice that hypothesis (H1) on V implies that V; is empty. Before extending Gy
with the V;, we will give general results on the V; ;~¢.

Lemma 1. Ifv € V,, and if W), = {w1,...w,} is an element of Wnmzn (v, Vo), then
card(m(v)) > n and m(v) = {l1..l,} U L,, with L, C L(W,,) and l; € Luw, (w;).

Proof. Asvisin V,, vis L _connectable to W,,. Therefore, if there was w; in W), such that
m(v)N Luyy, (w;) = 0, then v would be L__connectable to W,\{w;} and W,, ¢ Waizn (v, Vo).
O

Lemma 2. If card(Vy) = card(L) — 1 and card(L) > 3 then V = Vj.

Proof. We know that Lu(Vy) > card(Vp). Then, as card(Vp) = card(L) — 1 and V satisfies
(H2), each vertex v of Vp is such that m(v) = Luy,(v) U {l}, with | € L\Lu(Vp) and
card(Luy,(v)) = 1. If o' € V\V,, m(v') contains at least two labels /; and l; belonging to
Lu(Vp) with I; € m(v1), o € m(vz) and {v1,v2} C V. Then, if card(Vy) > 2, the set of
vertices W = (Vo\{v1,v2}) U {v'} contradicts proposition 4 (2). O

Proposition 6.
(a) If Vi n>2 is not empty then Yv € V,, YW, € Waiza (v, Vo), n < w
(b) Let v € V,,. If Jwy, € W, with card(m(wg) N Lu(W,)) =1

then n < C‘“"d(L(Wn));card(Wn).{_g

Proof. Let v be a vertex of V,, and W, (v, Vp) = {w1,...w,} be an element of Wamz (v, Vo).
We know from lemma 1 that {l;..l,} C m(v) with I; € Luw, (w;).

Let Lu'(v,W,,) be a set of labels defined by Lu'(v, W,,) = Lu(W,)\{l..ln} and L, (W,,) =
L(W,)\Lu(W,). We can remark that:

- for w; € W,,, we cannot have simultaneously card(L,(W,) N m(w;)) = 0 and
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14 Verroust & Viaud

card(Luw, (w;)\{l;}) = 0, since card(m(w;)) > 2.

-L(Wy) =A{h,..., ln} U Lu'(v,Wy,) U L, (Wy,).

As {ly,...., 1}, Lu' (v, W,,) and L,.(W,,) are disjoint, we have

card(L(W,)) = n + card(Lu' (v, W,,)) + card(L.(W,)).

Then, to prove proposition 6 we consider two cases:

-1- if Yw; € Wy, Luw,, (w;)\{l;} # 0 then card(L(W},)) > n + card(Lu'(W,)) > 2n

-2- if Jwy, € Wy, s.t. Luw, (wk)\{lk} = {.

Let T = {v, Wy\{wr }}. We have L(T) = L(W,,) and card(T) = card(W,). As W, is a subset
of Vp then by proposition 4, we must have: card(m(wy)) > card(m(v)) > n. Thus, from the
hypothesis on wy,, m(wy) must contain at least (n — 1) labels distinct from {l1,...,1,}.

Let P = {v,wy}. Either L(P) = L(W,,) and n = 2, or L(P) C L(W,,), and, as card(L(P)) >
2n — 1, we must have (a): card(L(W,)) > 2n.

W,, cannot contain more that one vertex w such that m(w) C L(P), to satisfy the minimality
hypothesis on W,,. Thus, at least card(W,,) — 2 vertices of W, contain one label or more not
in L(P). Then we have :

card(L(Wy,)) > card(W,,) — 2 + card(L(P)) > card(W,,) —2+ (2n — 1). O

Using proposition 6 we have:

Corollary 2. If 2n > card(L) then V,, is empty.

3.4 Construction of a L connected planar graph when card(L) < 9

Let Gy = (L, Vo, Ep) a planar L connected graph. To extend Gy with the vertices of V; with
1 > 1, we will use the following remark:

Remark 5. Let V a set of labelled vertices, W a subset of V and G(L,W, E) a L _ connected
labelled graph. If a vertex v of V\W is L _connectable to a subset W’ of W, then the set of
edges E' = {(v,w')|w' € W'} is such that G(L, W U {v}, EUE') is a L_ connected labelled
graph.

Properties on the insertion of vertices of V;
Lemma 3. Let Go(L,Vo,Eo) be a L _connected planar graph and v an element of V. If

Wmzn (v, Vo) contains a set of vertices Wo = {w1,wa} such that (wy,ws) is an edge of Ey,
then v can be inserted in Go(L, Vo, Ey) while keeping planarity and L_ connectivity.

Proof. The insertion of v creates a path p(v) = {(w1,v), (v, w2)}, parallel to the edge (wy,ws)
of Ey. If Go(L, Vo, Eyp) is planar then G(L, Vp U {v}, Eo U {p(v)}) is planar. O

Corollary 3. Let Go(L,Vy, Ey) be a L connected planar graph. If card(Vy) < 4 then all the
vertices of Vo can be inserted in Go(L, Vy, Eo) while keeping planarity and L _connectivity.
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Proof. If card(Vp) < 4, the complete graph K.q.4(v,) on Vp is planar and L_connected.
Thus, using lemma 3, all the vertices v of V5 can be inserted in it without breaking the
planarity and the L_connectivity. As Go(L, Vo, Eo) is a subgraph of K ,,q(vy), its extension
is also a subgraph of the extension of K qq(vy)-

Thus, if E' = {p(v)[v € V3 and p(v) = {(w1,0), (v, w5)} with {ws,ws} € Waezn (v, o)},
the graph G(L,Vy U Vs, Eg U E') is planar and L connected. O

Corollary 4. IfV is such that card(Vo) = 2, then GX(L,V) is not empty for any L.

Properties on the insertion of vertices of V3

Lemma 4. Let Go(L,Vy, Eg) be a L connected planar graph. If V3 contains a vertex v such
that there is W3 = {wy, w2, w3} € Wamzn (v, Vo) with card(L(W3)) < 7, then all the vertices
v' of V3 such that W3 € Waza (v', Vo) can be inserted in Gy while keeping the planarity and
the L _connectivity on Gy.

Proof. Let v and v’ be two distinct vertices of V3 associated to W3. We first insert v in G
by adding three edges (v, w1), (v, w2), (v, ws).

-1- Suppose that Yw; € W3, Luw,(w;)\m(v) # @. Then Yw; € W3, card(m(w;)) = 2 and
m(w;) € Lu(W3). To satisfy the hypothesis on W3, we must have card(L({v,v'})) < 5. As
card(m(v)) > 3 and card(m(v') > 3 and v and v’ are distinct, m(v') has exactly one label
" not in m(v). Let w; € W3 s.t. I' € m(w;). Then v’ is L connectable to {v,w;} and can be
inserted in Gy by creating a path (v,v', w;) parallel to the edge (v, w;) (cf. figure 7 A). This
operation leads to a planar L. connected graph.

Fig. 7. Insertion of v and v’ vertices of V3. A: v’ has one label I’ not in m(v) and belonging
to m(w;). B: v and v' have one label in common belonging to m(w;). C: v and v' are
label _disjoint and v" and v' have at least one label in common.

-2- Suppose that Jw; € W3, s.t. Luw,(w;)\m(v) = 0. Then v and v' have the label of
Luyw, (w;) N m(v) in common. Thus v’ is L _connectable to {v} U (W3\{w;}) and v' can be
inserted on the edge (w;,v) and connected to the vertices w; of W5 with ¢ # j by adding
the edges (v',w;) (cf. figure 7 B). The resulting graph is planar and L _connected. O

Using a similar reasoning than for the corollary 3, we have:

Corollary 5. Let Go(L, Vo, Ey) be a L connected planar graph. If card(Vy) < 4 then all the
vertices v of V3 such that there is W3 = {w1, wa, w3} € Wnmzn (v, Vo) with card(L(W3)) < 7
can be inserted in Go(L,Vy, Ey) while keeping planarity and L_ connectivity.
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16 Verroust € Viaud

Properties on the existence of V,

Lemma 5. Let V a set of labelled vertices on L and Vo € Tpnaz(V). If card(L) < 9 and
card(Vy) # 4, then V,, is empty for n > 4.

Proof.

- if n > 4, using proposition 6, V,, is empty.

-if n =4 and card(Vp) < 4, Vy is empty by definition.

- if n = 4 and card(Vp) > 4. Suppose that v € V4 and Wy € Wazn (v, Vo). To satisfy the
hypothesis on the cardinality of Vp, we must have card(L(W,)) < 7. Using proposition 6,
we deduce that V,, is empty for n > 3. O

Extending Go when card(L) < 9

Lemma 6. Let V a set of labelled vertices on L and Vi € Tpee (V). If card(Vy) = 3 and
card(L) <9, then GH(L,V) is not empty.

Proof. Let Go(L,Vp, Eg) a planar L _connected graph. As card(Vp) =3,V =Vo U T2 U V3.
- From corollary 3, we can insert in G the vertices of V5 without breaking the planarity
and the L _connectivity.
- From corollary 5, when card(L) < 7, we can insert in Gp any vertex of V3 without
breaking the planarity and the L _connectivity.
- If card(L) > 7, then for any v € V5, W3 = Vy = {wy,ws, w3} € Wazn (v, V). We
know by lemma 1 that v is such that m(v) N Luy, (w;) # 0 for j =1,2,3.
We take a vertex v of V3 and insert v in Gy by adding three edges (v, w1), (v, w2), (v, ws)
inside the face F' = (w1, w2, ws). This leads to a planar L_connected graph.
If V3 contains another vertex v’ then we have two cases to consider:
-1- there is j € {1,2,3} such that m(v) N Luy,(w;) = m(v') N Luy,(w;). Then v’ is
L_ connectable to {v} U (W3\{w;}) and o' is inserted on the edge (w;,v) and connected to
the vertices w; of W3 with i # j by adding the edges (v',w;) (cf. case (B) of figure 7).
-2- for any j € {1,2,3} m(v) N Luy,(w;) and m(v") N Luy,(w;) are distinct. In this case
three edges (v',w1), (v',w2) and (v',w3) are added outside the face F' = (w1, w2, ws) (cf.
case (C) of figure 7).
Suppose that V3 contains another vertex v"'. As card(L) < 9, we can not have -2- for v, v’
and v" (for any j € {1,2,3} m(v) N Luy, (w;), m(v") N Luy, (w;) and m(v") N Luy, (w;) are
distinct). Then, as the hypothesis of -2- is satisfied for v and v', the vertex v" will be inserted
either inside F' or outside F' and connected to v or v as in -1-.
Thus all the vertices of V3 can be inserted in Gy and the resulting graph is planar and
L _connected. O

Lemma 7. Let V a set of labelled vertices on L and Vo € Tpoe(V). If card(L) < 8 and
card(Vy) = 4 then GE(L,V) is not empty.
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Proof. Let Go(L, Vp, Ep) be a planar L connected graph.

From proposition 6, V,, is empty when n > 3. Thus V =V, UV, U V3.

- From corollary 3 we can insert in G the vertices of V2 without breaking the planarity and
the L__connectivity.

- If card(L) < 8 and card(Vy) = 4, any v € V3 with W3 € Wazn(v,Vp) is such that
card(L(W3)) < 7. Then from corollary 5, we can insert in Gy any vertex of V3. O

By a similar reasoning we prove the following lemmas?.

Lemma 8. Let V a set of labelled vertices on L and Vy € Tpos(V). If card(L) = 8 and
card(Vo) = 4 then GE(L,V) is not empty.

Lemma 9. Let V a set of labelled vertices on L and Vy € Tpou(V). If card(L) < 8 and
card(Vy) = 5 then GE(L,V) is not empty.

Lemma 10. Let V a set of labelled vertices on L and Vo € Tpmaz(V). If card(L) = 8 and
card(Vo) =5, GE(L,V) is not empty.

Lemma 11. Let V a set of labelled vertices on L and Vy € Tpau(V). If card(L) < 9 and
card(Vy) = 6 then GB(L,V) is not empty

Using lemma, 6 to 11 we obtain our main result:

Theorem 2. When card(L) < 9 then for any set V of labelled vertices on L, GK(L,V) is
not empty.

Then, using proposition 1, we have:

Corollary 6. For any set of non empty distinct sets X = {X1,.., X} such that k < 9 there
is an extended Euler diagram representing X .

Interpreting this result with Johnson and Pollak’s definition [JP87] of hypergraph planarity,
remark 1 and the previous lemma, we obtain the following result on hypergraphs:

Corollary 7. Any hypergraph having at most eight hyperedges is vertex-planar.

Remark 6. Let us consider the set of vertices V' of figure 5.

Vo = {abd, ace}, Vi = {ab,ac,ad, ae,bec,d} and V, = {bed}. G(L,V}, E) has only one edge
(abd, ace) and the L _connected labelled graph built by inserting successively the vertices of
V5 and V; leads to an extended Euler diagram where each label correspond to a connected
region without hole in it (cf. figure 8).

% to improve the readability of the paper, the proofs appear in annex
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18 Verroust & Viaud

Fig.8. The L _connected labelled graph built by computing the V; and the corresponding
extended Euler diagram

3.5 Conclusion

We have shown that there exists a planar L._connected graph for any collection of intersec-
tions between up to eight sets {X,...Xy}. This planar L _connected graph can be used to
build an extended Euler diagram representing { Xy, ...X}}.

Interpreting our work using Johnson and Pollak’s notion of planarity [JP87] we have shown
in this paper that any hypergraph having at most eight hyperedges is vertex-planar.

We are currently working on the algorithm to produce the planar graph and the extended
Euler diagram.

However, to reach the purposes described in the introduction, i.e. to create a semantically
structured map of the results of a complex query, we have to address a few more task. In-
deed, for most of the collections of intersections, there exists many planar graphs satisfying
the constraint of L_connectivity, and the graph built from the proof may not be the most
adapted to our purposes. Then at this graph level, we may have to introduce some graphical
criterion to provide the user the most readable diagram. Moreover, we still have to find the
best embedding according to visibility and usability criterion.
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4 Annex

Lemma 8. Let V a set of labelled vertices on L and Vy € Tpnao (V). If card(L) = 8 and
card(Vp) = 4 then G5(L,V) is not empty.

Proof. V=Vo UVo UV3UV,.

-1- Suppose v € V4 and Wy € Wpazn(v, Vo). Then, as 4 = n > 3
using proposition 6 (b) we have: Yw; € Vp, card(Luy, (w;)) > 1. As card(L) = 8, Vw; € Vo,
m(w;) = Luy, (w;) and Gy does not contain any edge.

We insert v in G and the graph G(L, Vou{v}, EU{(v, w1 ), (v, w2), (v,ws), (v, w4)}) is planar
and L __connected.

Using proposition 4 (2), we have: any subset W of V' containing v and such that L(W) =
L(Vy) must have more than four vertices. Thus, any vertex v' belonging to V; with i < 4
is such that m(v') has exactly one label I' not in m(v). Let w; € Vp s.t. I' € m(w;). The
insertion of v' in Gy is done by creating a path (v,v',w;) parallel to the edge (v, w;) (cf. left
graph of figure 9). This operation leads to a planar L connected graph.

card(L(W4))—card(Wa)+3

%
» W £ Vv
1
W W v
v W
3 W A
w, Vv w W 2

Fig.9. card(L) = 8 and card(Vp) = 4. On the left: the insertion of elements of V; consists
in creating four pink edges for the first element v and two pink edges for the next one. On
the middle: the graph K is replaced by the rightmost graph and the insertion of the vertices
of V5 (resp. V3) are transformed (the correspondence is given by the colors).

-2- Suppose Vj is empty. The complete graph K} is planar and contains GY.
Using corollaries 3 and 5, we know that any element of V, and V3 can be inserted in Ky
while keeping planarity when every vertex v of V3 is L _connectable to a set of vertices W3
satisfying L(W3) < 7.
Let us now suppose that V' contains two vertices of V3, v and v', such that W3 = W3(v, Vy) =
Ws(v', Vp) satisfies card(L(W3)) = 7. We note wyg the vertex of Vo\W3 and ly = Luy,(wy).
We have two cases to consider:
A. Vu,v' € V3 associated to W3, Jw; € W3 with Luw, (w;) N m(v) = Luw,(w;) N m(v").
Then all the vertices of V3 associated to W3 are inserted in Gy as in figure 7 (B).
B. Jv,v' € V3 and W3 = {w1, ws, w3} C Vj such that Luy, (w;) Nm(v) # Luw,(w;) Nm(v")
for j =1,2,3. Then we have:
— card(L({v,v'}) = 6 and card(m(v)) = card(m(v’')) = 3:
if card(L({v,v'}) =7, L({v,v'}) = L(W3) which contradicts proposition 4 2.
Let us note m(v) = {1, 12,3} and m(v') = {I3,1},15}.
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— Vw; € W3, card(Luw,(w;)) = 2 and m(w;) = {1;,1;,1.} with {l.} = L(W3)\Lu(W3):
suppose Jw; € W3 s.t. card(Luw,(w;)) = 3, then, as card(L(W3)) =7, Yw; € Ws\{w;},
card(m(w;)) = 2. Thus T = {v,v',w;} is such that L(T) = 7 and T > W5 which
contradicts proposition 4 2.

— m(wg) C {lo,li,l;}, 1 <1 # j < 3, using proposition 4 and the fact that v and v’
belong to V3.

We suppose without loss of generality that m(wg) N m(ws) = 0, and consider the middle
graph of figure 9. We cannot insert v and v’ in K4 by connecting v and v’ with the vertices
of W3 without breaking the planarity of the resulting graph. We then replace K4 by the
rightmost graph G’ of figure 9, deleting the edges (wg,w2) and (w1, ws) and connecting wy
with v and v'. We now have to show that the vertices of V5 associated to {w;,ws} and
to {wo, w2} can be inserted between two adjacent vertices of G' and that the vertices of
V3 associated to the faces (wp, w2, ws), (wo, w1, w2) and (w2, w;,ws) can be inserted inside
faces of G'.

Let w be a vertex to be inserted in G' (w € V\(Vp U {v,v'})). We have:

— card(m(w)) < 4, otherwise, we can find a subset T' of V such that L(T) = L(Vp) and
T>r Vo:
If card(m(w)) > 4 and m(w) contains ly, we take T' = {w, w1, w2, w3 }.
If card(m(w)) > 4 and m(w) does not contain [y then we can find w; and w; in W5 such
that T = {w, w;, w;, wo} satisfies L(T) = L(Vp) and T > V.

— m(w) cannot contain both g and I, or both l; and I, ¢ > 0, otherwise , we can find a
subset T of V' such that L(T) = L(V,) and T >, Vp, which contradicts proposition 4.

Then, m(w) contains one or two labels taken from {l;,/;} and at most one label from
{lo,le, Ui, 1} with 1 <4 #j #k <3, and:

(a) If m(w) C L(W3), then, w is L_ connectable either to {v, w2}, to {v, w1}, to {v,ws}, to
{v', w1} or to {v',wa}.

(b) If m(w) = {lo, i, 15} with I; or I; € m(wp) then w € V2 and w is L_connectable to
{wg, v} or to {wg,v'}

(c) It m(w) = {lo, li, I} } with {l;, I’} Nm(wo) = @ then w € V3 and w can be inserted in one
of the triangular faces of G' adjacent to wy.

Thus the insertion of any w € V\(VoU{v,v'}) in G’ is possible as in figure 9 and the resulting
graph is planar and L.__connected. O

Lemma 9. Let V a set of labelled vertices on L and Vy € Tpee(V). If card(L) < 8 and
card(Vy) = 5 then G¥(L,V) is not empty.

Proof. Let Go(L,Vp, Eg) be a L__connected planar graph. By lemma 5,V =V, UV, U V3.
V3 is empty: indeed, if 3v € V3 then for W3 € Wazn (v, Vo), we must have card(L(W3)) < 6
because card(Vp) = 5 and card(L(W3)) > 6 by proposition 6 (a).

Then we have to show that any vertex of V5 can be inserted in Gy while keeping the
L connectivity and the planarity.

As card(Lu(Vp)) > 5 and card(L) < 7, L contains either one label [ or two labels [ and I’
which are not in Lu(Vp). We consider three cases:
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® v ©
Wi W.
W, " v

W
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Fig.10. card(L) < 8 and card(Vy) = 5. the three cases. The insertion of any vertex of V5
consists in creating one of the red paths.

A. L = Lu(Vy) U{l,I'} and no vertex of V; has both [ and !’ in its set of label. Then
Vo contains two label _disjoint vertices w; and w;. As [ and !’ play the same role, we may
consider without loss of generality that w;,ws,w; have [ in their sets of labels and that
w; and w,, have I’ in their sets of labels. Then the graph G, having the set of edges
Ey = {(wj,wr), (wg,w;), (Wi, wr)} is L_connected and planar. Any vertex v of V5 has
a set of labels of the form m(v) = {l,ly,y=i,m }, m(v) = {I', Ly v=j 1} or m(v) = {l;, 1} and
can be inserted in Gy by adding one of the red paths of figure 10 A.

B. L = Lu(Vy) U {l,1'} and a vertex w; of Vj contains [ and !’ in its set of labels. Then the
graph Gy having the set of edges Ey = {(w;,w)|w # w;andw € Vy} is L _connected and
planar. Any vertex v of V5 can be inserted in Gy by adding one of the red paths of figure 10
B.

C. L = Lu(Vp) U {l}. There is one vertex w; of V; such that Luy,(w;) = {li1,li2} and the
other vertices w; of V are such that m(w;) = {l;,1} with Luy, (w;) = {I;}.

Then Go(L, Vp, Ey) is a subgraph of the graph formed by a complete graph K4 on the vertices
of Vo\{w;} and by an edge (w;, w;) (cf. figure 10 C.). If m(w;) contains [, then V5 is empty.
In the other case, V2 can be composed of two vertices v and v' with m(v) = {l;1,!} and
m(v') = {li2,1}. The insertion of these vertices in Gy can be made by adding the paths
(wj,v,w;) and (wj, v, w;). O

Lemma 10. Let V' a set of labelled vertices on L and Vy € Tppqq(V). If card(L) = 8 and
card(Vy) = 5, Gh(L,V) is not empty.

Proof. Any vertex of Vj has at least two labels in its set of labels. Then, as card(Vy) = 5 and
card(L) = 8, we have card(Lu(Vp)) < 7 and in any subset W of V; containing three vertices
there is at least one vertex w; such that card(Luy, (w;)) = 1. Moreover, using the results
of proposition 4 (a), any v € V3 is such that card(L(W3)) = 6 for W3 € Waza(v, Vo) and
m(v) cannot contain only labels from Lu(Vp). We have three cases to consider:

A. L = Lu(Vp) U {i}. We know that if v € V5 then I € m(v) and | € Lu(W3). Thus there
are 2 vertices wo and w; in W3 whose sets of labels do not contain . Figure 11 (A) shows
the unique case satisfying such constraints. Any other vertex v’ of V3 has [ in common with
v and can be inserted in W as shown in figure 4 (B).

Let W' = Vo\{wo,w1}. If w; € W' then m(w;) = {lu(w;),!}. To L_connect I, we need
to add 2 edges between the 3 vertices of W’. Moreover, V' cannot contain a vertex v € V5
L_connectable to Wy C W' otherwise proposition 4 (a) would not be satisfied. Then there
are two vertices of Vj which are not connected neither by an edge of Gy nor by a path of V5
or V3. Thus the resulting graph is planar.
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Fig.11. card(L) = 8, card(Vp) = 5. A: card(Lu(Vp)) = 7. When m(wp) and m(w,) do
not contain the common label I, the elements of V3 can be inserted using the blue paths.
The insertion of any element of V5 consists in creating one of the red paths. B and C:
card(Lu(Vy)) = 6. When the dashed line exists, m(wq) contains either [ or I'. Otherwise,
m(wo) N{l,1I'} = 0. The blue (resp. red) paths correspond to the insertion of vertices of V3
(resp. V2). B: m(w;) contains [ and {'; C: m(w;) contains " and m(w2) contains [. D and E:
card(Lu(Vy)) = 5. D: m(w) contains {I,1',1"}; E: each m(w;) contains at most two labels
among [,1!" and ". m(w) contains labels [ and I" and m(ws) contains label {".

B. L = Lu(Vp)U{l,!'}.There is only one vertex wy of Vp such that card(m(wo)NLu(Vy)) = 2.
If V3 contains a vertex v then W3 = {wp,w;,w;} € Wamza(v, Vo) and we cannot have
Luy,(wg) C m(v) with k& = i or k = j. Otherwise, i.e. if Luy,(w;) C m(v) then , ei-
ther card(m(w;)) = 2 and T = {wp,v,w;} would be such that 7" >; W3 or m(w;) =
{Luv,(w;),1,1'} and v is not in V3. Thus m(v) = {lu(wy),!,!'} and V3 contains at most two
vertices which can be inserted in the same face because their associated sets of labels contain
{l,I'} (cf. figure 11 (C)) and the insertion of vertices of V3 in Gy leads to a L_ connected
planar graph.

Let us consider now the insertion of the vertices of V5. A vertex v belonging to V5 is
such that m(v) = {l1,lo} with either Iy € Lu(Vp) and lo € {l,I'} or 1 € Luy,(wo) and
lo € Lu(Vy)\ Luy, (wo).

- If there is a vertex w; in Vj such that m(w) contains [ and I’, we have the configuration of
figure 11 (B): a vertex v of V3 is inserted in Go(L, Vo, Ep) by adding either a path connecting
wo and another vertex of Vp or a path connecting w; and another vertex of V4.

- If no vertex of Vj contains the two labels | and !’ in its set of label, [ (resp. I') belongs
to at least two sets of labels associated to vertices of V. Let w; and ws be two vertices of
Vb such that I' € m(w;) and | € m(ws), we have the configuration of figure 11 (C) for the
insertion of the vertices of V5 in Gy (L, Vg, Ep)-

In all the cases the resulting graph is planar.

C. L = Lu(Vy) U {l,I',I"}. The labels [,1' and I" appear in at least two vertices of V; and
any vertex of Vj has at least one of these labels in its set of labels. Then, as card(Vp) = 5,
there is a vertex wy in ¥y which contains at least two of the three common labels in its set
of labels. Thus, to satisfy the hypothesis on Vj, V3 must be empty.

- If a vertex wy of Vp contains these three labels in its set of labels. Then Go(L,Vp, Eo)
where Ey = {(w1,w)|w € Vp\{w1}} is planar and L _ connected (cf. figure 11 (D)) and the
elements of V5, are inserted by connecting w; and another vertex of V.

- If all the vertices of V contain at most two of the three common labels in their sets of
labels, we have the configuration of figure 11 (E) and a way to insert the vertices of V5 in
Go(L, Vo, By). o
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Lemma 11. Let V a set of labelled vertices on L and Vy € Tpnae(V). If card(L) < 9 and
card(Vy) = 6 then GX(L,V) is not empty.

Proof. As card(Vy) = 6, we must have card(L) > 7. Let Go(L,Vp, Ey) be a L _connected
planar graph.

When card(L) = 7 then by lemma 2 we have V = V; and G¥(L, V) is not empty.

When card(L) = 8, using the same reasoning than in the previous lemma, V3 cannot contain
any vertex. We know also that any element v of V5 is such that m(v) = {I} U {l;} where
l; € Lu(Vy). We have two cases to consider:

A. card(Lu(Vp)) = 7 and a label [ belongs to the sets of labels of at least seven vertices of
Vo. If 1 is present in all the m(w) for w € Vy, V> is empty. Otherwise, we are in the case of
figure 12 (A). Let wy € Vp with | ¢ m(w;). To satisfy the hypothesis on Vj, an element v of
Vo must be such that m(v) N m(w1) # @ and can be inserted by adding a path between w;
and another vertex of Vj.

B. card(Lu(Vp)) = 6 and each vertex of Vj contains either [ or I’ in its set of labels. If Vj
contains a vertex w; such that the two labels [ and I’ belong to m(ws), then we have the
configuration of figure 12 (D). In the other cases, we are in case (B) or (C) of figure 12. O

N AMR

Fig.12. card(Vy) = 6 and card(L) = 8. The black edges represent G(L,V,, E) and the
insertion of vertices of V5 are made usmg the red paths. A: card(Lu(Vo)) =7 and m(wy) N
{1} = 0; B: card(Lu(Vp)) = 6, three vertices of Vj contain [ in their sets of labels and the
three others contain I in their sets of labels; C: card(Lu(Vp)) = 6, four vertices contain [ in
their sets of labels the two others contain I’ in their sets of label; D: card(Lu(Vp)) = 6 and
m(wy) contains {I,1'}.
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