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Abstract: In multicast congestion control, receivers can misbehave by maliciously causing con-
gestion to steal network bandwidth from well behaved flows. In source driven congestion control
protocols (SDCC), receivers misbehave by sending a wrong feedback to the source. In receiver-
driven congestion control protocols(RDCC), receivers misbehave by inflating their subscriptions. In
this report, we present techniques to deal with these misbehaviours. Firstly, we show that when net-
work tomography tools such as MINC are used in conjunction with SDCC protocols, they can aid
in misbehavior detection. But in order to use MINC for misbehaviour detection, MINC itself must
be made immune to misbehaviour. we analyze the effect of misbehavior within MINC and propose
two techniques to detect and prevent misbehavior in MINC. For RDCC protocols, a misbehaviour
prevention mechanism based on in-band distribution of keys was recently proposed for FLID-DL
protocol. In this report, we show how we can design keys which can prevent misbehaviour in most
RDCC protocols.

Key-words: MINC, Network Tomography, Misbehavior, Multicast Congestion Control, secret
sharing.



Gestion du mauvais comportement des récepteurs dans les
Protocoles de Contrôle de Congestion Multipoint

Résumé : Les protocoles de contrôle de congestion actuels peuvent permettre à des récepteurs peu
scrupuleux de mal se conduire en accaparant plus de bande passante qu’ils ne devraient. Avec les
protocoles de contrôle de congestion contrôlés par la source (SDCC), il est possible à des récepteurs
malveillants de falsifier les rapports de réception qu’ils envoeint à la source. En ce qui concerne
les protocoles de contrôle de congestion contrôlés par les récepteurs (RDCC), certains récepteurs
peuvent décider de s’abonner à toutes les couches de la source sans tenir compte des débits qui leur
sont alloués. Dans ce rapport, nous présentons des techniques pour prévenir ces comportements in-
désirables. Nous montrons comment un outil de tomographie de réseau comme MINC peut être uti-
lisé pour détecter ces comportements malveillants avec les protocoles SDCC. L’outil de tomographie
doit dans un premier temps être rendu insensible à ces attaques. Nous analysons le comportement
de MINC et proposons des mécanismes de détection et prévention contre ces comportements ma-
licieux. Pour les protocoles RDCC, un mécanisme de prévention de comportement malicieux basé
sur la distribution de clés a été proposé récemment pour le protocole FLID-DL. Nous proposons un
nouveau mécanisme de génération de clés pour la plupart des protocoles RDCC.

Mots-clés : Attaques, Contrôle de Congestion Multipoint, MINC, Outils de Tomographie du Ré-
seau, partage de secrète.



Dealing with Receiver Misbehavior in Multicast Congestion Control 3

1 Problem

Congestion related misbehavior is possible in a network due to the presence of both types of users
(flows) - those who respond to congestion and those that do not. Malicious users who do not respond
to congestion are able to unjustfully steal network bandwidth from those users who do respond to
congestion. For this, malicious users intentionally cause congestion for a certain duration of time
forcing well behaved network flows to back-off and then claim the bandwidth left over by the well
behaved flows. In this manner, by bearing the congestion they have caused for some time, they
steal network bandwidth from well behaved flows. In the context of multicast congestion control,
receivers of a multicast group can misbehave to achieve such an effect. By meddling with the
multicast congestion control mechanism, misbehaving receivers can obtain a rate which they desire
instead of the admissible rate which the present network conditions offer them [11]. The importance
of multicast congestion control cannot be over emphasized [9].

In multicast congestion control, receivers estimate the capacity available to them in the network,
generally based on congestion losses. How this estimate is utilized for congestion control depends
on two paradigms. In sender or Source-Driven Congestion Control (SDCC), each multicast receiver
transmits a feedback report to the sender. The sender then calculates the rate at which to inject pack-
ets into the network as an aggregate function of feedback reports received from all the receivers.
In Receiver-Driven Congestion Control (RDCC), the sender either splits or replicates the data into
several different groups, each with a different sending rate, which together constitute a multicast
session. Each receiver subscribes to one or more groups based on its available network capacity
and responds to congestion by unsubscribing to groups. Both these approaches are vulnerable to
receiver misbehavior, the motivation being to receive the rate desired by the receiver instead of the
rate offered by the present network conditions. A misbehaving SDCC receiver sends a wrong feed-
back which causes the sending rate of the sender to increase resulting in congestion. A misbehaving
RDCC receiver unjustfully subscribes to more groups and inflates its subscription to cause conges-
tion. Congestion forces the well behaved flows to reduce their sending rate, leaving more bandwidth
for the misbehaving receivers.

2 MINC and Misbehavior

Network tomography allows us to obtain the internal characteristics of networks based on end-to-
end measurements. Multicast-based Inference of Network internal Characteristics (MINC) [4, 1]
is a tomography tool which allows us to infer the internal characteristics of the network underlying
a multicast tree. Based on end-to-end measurements between the source and the receivers of a
multicast group, MINC can infer the loss rates and delay characteristics of links (nodes) and the
multicast tree topology. For the loss rates, the source injects probe packets into the multicast tree
and each receiver reports whether it received the probe packet (1) or not (0). Based on these binary
traces collected from receivers, loss rates of links are inferred. The probe packets can be the data
packets of the transport protocol used to transfer data in the multicast tree itself, such as Real-time
Transport Protocol(RTP) [17, 5]. The loss rates of links inferred by MINC essentially provide us
with the “congestion tomography” of a multicast tree. Inference of such congestion tomography can
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4 Arya & Turletti

help to trap multicast receivers who maliciously cause congestion. When a multicast receiver steals
network bandwidth by maliciously causing congestion, it causes an increase of loss rates on certain
links in the logical multicast tree which can be seen via the congestion tomography constructed
by MINC. If MINC is used in conjunction with multicast congestion control, it can prove to be
useful in detecting misbehavior. However, a receiver who is maliciously causing congestion can
cheat by reporting a false MINC feedback too, thus “hiding” the effect of its misbehavior from
MINC. Consequently, misbehavior needs to be detected or prevented within MINC also. Not just
for congestion misbehavior detection, even if MINC has to be used for any vital or fault-finding
application, we believe it itself must be made immune to any kind of malicious attack.

In SDCC protocols, the sender maintains a single rate for the entire multicast group. Each mul-
ticast receiver transmits a feedback report to the sender which then calculates the rate at which to
inject packets into the network based on the feedback reports received. A receiver may cheat by
sending a wrong feedback. To detect receiver misbehavior in SDCC protocols, the correct con-
gestion tomography inferred by MINC can be correlated with the false congestion feedback from
misbehaving receivers or with the sending rate of the sender. When a receiver asks the sender to
increase its sending rate in spite of high loss rates indicated by MINC, we can conclude that it is
trying to cheat.

In RDCC protocols, if a receiver inflates its subscriptions, MINC shows high loss rates, but we
can not be sure if any (misbehaving) receiver is responsible for this unless we correlate it with the
number of layers the receiver has subscribed to. But this is not known to the sender. In the absence
of any feedback from receivers, the sender generally does not change the sending rate of different
layers. Thus in RDCC protocols, it can be inferred that congestion is occurring on certain links in
the multicast tree and that there is something wrong, but it cannot be concluded whether certain
external flows or a misbehaving receiver is responsible for this congestion. Hence, the congestion
tomography is more suitable for misbehavior detection in protocols which use the SDCC approach.

3 Background and Related work

The problem of misbehavior in multicast congestion control was reported recently by Sergey, et al
in [11], who showed that most multicast congestion control protocols are vulnerable to misbehavior.
SDCC protocols, which use a single rate approach are suited for small sets of receivers and when
the network is less heterogeneous in terms of link bandwidths. Protocols such as TFMCC [22],
RMTP [14], PGMCC [16] and SAMM [2] use this approach. RDCC protocols which use multi-rate
approach are suitable for heterogeneous networks. Protocols such as RLM [12], RLC [20], FLID-
DL [3] use this approach. There also exist several hybrid protocols such as MLDA [19], SARC [21]
and DSG [6] which use a combination of these approaches. We briefly describe TFMCC and FLID-
DL protocols and show how misbehavior is possible in these protocols.

In TFMCC [22], each receiver calculates its TCP friendly rate based on the losses and RTT that
it experiences. Receivers report their rate directly to the sender at random intervals of time to prevent
feedback implosion. The slowest receiver becomes the CLR (current limiting receiver), continuously
reports its rate and controls the sending rate of the sender until another receiver reports a lower rate.
Assuming that receivers indulge in self-beneficial attacks, the following misbehavior is possible. If
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Dealing with Receiver Misbehavior in Multicast Congestion Control 5

the slowest receiver is behind a bottleneck link shared by several well-behaving or TCP flows, it can
start reporting a false high rate causing the sender to raise the sending rate, resulting in congestion
on the bottleneck. Thus the TCP flows reduce their sending rate leaving extra bandwidth for the
malicious receiver. In this manner the slowest receiver can raise the sending rate of the sender up to
the rate of the slowest well behaved receiver.

In FLID-DL [3], the sender encodes data into cumulative layers, each of which is made available
on a separate multicast group. Receivers subscribe to layers in a cumulative manner and unsubscribe
to them when they experience a congestion loss. The sender partitions the time into slots of duration�

seconds each. If a receiver which has subscribed to layers ����� � , experiences a packets loss during
a time slot, it reduces its subscription level by one at the end of the time slot. That is, it unsubscibes
to layer � , reducing it subscription level to ���	� . To coordinate subscription actions of receivers,
the sender sends an increase signal into each packet of a time slot. If a receiver with subscription
level � receives an increase signal 
 where 
��� and receives all its packets during the current time
slot, it increases its subscription level by one during the next time slot. Assuming self-beneficial
attacks, the following misbehavior is possible. Consider a receiver behind a bottleneck link shared
by several well behaved flows. Such a receiver intentionally inflates its subscription level and causes
congestion on the bottleneck, forcing the well-behaved flows to reduce their sending rate. As the
congestion period recedes, the misbehaving receiver starts to obtain better quality data. In this
manner the misbehaving receiver can steal network bandwidth from well behaved flows. By doing
so, the misbehaving receiver may also be harming other users in the same multicast session since it
is subscribing to layers in an uncoordinated manner.

Receiver misbehavior can be dealt with using either misbehavior detection or misbehavior pre-
vention. The goal of misbehavior detection is to develop a procedure to reliably infer if a multicast
receiver is misbehaving by providing a wrong feedback. On the other hand, the goal of misbehav-
ior prevention is to design a mechanism which automatically prevents any multicast receiver from
misbehaving. Misbehavior detection is a more difficult problem to solve than misbehavior preven-
tion (as will become clear later). But the later generally involves change of the protocol code at the
sender and receivers or modification of the system to incorporate the prevention technique which is
avoided in the former.

Recently, sergey, et al [10] proposed a misbehavior prevention mechanism for RDCC protocols,
which particularly suits the FLID-DL algorithm. Their prevention mechanism is based on the in-
band distribution of keys which guard the access to multicast groups. These keys are lost when a
receiver inflates its subscriptions to cause congestion. Thus the receiver is automatically prevented
from increasing its subscription level when congestion occurs. We discuss this later in section 6.

In this report, we firstly show that when MINC is used in conjunction with SDCC protocols,
it can aid in misbehavior detection. But for this, MINC itself must be first made immune to mis-
behavior. We analyze the effect of misbehavior within MINC and present techniques to deal with
misbehavior within MINC. For RDCC protocols, we show how to design keys to prevent misbe-
havior. The balance of this report is organized as follows. Section IV describes the fundamentals
of MINC and shows that the detection of multicast congestion misbehavior is possible with MINC.
Section V analyzes the effects of misbehavior within MINC and subsequently presents misbehavior
detection and prevention mechanisms for MINC. In section VI, we discuss misbehavior prevention
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6 Arya & Turletti

in RDCC protocols and show the design of a key which can be used in most RDCC protocols. We
conclude with section VII.

4 Misbehavior detection in SDCC with MINC

4.1 MINC Fundamentals

MINC infers the internal characteristics of a network underlying a multicast tree by exploiting the
inherent correlation in multicast traffic. We focus here on explaining how the loss rates or the
passage rates of links are inferred by MINC since we use them extensively in this paper. Details of
MINC can be found in [1]. Consider a simple multicast tree shown in figure 1 with source S, two

�

�

� �

Figure 1: Multicast tree with two receivers

receivers A,C and the branching node D. Suppose that the source sends a stream of packets and each
receiver observes whether it receives a packet (1) or not (0). Consider now, those packets which were
received by C. These packets must have definitely crossed D (or the shared link SD) since they were
received by C. Thus each of these packets was also sent on link DA but either crossed or was lost on
this link. Thus the ratio of the number of packets which both A and C received to the number packets
which C received gives the passage probability of link DA. These ideas are extended in MINC to
calculate the passage probability of all links in the multicast tree. These passage probabilities can
also help in inferring the topology of the multicast tree [15, 7].

4.2 Example of MINC with TFMCC protocol

Figure 2 shows the topology we used for simulation of TFMCC using NS2, with sender S and the
slowest receiver C behind a bottleneck link shared with TCP flows. After 60 seconds, receiver C
begins to cheat by reporting a false high rate. This is shown in figure 3. We used TFMCC packets to
act as probes and traced the packets received by each receiver and gave it to MINC inference engine
in batches of 500 trace feedbacks. Figure 4 shows the passage probability of the bottleneck link
calculated by MINC. Thus by correlating the sending rate of the sender along with the MINC loss
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Figure 5: Effects of misbehavior on passage probabilities. (a) Receiver
�

always says Yes, (b) Re-
ceiver

�
always says No (c) Part of the multicast tree with 2 receivers

inference, misbehavior can be detected. But before being able to do this, MINC itself must be made
immune to misbehavior.

5 Handling Misbehavior in MINC

5.1 Problem

We now focus on the problem of misbehavior in MINC related to inference of loss rates. The
sender injects � probe packets into the multicast tree and each receiver reports whether it received
the probe packet (1) or not (0). Based on the ����� binary matrix, the MINC procedure tries
to infer the passage probabilities1 of links(nodes). If a receiver misbehaves by reporting a wrong
feedback, it distorts the passage probabilities inferred by MINC in the multicast tree. The next
section explains how passage probabilities are estimated in MINC and how these estimates can be
distorted by a misbehaving receiver. It also explains certain properties of these estimates which
motivate our detection technique. The subsequent two sections describe how distortions in estimates
can be detected to conclude misbehavior or how they can be prevented altogether.

5.2 Impact of cheating on passage probabilities

Figure 5(a) shows one possible impact of misbehavior on the passage probabilities calculated by
MINC, when the receiver C tries to cheat by falsely reporting more 1’s. Here, the receiver C cheats
for an interval of feedbacks during which it changes all 0’s to 1’s. The passage probability of the
path from C to the sender increases and the passage probability of any path from any other receiver
to C’s ancestor decreases. How the passage probability of an individual link on a path from any
other receiver to an ancestor of C changes is shown in the figure (using arrow marks). Thus the

1Passage probability refers to the probability of a packet crossing a link and Loss probability refers to the probability of a
packet getting lost on a link.
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Dealing with Receiver Misbehavior in Multicast Congestion Control 9

passage probabilities in a large region of the multicast tree change. Figure 5(b) shows a possible
impact of misbehavior when the receiver C tries to cheat by falsely reporting more 0’s. Here, the
receiver C cheats for an interval of feedbacks during which it changes all 1’s to 0’s. In this case only
the passage probability of the path from C to C’s father changes to be congruous with data reported
by C. The passage probabilities of the rest of the multicast tree remain unchanged. The rest of this
section analyses the cause of such impacts.

Figure 5(c) shows the part of a multicast tree containing two receivers A and C with the sender
S. Let � be the feedback array reported by receivers A and C for � probes. Each feedback ������ � �	��
 � ������
 � � �	��
 � � ���� . Let ����� be the total number of feedbacks of type � ��
 
�� , where ��
 
 �
� �	
 ��
���� � ��� ��� . Each correct feedback stands for a packet sent by

�
which either crossed or

was lost on a path. For example ����� are the total number of packets which crossed SD and DC
but were lost on DA. Assuming Bernoulli losses, by Maximum Likelihood Principle, the passage
probability on a path can be estimated by dividing the total packets which crossed a path by the total
packets sent on that path. Now, observe that among � ��� packets sent on DA (after they crossed SD),
only ����� actually crossed RA. Thus the passage probability of path DA ( !#" ) can be estimated by (1)
and similarly the passage probability of path DC( !#$ ) by equation (2). Denote by !%"&$ the passage
probability of path SD. (Compliments of ! " , ! $ and ! "'$ are !)(" , !*($ and !)("'$ respectively).

! " � �����
����� 


� ! (" � ���+�
����� � (1)

! $ � �����
����� 


� ! ($ � ���,�
����� � (2)

Having done this, observe that � �-���/.'�0�1�2! "'$134!-"534! 6 . Thus ! "'$ can be estimated using (3).
Equivalently, ! "'$ could have been estimated using either � �,�7.+� , ���+�&.'� , or �����4.+� . But all of them
can be proven to be exactly equal to the right hand side of (3)

! "'$ � �����8.+�� �����/. �����4� � �����/. �����4� �
�����������
� ����� (3)

Now if receiver C misbehaves by reporting a 1 instead of a 0, it can cause two types of transfor-
mations in the feedback array

9;: � � ���-< � �����>= : � � �	�?< � � ���
Equations (4)-(6) show the impact on passage probabilities if receiver C either transformed � @

feedbacks using an 9 transformation, or ��A feedbacks using a = transformation.

! " � � ���
�����#B ��@

C ! " � � ��� B�� A
�����#B ��A

D
(4)

! $ � �����
�����FE ! $ � �����#B ��A

�����
D

(5)

! "'$ �
� � ��� B � @ � � ���

� �����
D ! "'$ �

� � ��� B � A � � ���� �����#B ��A��G�
C

(6)
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10 Arya & Turletti

In general, 9 transformations increase(
D

) !%"'$ and decrease(
C

) ! " and = transformations decrease
! "'$ and increase ! " . The 9 transformation leaves !%$ untouched and = increases !%$ . The type of
change in the passage probabilities !#"'$ and !-" by 9 and = transformations depends on the original
passage probabilities, � @ and � A as is shown in the following lemma.

Lemma 1 If a receiver cheats by reporting 1 instead of 0 resulting in �-@ transformations from� � �	� < � � � � and ��A transformations from
� � ��� < � � � � , then !%"'$ and ! " remain unchanged if

��@�. ��A*� !*(" .7! " .
Proof After cheating we have,

! $ ��� "��"&$ �
� �����#B ��@ B ��A�� ������ � ��� B � A �G�

Now ! $ ��� "��"'$ � ! "'$ iff � �����#B ��@ B ��A�� ������ � ��� B � A � � � �����������
� ��� �

ie., iff ��@
��A �

�����
����� � �

ie., iff
��@
� A �

�����
� ��� �

!*("
! "

Similarly for ! " .
If ! "�� �7.
	 , then the increase in !%"'$ caused by one 9 transformation is less than the decrease

caused by a one = transformation. Thus an equal number of 9 and = transformations result in total
net decrease. If !%"��	�4.	 , then the increase in !%"'$ caused by one 9 is more than the decrease caused
by one = resulting in a net increase for an equal number of 9 and = transformations. Similarly for
! " , if ! "�� �7.
	 , then the decrease by 9 is less than the increase by = and, if !#"�� �7.
	 , the decrease
by 9 is more than the increase by = . For any value of ! " , if C cheats such that the ratio of 9 and =
transformations is same as that of ! (" .7! " , the increase and decrease nullify each other resulting in
no change in ! "'$ and ! " . Also, if C cheats such that it always causes an equal number of 9 and =
transformations, it will fail create any change in passage probabilities only when ! " � �7.
	 (other
than for ! $ ).
Definition 1 ��� � ��� � ( 
�� 
�� $ ��� "���� , � � � ��
 �� is a Misbehavior Mechanism in which a receiver
cheats for an interval � ��� �0� of feedbacks during which it changes every � to ��( with probability
� $ ��� "��

For example, in ��� � ��� �	
�� 
 ��� , a receiver cheats for an interval � of feedbacks during
which it changes all 1’s to 0’s.

INRIA



Dealing with Receiver Misbehavior in Multicast Congestion Control 11

Lemma 2 If receiver C cheats using ��� � ��� � 
 � 
 � $ ��� "���� , there is a high chance that it changes
the passage probabilities !%"'$ and ! "
Proof After cheating, the ratio of 9 transformations to = transformations is

� @
��A �

� 3/! � � � � ��� 3 � $ � � "�� 38! � � � � � � � � � ���
� 3/! � � � � ��� 3 � $ � � "��?38! � � � � � � � � � ��� �

� ���
���,�

Now from lemma 1, for no change we require ��@ . ��A � ���+�&. ����� ��!*(" . !-" . �����4. ���,� � ���+�&. �����
only if ! "'$ � � . Thus when ! "'$��� � , this kind of cheating causes a perceptible change.

Lemma 2 explains why in the example of fig 5(a) there was a change in the passage probabilities
when C cheated for an interval of feedbacks by changing every 0 to a 1 in the interval.

If a receiver cheats by reporting a 0 instead of 1, it causes reverse transformations

9 ( : � � ����� � �����>= ( : � � ����� � � ���
In general, 9 ( increases ! " and decreases ! "&$ and = ( decreases ! " and increases !%"'$ . 9 ( leaves ! $
untouched and =	( decreases !%$ . If a receiver causes �?@�� and ��A�� transformations in the feedback
array, the conditions for no change of passage probabilities ! "'$ and !-" still remain same as in
lemma 1. � ����� � ��@	� � ��A
� � ������ ����� � ��A
� � � � �����������

�����'� < ��@��
��A
� �

���+�
����� (7)

�

� �

� � �

�

� �

� � � ����� �����
��

� � �

� � � �

� � �

� �

�

����� ����� �������� ����� �������� ����� ���

��� ���
������

���
���

� � ��� � �

��� ���

Figure 6: (a)-(c) Different topologies with 2 honest receivers and a suspect (d) Special topology

Lemma 3 If receiver C cheats using ��� � � � �	
 � 
 � � , it does not change the passage probabil-
ities ! "'$ and ! " .
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12 Arya & Turletti

Proof After cheating, the ratio of 9 transformations to = transformations is

� @ �
��A
� �

� 3&! � � � � � ��3�� $ ��� "�� 3&! � � � � � � ��� � � �
� 3&! � � � � � ��3�� $ ��� "��-3&! � � � � � � ��� � � � �

� ���
�����

which is the condition for no change from equation (7).

Lemma 3 explains why there was no change in the passage probabilities in the example of figure
5(b). Now, if a receiver cheats by reporting both 1 to 0 and 0 to 1, then after cancellation of transfor-
mations, it is left with ( � @ , � A ) or ( � @ , � A
� ) or ( � @	� , � A ) or ( � @�� , � A�� ). 9 and =	( together decrease ! "
and increase ! "'$ . 9 ( and = together increase ! " and decrease ! "'$ . =�( decreases ! $ and = increases
! $ .

Although, whether or not ! "'$ and ! " change depends on the ratio � @ . � A , the amount of change
in ! "'$ and ! " depends on the given system. The net change (change/old value) in ! "'$ is given by

� ����� ��@ � ���+����A
����� � �����#B ��A��

�

The maximum number of 9 and = transformations in a given system is limited by � ��� and � �,�
respectively.

Now consider the case when we have 3 receivers A, B and C from a multicast tree. A and B are
honest and C may cheat. Consider that the topology shown in Figure 6(a) is formed between these
three receivers. Using the same terminology as for two receivers, let � be the feedback array for �
probes, each element � of which �0� � � � �	� � � � � � � � �� . Let ������� be the total number of feedbacks of
the form (i,j,k) where i,j,k � � �	
 ��
�� � � � � � � . Firstly, observe that !#" and ! 6 can be determined
without c’s data since path EA can be probed using � ����� and link EB can be probed using � ����� .
Thus cheating by C effects only !%"&6G$ , ! "'6 , and ! $ .

Now, DC can be probed using one of the several ways to obtain ! $ as shown in equation (8).
! "'6 $ � ! "'$ � ! 6 $ can be estimated using either A and C or B and C using (9) below and ! � �
! "'6 .7! "'6 $ .

! $ � ���+���
���+��� �

�������
������� �

�������
������� (8)

� � �+��� B � ����� B � �����
� �+��� B � ����� B � �����

� � �����
������� �

� �����
�������

! "'6 $1� ! "'$1� � ����� � �����
�������'� (9)

� ! 6G$ � � ����� � �����
�������+�

Lemma 4 If all estimates of ! $ and ! "&6G$ are equal before C cheats, they remain equal after C cheats
using ��� � � � � ( 
�� 
 � $ � � "�� � .
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Proof We just prove that each estimate undergoes a corresponding proportionate change. For this
proof, we assume ��� � � � ��
 � 
 � $ ��� "���� . The other case follows similarly. We prove that the last
two estimates of ! $ remain equal after cheating. This also proves that the estimates of !#"&6G$ remain
equal after cheating. After cheating let the total number of feedbacks transformed from 1*0 to 1*1
be � ����� and those transformed from *10 to *11 be � ����� . Now, � ����� and � ����� can be expressed as
below:

�7������� �)3/! � ��� ��� ����3 � $ ��� "���3/! � � � �1� � � � � ��� �	�
� �)3 � $ ��� "��?3 ������� � � � $ ��� "�� � ������� � ������� �

�7������� �)3/! � ��� ��� ����3 � $ ��� "���3/! � � � � � � � � � ��� ���
� �)3 � $ ��� "��?3 �����,� � �)3 � $ ��� "�� � ������� � �������4�

After cheating the last two estimates in (8) become respectively,

� ����� B�� �����
������� � � ����� B � 3 � $ ��� "�� � � ����� � � ����� �

�������
� !-$ B � � �0!-$&� � 3 � $ � � "��

� ����� B�� �����
������� � � ����� B � 3 � $ ��� "�� � � ����� � � ����� �

�������
� !-$ B � � �0!-$&� � 3 � $ � � "��

For the balance of this paper, we focus only on detection and prevention of 0 to 1 misbehavior
as this is generally self beneficial as compared to 1 to 0 misbehavior.

5.3 Detection Overview

Our technique of detection is extremely simple and relies on the redundancy of information in the
presence of several receivers. We assume that we have both honest and misbehaving receivers
present in the multicast tree, and the goal of detection procedure being to prove if a given suspect
receiver has cheated or not. Consider a group of sibling receivers( � 	 ) sharing a common path from
the sender to their father. In order to estimate the passage probability on this common path, the
feedback data of two siblings is sufficient, provided we have an adequate number of probes. Given a
suspect among these siblings, we can use the data of honest siblings to testify for or against the sus-
pect. We can calculate the passage probability of the common path using only the honest receivers
and recalculate the same in the presence of the suspect. If there is significant difference in the two
estimates, we can conclude that the suspect must have cheated.

In certain applications, the logical topology of a multicast tree is available using tools such as
mtrace [8]. Consider the case when we are given any set of honest receivers and a suspect, along
with the part of logical multicast tree topology containing them. These honest receivers may or may
not be the siblings of the suspect. But if the honest receivers and the suspect share a common path
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14 Arya & Turletti

from the sender to their ancestor in such a manner that passage probability of this common path
can be estimated using only the honest receivers and the passage probability of the same path can
be estimated along with the suspect, we can still detect if the suspect had cheated. Consider the
case when we have two honest receivers (A,B) and a suspect (C), and suppose we know that they
connect together as shown in Fig 6(b). We can calculate the passage probability of the path SD
using only A and B as ! "'6 . If this changes when we recalculate it along with C, we can conclude
that C is cheating. However, consider the case when A, B and C connect together as shown in figure
6(a). Here, using the honest receivers we can calculate the passage probability of the path SE as
! "'6 . When C cheats the passage probabilities of path SD and DE both change, but their product still
remains equal to !%"'6 . In this example, there is no any common path whose passage probability can
be calculated both with and without the suspect C. Thus, even knowing the topology does not help if
the honest receivers are not located in the right positions in the multicast tree where detection must
be performed. In fact, if we install exactly one honest receiver at the right position, we can perform
detection without use of topology information.

Algorithm DetectMisbehaviour
�

: Honest receiver at correct position
�

: Any honest receiver
�

: Suspect
� : Threshold

1. ! 6"�� � ������� � . � �������7�
! $" � � �������8� . � �������4�
! "'6 � � ��������3 �������7� . � ��������3/�0�
! "'$ � � ��������3 �������8�,. � �������13/�0�

2. If
� ! 6" �0! $" � � � or � !-"'6 � ! "'$ � � �
print Cheating

else
print No Cheating

Figure 7: Algorithm to detect misbehavior with two honest receivers and a suspect

5.3.1 Detection with two honest receivers

For detection, we advocate the installation of one honest receiver in such a manner that all receivers
in the multicast tree share a common path with this honest receiver. This is shown in figure 6(d).
Receiver A joins that router D closest to S, to which any other receiver can join directly, guaranteeing
the existence of the common path SD. Receiver B can be placed anywhere in the multicast tree. This
ensures that when we are given two honest receivers and a suspect, they always connect together
using topology shown in figure 6(b) or (c). The condition for detection is same for both these
topologies and is shown in the following algorithm DetectMisbehaviour. When C cheats, it
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changes ! " , !-"'6 $ and !-6 . The algorithm checks for changes in !#" and !-"&6G$ since ! 6 cannot be
checked for in case of topology 6(c). If we are unable to place an honest receiver A as described,

Passage Topology Topology
Probability Figure6(b) Figure6(c)

!�� 0.8 0.8
! � ����$
� 0.786 0.805
! $ � � "��� 0.875

D
0.890

D
!-" 0.9 0.9
! � ����$" 0.911 0.894
! $ � � "��" 0.818

C
0.809

C
! 6 0.85 0.85
! � ����$6 0.861 0.887
! $ � � "��6 0.774

C
0.712

C
!-$ 0.6 0.7
! � ����$$ 0.610 0.711
! $ � � "��$ 0.777

D
0.825

D
! � 0.0.8
! � ����$� 0.785
! $ � � "��� 0.885

D

Figure 8: Results of 1000 probes and 20% cheating

then our detection procedure can be used only in certain circumstances. If the topology information
is given and if the suspect forms topologies (b) or (c), we can detect misbehavior otherwise not. If
the topology information is not given, we can infer topology based on passage probabilities. But
these passage probabilities change due to cheating. Thus if the original topology was (a) we will
still infer (a) and we cannot detect. If the topology was (b) we will infer (a) and may not detect.
However if the original topology was (c) and C did not cheat much we may still infer (c) or (b).
Thus whenever we infer (C) or (b), we can still use the misbehavior detection algorithm described
above. The complexity our algorithm to detect misbehavior is extremely low. Note that we do not
use the detailed MINC inference engine.

5.3.2 Examples of Detection

We have conducted several simulations to verify our detection algorithm. Here we present a sample
example of detection. We used simple C programs to create random losses for the topologies in figure
6(b) and (c) and used our algorithm to detect misbehavior. Figure 8 shows the original passage
probabilities, the passage probabilities calculated by MINC without cheating and with receiver C
cheating for 20% of the probes. The results shown are for � = 1000 probes. Essentially, receiver
C cheats using ��� � � � ��
�� 
 ��� 	 � . Figures 9, 10, 11, 12 show the differences in ! " and ! �
calculated by our algorithm to check misbehavior when the amount of cheating varies from 2.5% to
40%. When we have large probe sets ( � � 1000), we can afford to keep � low. However, when probe
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Figure 9: Differences in !%" for topology figure 6(b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

P
a

Fraction of cheated Probes

Figure 10: Differences in !%" for topology figure 6(c)

sets are small, the differences in !%" and ! � when receivers are not cheating is not negligible and we
need to keep � large. Also, when we have high passage probabilities cheating by C does not cause
too much increase in passage probabilities and hence differences remain low and become stagnant
when ! � reaches 1. In our examples we observed that for probes larger than 1000, maintaining
� � ��� detects misbehaviour reliably.

5.4 Prevention Overview

In order to prevent receivers from cheating while reporting MINC feedback, we present a simple
mechanism based on per packet nonces. The sender adds a random � bit nonce to every probe
packet. When a receiver periodically reports its feedback for a group of probes, other than per
packet binary feedback, it is obliged to send an ����� of the nonces for the packets it has received.
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Figure 11: Differences in ! � for topology figure 6(b)
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Figure 12: Differences in ! � for topology figure 6(c)

In this manner a receiver is able to give a proof of what it has received. If a receiver still wishes to
cheat by reporting a 1 instead of 0 for it must guess the proof correctly. Thus it succeeds to cheat
with a low probability of �7.
	�� , but is caught with a high probability of � � � �4.
	��8� .

Another technique to prevent receivers from cheating is for the sender to randomly skip certain
sequence numbers to be used in probe packets. A receiver which did not receive a probe packet with
a certain sequence number is not sure whether this packet was lost or was not sent by the sender. If
it cheats and reports a 1 for a skipped packet, it is caught. However this mechanism may interfere
with certain applications which use MINC. When probe packets are just the data packets sent on the
multicast tree, this may interfere with the congestion control mechanism at the receiver which will
interpret a missing sequence number as a loss. And if the sender, to keep interference minimum,
skips very few sequence numbers, a receiver can cheat without getting caught with high probability.
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18 Arya & Turletti

6 Misbehavior Prevention in RDCC

In RDCC, the sender encodes data into several layers each of which is made available on a different
multicast group. Each RDCC protocol lays down certain rules for congestion control which the
receivers must follow. Broadly, these rules ask the receiver to subscribe to layers (multicast groups)
when there is no congestion and unsubscribe to them when congestion occurs. However, each RDCC
protocol defines congestion differently. In FLID-DL, receivers must reduce their subscription level
when they experience a packet loss. In RLM, depending on the state in which the receiver is, it
must reduce its subscription level based on either a single packet loss or when the number of losses
exceed a certain threshold. In WEBRC, each receiver uses TFRC like equations to calulate a target
rate based on loss probability and multicast round trip time. It can subscribe to a wave channel
(layer) if after joining, the aggregate rates of all its channels does not exceed the target rate. Each
wave channel has an exponentially decreasing rate and thus if a receiver does not join wave channels,
its reception rate decreases. Receivers leave a wave channel when it becomes quiescent.

A receiver who cheats, disobeys the rules of congestion control and inflates its subsciption level
to cause congestion. To solve this problem, we would like to have a prevention mechanism which en-
sures that each receiver behaves according to the rules laid down by its congestion control algorithm.
In this context, DELTA(Distribution of ELigibility to Access) was recently proposed [10]. DELTA
is a general encoding scheme for in-band distribution of keys which guard the access to multicast
groups. A receiver can subscribe to a multicast group only if it has the key for that group. The key
in encoded within the data packets in such a manner that if there is congestion, a receiver does not
receive the key and hence cannot subscribe to the multicast group. Since different protocols define
congestion differently, DELTA is applied (instantiated) differently for different protocols (DELTA
is protocol specific function of congestion [10]). For example in FLID-DL, a key must be encoded
within the data packets in such a manner that when a single packet is lost, the key must be lost. In
addition, DELTA must take into consideration the rules of access to multicast groups as specified by
the protocol. For example, in FLID-DL, if a receiver which has subscribed to groups ����� � experiences
congestion (looses a packet), it must loose the key for group � , but receive keys for groups ����� � � �
so that it can continue its subscription to these groups. Thus for each protocol, ideally, DELTA must
respect both the definition of congestion and the rules of access to multicast groups.

In general, to implement DELTA, we want to divide a key into � components such that atleast�
components are required to reconstruct the key. This is the problem of threshold secret sharing

or error control coding. In � � 
 � � threshold secret sharing, we want to divide a secret among �
components such that any

�
components can be used to reconstruct the secret and knowledge of

any
� � � components does not reveal any information about the secret. Similarly, in error control

coding, we want to transmit information using � symbols in such a manner that if at most � � �

symbols are lost (in error), we can reconstruct the information, otherwise not. The solution to
the threshold secret sharing problem was proposed by Adi Shamir in [18]. It was later remarked
in [13] that shamir’s scheme was a particular form of Reed-Solomon coding. Shamir’s threshold
secret sharing scheme is based on polynomial interpolation. Given

�
points in two dimensional

plane � 9 �7
�=��8� � ��� � 9 �	
�= � � , with distinct 9 � ’s there is a unique polynomial � � 9 � of degree � � � � ,
such that � � 9 ��� � =�� for all � . Thus to share a secret

�
, a random polynomial of degree exactly
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� � � with non-zero coefficients, � � 9 � ����� B��	� 9 �1B ��� � � ��� � 9 ��� � is choosen with ���)� �
. Each

component
� � is the tuple � 9 ��
�=��,�1� � ��
 � � ����� , � � � � � . Any set of

�
components can be used to

compute the polynomial � � 9 � using lagarange interpolation formula. If the
�

available components
are � 9 � 
�= � � � ��� � 9 � 
�= � � , then � � 9 � is given by

� � 9 � �
� 9 � 9�� � � 9 � 9	� � � ��� � 9 � 9 � �� 9 � � 9	� � � 9 � � 9	� � � ��� � 9 � � 9 ��� = �

B
� 9 � 9 �7� � 9 � 9	� � � ��� � 9 � 9 � �� 9�� � 9 �8� � 9�� � 9	� � � ��� � 9�� � 9 ��� =

� B � � �

B
� 9 � 9 �4� � 9 � 9�� � � ��� � 9 � 9 ��� �7�� 9
� � 9 � � � 9 � � 9 � � ��� � � 9 � � 9 ��� � � = �

The Secret
�

is got back by computing � � ��� . Any set of
� � � or fewer components gives us no

knowledge of the original � � 9 � used. A nice property of this scheme is that secret decoding can be
done without knowing

�
, by just consecutively decoding the secret for increasing values of

�
until

two consecutive secrets are same.
In general, with DELTA, the time at sender is divided into epochs. During each epoch � , the

sender encodes the key within data packets which the receiver must use to subscribe to the multicast
group during epoch ��B 	 . Thus the receiver has enough time to decode and request subscription. For
cumulative layered multicast, each receiver subscribes to a stack of layers and reduces its subscrip-
tion level by 1 during congestion. Thus to encode the key for any layer � , all data packets in layers
� � � � must be used. Hence the components of key for layer � are places in all data packets from layer
� � � � . When a receiver which has subscribed to layers ����� � experiences congestion, it looses the key
for layer � and cannot continue its subscription to layer � . Now, consider a sender with maximum of
L layers. The data packets of base layer � must hold key components of layers ����� 
 . Data packets
of layer � must hold key components of layers � � � 
 and so on. Thus there is significant overhead.
This overhead can be reduced if keys can reuse components, that is the key for layer � can be formed
using key for layer � � � and some additional components (which are placed in data packets of layer
� ). This is not possible if we use shamir’s threshold scheme directly. A scheme which reuses key
components was proposed in [10]. But this can only be used for protocols which define congestion
as a single packet loss(FLID-DL).

Each RDCC protocol defines congestion differently and has certain rules to access multicast
groups. Denote by � � � � � , the definition of congestion in protocol � . Denote by � � � ��� the rules of
access to multicast groups for protocol � . In RLM, depending on the state in which the receiver is,
� � � � 
 � � is defined as a single packet loss or when losses exceed a threshold. � � ���� � � � �
advocates maintaining receiver reception rate less than a calculated target rate based on TFRC like
equations. DELTA for a protocol � tries to design keys which ensure that the receiver respects both
� � � � � and � � � � � . For most protocols, it is possible to design keys which respect � �

. But for
protocols such as RLM and WEBRC, it is very difficult to design keys which can ensure that the
receiver behaves exactly as specified by its �

�
. To tackle this problem, observe that irrespective

of which protocol a receiver uses, when it inflates it subscription, it experiences congestion. During
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this congestion period, it encounters closely spaced losses and bursts. Thus, irrespective of which
protocol � the receiver follows, if we can provide a light protection mechanism against general con-
gestion, we can prevent receivers from inflating their subscription. Such a mechanism can maintain
a high congestion bound so that it does not interfere with �

� � � � but traps excessive congestion. In
subsequent section we show the design of a key which just traps congestion irrespective of the pro-
tocol. We also show that such a key can be used with low overhead to ensure �

� � ��� for cumulative
layered protocols since reuse of key components is possible.

6.1 Key Design to Trap Congestion

First, we show the design for a single layer. Consider the set of packets transmitted during an epoch
of time. We divide the consecutive packets into blocks of size 	 �

. Each block of 	 �
packets share

a small secret which in placed in them using shamir’s � � 
�	 � � threshold secret sharing. In addition,
certain packets of two consecutive blocks share a secret. Packets

� ��� 	 �
of block � and packets � ��� �

of block ��B� share a secret using � � 
�	 � � threshold secret sharing (Figure 13). The key for a layer
is the sum of secrets within the blocks.

� ��� ��� ����?� � � (10)

When any
�

consecutive packets are lost, the secret is lost. Also, within any group of 2S con-
secutive packets if S are lost, the secret is lost. Thus in general, the secret is lost when losses are
closely spaced. When losses are quite far off from each other, the secret is not lost. By adjusting
parameter S, we can apply this key design for any protocol. For cumulative layered protocols, the
key for layer � can be defined as the sum of keys for layers ����� � . Thus, key components can be reused
for low overhead per packet. �	� �
� ���

�
��� � � �� ����?� � � � (11)

Note that, we can use any one way function instead of sum such as sum modulo , XOR, etc.
Also, as in [10], the sender can precompute keys without knowing the number of packets to be
transmitted. The advantage of our key design is that it can be used with most protocols. It is flexible

� � � �

� �

�
�

Packets and keys

���

Figure 13: Key design to trap congestion

and can trap misbehavior due to inflated subscriptions. But since we are designing keys independent
of specific congestion definition, any scheme which is protocol specific is definitely more effective.

INRIA



Dealing with Receiver Misbehavior in Multicast Congestion Control 21

7 Conclusions

In this report we showed that the loss rates of links calculated by MINC can help to detect misbehav-
ior in SDCC protocols. For this, we require that MINC itself be immune to misbehavior. We showed
how we can detect and prevent misbehavior within MINC. As future work we would like to explore
how we can actually incorporate MINC inference in various source driven multicast congestion con-
trol protocols. We would also like to study if misbehavior can be detected if certain feedback reports
are lost. For receiver driven congestion control protocols, we showed how to design keys which can
be applied to most RDCC protocols, by keeping key design independent of specific definitions of
congestion. We would like to investigate the use of error control coding in key design, in particular
the use of burst error correcting codes.
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