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Abstract: We consider mathematical models for the cell cycle, i.e. the sequence of events
that leads to mitosis, at the level of a population of cells. These are structured population
Partial Differential Equations that describe the evolution of the population along each phase
of the cycle and the transition to the next phase. These models allow several types of controls
such as therapeutic control in case of cancer therapy (some chemotherapies are known to act
on specific phases of the cycle or on the transitions between phases) or circadian control by
the central nervous system (in the suprachiasmatic nuclei). We study the long time behaviour
of this system of PDEs using an entropy method and exhibit, by numerical simulations, the
action of the circadian control
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Un modéle mathématique pour le cycle cellulaire et son
controle

Résumé : Nous considérons un modéle mathématique pour le cycle cellulaire, c’est-a-dire la
série d’événements menant & la mitose, au niveau d’une population de cellules. Ce sont des
Equations aux Dérivées Partielles qui décrivent ’évolution d’une population durant chaque
phase du cycle et la transition & la phase suivante. Ces modéles permettent divers types de
controles comme le controle thérapeutique (certaines chimiothérapies sont connues pour agir
sur des phases spécifiques du cycle cellulaire ou sur les transitions entre phases) ou le controle
circadien par le systéme nerveux central (au niveau des noyaux suprachiasmatiques). Nous
étudions le comportement asymptotique en temps long pour ce systéme d’EDP en utilisant
une méthode d’entropie et nous montrons, grace a des tests numériques, l’action du contréle
circadien.

Mots-clés : Dynamique de populations structurées, cycle cellulaire, controle circadien et
thérapeutique, méthode d’entropie, modélisation du cancer.
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1 Introduction

Even though each type of cancer is unique because of the complexity in factors of develop-
ment such as the variety of tissues, the numerous combinations of genetic alterations, the
succession of events as vasculogenesis and angiogenesis ([2], [17]), several critical events are
however common to the evolution of each cancer which are targets for potential therapeu-
tic actions. Among them is the suppression of apoptosis (programmed cellular death) and
deregulation of cell proliferation, we refer to [11] for a review of this aspect. This leads to
try to understand the tumour development at the level of a population of cells while ‘macro-
scopic’ models for the neoplastic progression have been widely proposed and validated ([7]
and the references therein). One can hope that a better understanding and control of the
cell cycle can be used practically in cancer therapy. Our aim is to include in our model
two key features of several anti-cancer drugs. The first one is that they act on specific
phases of the cell cycle, for instance by promoting or inhibiting transition from a given
phase to another, or to apoptosis. The second one is that drugs efficiency and/or toxicity
seems to be strongly related to a 24 hour rhythm imposed by the circadian central clock [16].

Several mathematical approaches are proposed to model the cell cycle depending on the
expected output one wishes to achieve. Description of a single cell by a system of Ordinary
Differential Equations modelling the sequence of biomolecular events has been proposed by
several authors and specifically the circadian rhythm is treated in [24]. When a population
of cells is considered one is lead to structure the population by ‘age’ in the phase and this
is the point of view we use here. The mathematical formalism for this purpose enters the
class of Partial Differential Equations. The simplest way to do so is related to the famous
McKendrick-Von Foerster model, also called renewal equation (see [3], [18] for instance)

% n(t,a) + % n(t,a) + d(a)n(t,a) =0, t>0,a>0, (1.1)

n(t,a =0)= / b(a)n(t,a)da, (1.2)
a>0

n(t =0,a) = no(a). (1.3)

Here n(t,a) denotes the density of cells at time ¢ and age a, d(a) the death rate, and
b(a) the birth rate. This general model may be specialized to the case

ba) = 26(a = Ap),

thus expressing that mitosis (doubling of the cell) arises at given age a = Ap. This type
of model has been used broadly and compared to in vitro experiments in [23], [8] and the
references therein. The model we propose below is a generalization of this kind of descrip-
tion. Let us point out that the simplicity of the biological description in such a model led
several authors to improvements and variants. For instance different individual cells, under
constant environmental conditions, have been proved to exhibit highly variable intermitotic
intervals (Lebowitz and Rubinow [15] and the references therein) and this observation led
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4 Jean Clairambault , Béatrice Laroche , Stéphane Mischler , Benoit Perthame

those authors to postulate an improved mathematical model where the population is also
structured in terms of a generation time 7, thus leading to the evolution for the cell density
n(t,a,7)

%n(t,a,T)wL % n(t,a,7) + D(a,7)n(t,a,7) =0, t>0,a>0,72>0,

n(t,a=0,7) = /b(a, 7, 7)n(t,a,v")da dr’ (1.4)

n(t =0,a,7) = no(a, 7).

A somewhat related but more general model is that of Rotenberg [21]. Then, the bio-
logical hidden variable is a maturation velocity p € [0,1], and the observable state a is the
biological age, more relevant than the physical age, in other words, the degree of maturity
(and then a/p is the physical age in the previous models). Then, the density of population
n(t, a, 1) satisfies the transport equation

0 0
g M(ta ) + g n(ta, p) + D(a, pin(t, a, p) = /K(a,u, pn(t,a,p')dy',  (1.5)

with again boundary conditions at ¢ = 0, and initial data at ¢ = 0,
n(t,a =0,p) = /b(a’,ﬂ’,u)n(t, a,p)dy'da’,

TL(t = 07 a, l") = ’I'L(](a, /’L)

This model enhances the stochasticity in the time evolution of the population thanks to
the kernel K which allows a random change of the maturation velocity, and also, as in the
previous models, in the birth process. We also refer to [10] for other models with the notion
of maturity. More recently fragmentation models have been proposed to measure cells in
terms of their DNA content x leading to ‘size strucutred’ models ([4]). This is related to the
recent availability of flow cytometry which allows on-line measurements of DNA content.
The model then is based on the equation

0 0
5 n(t,z) + B n(t,z) + d(z)n(t,z) = 4n(t, 22) — n(tz). (1.6)

The right hand side expresses that after mitosis, the DNA content 2z is split in twice
2-DNA content for each cell.

In this paper we keep the renewal model for cell cycle and we first present a model which
allows to keep more biologically based assumptions than the mere equation (1.1)-(1.2). We
refer specifically to the notion of phases in the cycle which allow to introduce controls such as
the effect of a circadian clock which blocks periodically the phase transition. We give some
mathematical results concerning the solutions and especially the existence of a (Malthus)
parameter for the total growth of the population. Then we propose numerical tests to
measure the effect of the circadian clock on the total growth.

INRIA



A mathematical model of the cell cycle and its control 5

2 A model for the cell cycle

Figure 1: Principle of the cell cycle and its phases.

The cell division (mitosis) is the result of a full cycle that a cell should undergo suc-
cessfully ([14]). It is usually accepted that the cycle consists in four phases, (i) a growth
phase, denoted G1, where mostly the cell doubles its size, (ii) a synthesis phase, denoted by
S, where the DNA is duplicated, (iii) a rest phase, denoted by G2, which is used to check
and repair the errors in S phase, (iv) the mitosis, phase M, itself where the two DNA folds
separate (anaphase) and the cell divides finally. The important feature for our purpose is
that the cell cycle progression is controlled by proteins (Cyclin Dependent Kinases, CDK in
short, see [22]) and thus we wish to keep this notion in the mathematical model. Also much
of the cells stay at rest in a quiescent phase called GO, typically, skin cells are constantly
in the cycle, endothelial cells are known to stay at rest and may be activated by Vascular
Endothelial Growth Factors when angiogenesis occurs. On the other hand, the cell cycle
duration is also extremely variable for human cells, from several minutes to several days (up
to several years for cells with low renewal rates), depending on the cells [14], [13].

Our cell population model uses the density of cells in the phase i, denoted by n;(t,a),at
time ¢ and with age a in the cell, and say ¢ = 0 for the rest phase GO, and i = 1,2...,T
with I = 4 in the above scenario. We call K;_,;11(a) > 0 the transition rate from phase i
to phase i+ 1 depending on the age a in the phase ¢ (Kj_ 41 stands sometimes for Ky_,q
in order to simplify some notations). As a simple model we can have in mind is

Kz’ai—{—l(a) = wi l{aZai}a d}z > 0; (21)

a constant rate after some age a; is attained. These transition rates could be controlled by
drugs or by the circadian clock as mentioned in the introduction, thus leading to a variant

Kiipa(t,a) =9(t) 1{&2&1’}7 (2.2)

RR n 4892



6 Jean Clairambault , Béatrice Laroche , Stéphane Mischler , Benoit Perthame

then (t) is a switch activated periodically at certain times in the circadian control, by a
therapy in case of therapeutic control.

Then the evolution of the density in the phase is modelled via a McKendrick-Von Foerster
equation as presented in the introduction. Variable d; > 0 is the death rate in the phase
1 : as mentioned in our introduction, it could also be controlled by drugs with a circadian
rhythm; v;(a) > 0 is the evolution speed in the phase which could also be controlled by some
nutrients for instance in phase G1. Hence, for 1 <i < 1,t > 0 and a > 0, we have

9 n;i(t,a) + 0

5 % [vi(a)ni(t, a)] + di(a)ni(t,a) + Ki—iy1(a)ni(t,a) = 0,

(2.3)
v;(0)ni(t,a =0) = /,>0 Ki—1-i(a") ni—1(t,a’) da'.

For ¢ = 1, the renewal condition does not make sense because the phase 1 — 1 does not exist
and we replace it by

(O (t,a = 0) = 2741 / Kio1(a) na(t, ') da, (2.4)
a’>0

where 0 < 737 < 1 is the rate of cells which continue the cycle after mitosis. For the sake
of simplicity we have not described the phase GO which receives the extra cells after mitosis
and possibly can introduce new cells in the cycle. Of course our model is completed by a
Cauchy data set

ni(t =0,a) = n?(a) >0, Vi=1,...,I, Va>0. (2.5)

This model thus retains some aspects of Rotenberg [21] model (see the introduction)
with a discrete set of maturation states (u in (1.5) corresponds to ¢ in (2.3)) while keeping
the main feature that enough phase progression is needed for transition to the next phase.
It also has the advantage of indicating clearly possible control points for further modelling.
This kind of system can either create exponential growth or exponential decay of the total
population size depending on the death and transition parameters and of course the control
parameters. This feature is analysed in the next section.

3 Mathematical results

The above system of transport equations is endowed with a natural maximum principle which
preserves the nonnegativity of n; and of a natural L' theory which reflects the conservation
of densities by the drift term. These are usual properties that can be handled by various well
understood mathematical methods and we state an existence result for completeness. More
interesting is the large time asymptotic analysis which can hardly be performed here by
standard methods based on Laplace transform. We rather use entropy methods introduced

INRIA



A mathematical model of the cell cycle and its control 7

in this context in [20], see also [19], [25].

We always assume below that all the (nonnegative) coefficients (d;, v;, K;—;y1) are
continuous and

o0 >7 >wi(a) >v >0, v;(+) is Lipschitz continuous. (3.1)
K’i—»i+1(a) < K < 00, (32)

d:
Z((La) — 00, K;.iy1(a)>0  foralarge. (3.3)

Theorem 3.1 (Existence) With the assumptions (3.1)-(3.8) and
n) € L'(RY),

there exists a unique distributional solution n; € C(RT;LY(R')), n; > 0, to the system
(2.3)-(2.5). It satisfies the a priori bound

Z /00 ni(t,a) da < et @ DlIKI—allzee (3.4)
0

The a priori bound here is very crude and does not use the precise structure of the
operators involved in the dynamics. It is aimed to show why L' theory is natural through
its simplicity. Concerning the time behaviour, it turns out that the population grows with
an exponential rate of parameter A\. A more accurate result is indeed

Theorem 3.2 (Long time behaviour) With the assumptions of Theorem 3.1, there exists a
unique parameter A € R and unique (up to a multiplicative constant) C' functions ¢;(a) > 0,
¢i(a) — 0 as a — oo such that

Z / nit,a);(a)da = e Z/ a)da  Vt>0.  (3.5)

An explicit formula for the Malthus parameter \ is given below, equation (3.9), that allows
to check whether there is extinction i.e. A < 0 or growthi.e. A > 0. It can be seen as the first
eigenvalue for the underlying operator the existence of which follows by the Krein-Rutman
theorem ([9]), but below we give a direct and constructive proof. We can also go further
and make more precise the long time asymptotics as follows

RR n 4892



8 Jean Clairambault , Béatrice Laroche , Stéphane Mischler , Benoit Perthame

Theorem 3.3 (Time asymptotics) With the assumptions and notations of Theorem 3.2,
there exists a unique positive solution (up to a multiplicative constant) to

% [vi(a)Ni(a)] + [di(a) + Kiiy1(a) + A]Ni(a) = 0,
(3.6)
vi(O)Ni(a = 0) = / Kz;lﬁi(al) Ni,l(a') da',
a’>0
and one has
/: Ini(t,a)eM — MyN;(a)|da — 0, as t— oo, (3.7

with My the constant such that

Z/ da—MOZ/N

These theorems follow from classical methods which where extended to the Rotenberg
model in [20]. Notice that the convergence rate in (3.7) can be proved to be exponential in
simple situations, but we do not know of simple formulas involving the coefficients of the
equation itself (d;, K;—1—4, ... ). Their proofs are thus simple variants of the arguments
that can be found in a more sophisticated form in [20] and we only sketch the main argu-
ments.

Proof of Theorem 3.1. We do not give a proof of this very classical result which is based
on the Banach-Picard fixed point theorem, and we only mention briefly the derivation of the
a priori bound (3.4). The positivity of the solution is obvious because (n;)— (the negative
part is defined by a— = maz(0,—a)) is a subsolution with a vanishing initial data and thus
remains negative (therefore zero) for all times. The L! bound is obtained by integration in
age, using the positivity of the d;

% Z / n;(t,a) da + Z / K it1(a)ni(t,a)da < z v;(0)ni(t,0),
i=1,...,170 1,170

i=1,...,I

therefore, the boundary fluxes exactly compensate (as expected in the model) the transition
rates and it remains

% Z / ni(t,a) da S(2TM—1)/ Kr_1(a)nr(t,a)da
i=1,...,170 0

o0
< (2r — 1)||K1_,1||Loo/ ni(t,a)da
0

o0
<@ - DIKialie Y [ wilta)da
i=1,...,170

INRIA
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and the result follows.
Proof of Theorem 3.2. The stationary dual problem to (3.1)—(3.2) is given by an eigen-
value problem: find A such that there is a solution to

W(a)% ¢i(a) — [di(a) + Ki—iy1(a) + Ni(a) = —¢i11(0) K11 (a),

(3.8)
¢i(a) — 0 as a— 0.
Here we have used K; i i1(a) = K;_;1(a) for i = 1,..., 1 — 1 and K;_(a) =
2TMK1_,1((L).

In other words, multiplying (3.1)—(3.2) by ¢;(a), multiplying equation (3.8) by n;(t,a)
and integrating da and summing up in 4, we arrive at

e X [ st@mttad) - S wla=0mitta = 0)a=0)
i=1,...,170

i=1,...,I

=—e M Z ¢i+1(0)/ Kiit1(a)ni(t, a) da,
i=1,...,I 0

(this uses the condition at infinity for the dual problem!). After rearranging the sum on the
right and taking into account the renewal condition (3.2), the above equation reduces to

% e M z / ¢(a)ni(t,a)da| = 0.
i=1,...,170

Therefore the result of Theorem 3.2 is reduced to proving the existence of a solution to
the dual problem with the announced properties. To do so, we write the solution when A is
given and show that a single A is possible in order to satisfy the condition at infinity. We
have

i -2 ¢ Kz—»z —(D;i(o)+ 20
gi(a) = ™D [5(0) - 6441.(0) / T (+a1)(0) e (Pt do,
0 4

with

_ adi(O')-f-KiHi (0’)
Di(a) = /0 S gy

Because the problem is defined up to a multiplicative constant (we look for the first
eigenvalue of a positive operator) we may choose ¢1(0) = 1. Then, the vanishing condition
at infinity for ¢; gives
= -1
K — - o)+ =750
$2(0) = [ 122(0) (=(Du()+557) gy

0 vi(a)

RR n 4892



10 Jean Clairambault , Béatrice Laroche , Stéphane Mischler , Benoit Perthame

Notice that our assumptions show that this integral is well defined for A > d/v at least. The
vanishing condition at infinity for ¢» then gives

[N 7 -1
$3(0) = 2(0) [/0 Ka-3(0) ~(Da(0)+559) da] _

vi(a)

After a complete cycle, we arrive at the condition

[C eI 7~ N 1
1=¢1(0) = ¢5(0) [/0 M o~ (P1(0)+50579) da] ’

vi(a)

in other words the value of A is given by the formula

A condition that is fullfilled by a single value of A because this product defines a decreasing
and C! function, it vanishes for A — oo and it tends to oo for A — —oo. This concludes
the proof of the existence of a solution ¢; to the dual problem (notice that all the required
properties are indeed satisfied) and thus the Theorem 3.2 is proved.

Proof of Theorem 3.3. We refer to [20] for a proof and we just indicate briefly the very
reason behind this convergence. First of all, notice that the existence of solutions to equation
(3.6) for N; follows (by exact formulas) from the same choice as above of the parameter A
(in other words the primal and dual problems have the same first eigenvalue associated to a
positive eigenvector!). Next, we have

% (e Mn;(t,a)) + 62

e Mvi(a)ni(t, a)] + [di(a) + Kimit1(a) + Nni(t,a) = 0,
v;(0)e"n;(t,a =0 / K;_1_i(a") e Mn;_1(t,a") da'.
a'>0

Substracting equation (3.6) for N;, and multiplying by sgn(e *!n;(¢,a) — N;) (this is well
justified even though the sgn function is not smooth) we arrive at

(0, _ 0 at
g le=*n;(t,a) — Ny(a)| + %a [vi(a)le=n;(t,a) — Ni(a)|]
¢ + [di(a) + Kiit1(a) + AlIni(t, a) — Ni(a)| =0,
vi(0)e Mni(t,a = 0) — 0)| < |/ (Ki1i(a) e Mni_s(t,a) — Ni(a')] da'].

INRIA



A mathematical model of the cell cycle and its control 11

Therefore, after integration against the dual solution ¢;(a), and summation of these equa-
tions we arrive at

4 VRN
dtz:; I «/5;20 |€ nz(t,a) z(a) a/|¢z(a)

< ¥ 00|l K@l Mua - Nl
1,...,1 az0

i=

_ / Kio1i(a)le~ni(t, a) — Ni(a)|da
a>0

<0.

This proves that the quantity decays but also that the quantity in the right hand side is
integrable, that is

[e o]
/ | K; 1.i(a) [e*’\tni(t,a)—Ni(a)]da|—/ |K; 1.i(a)e Mn;(t,a)— Ni(a)|da < oo,
t=0 Ja>0 a>0
which implies that

e *n;(t,a) — Ni(a) — 0, as t— oo,

on the support of K;_1_,i(-). Then, one can obtain that the full quantity vanishes in using
the PDE again and compactness arguments that are detailed in [20].

4 Numerical method: one phase

Before we consider the effect of an outside control on one of the phases, we present the
numerical method used here. It is based on an upwind scheme for the transport equation
([12]) in the finite volume spirit. These methods are known to be inaccurate except when an
optimal time step can be used: we therefore consider here this optimal situation (CFL=1),
this is possible under the restriction that

vi(a) = Cst, Vi=1,...,I,

a condition that we assume from now on with v;(a) = 1, i.e. At = Aa where these are the
(uniform) discretization parameters in the two variables ¢ and a. Below we denote by n7 (i)
the average value of n;(t",a) on the j — th cell in the age variable, at time " = nAt.

In order to avoid further time restriction, we also consider an implicit scheme for the
death rates and transition rates. We arrive at the algorithm:

np ) = At Y Km0,
7j=2 J

RR n 4892



12 Jean Clairambault , Béatrice Laroche , Stéphane Mischler , Benoit Perthame

nf O+ AL+ (d() + Kimia1 ()] =nf 1 (1),  §=2,...,7,

(except for 4 = 1 where the cell division factor 27, is added). Here we have in mind that the
first point in a represents the flux on the boundary and not an average in a cell. Therefore
the point nf(7) is excluded from the discrete renewal kernel.

Figure 2: Solution of the renewal equation (one phase) in case 1 (peaked renewal kernel).
Left:the total population density as a function of time. Right: the steady state N(a).

Figure 3: Solution of the renewal equation (one phase) in case 2 (uniform renewal kernel).
Left: the total population density as a function of time. Right: the steady state N(a).

For the sake of completeness, we now present results for the case of one phase (McKendrick-
Von Foerster equation). They are obtained with J = 2%20 (20 is the number of discretization
points for a unit age time which is the maximal age for renewal in the choice we make below
for K i.e. ap = 1 in the two cases below). In other words our simulations are conducted

INRIA



A mathematical model of the cell cycle and its control 13

for 0 € a < 2xap and up to the final time tf;nq = 3 * ap. Also we use a death rate
d(a) = 2. % a/ap. As expressed in Theorem 3.3, after multiplication by the factor e,
the solution converges to a steady state but with an oscillatory behaviour. We exhibit this
phenomenon in the numerical tests below and relate it to the form of the kernel K(a) used
for the renewal term. We consider in this case a renewal kernel K with bounded support.
We show that the more ‘peaked’ is the kernel K, the more oscillations the solution exhibits.
To do so, we consider two cases

o First case. K(a) =4+ 1(,,,/2<a<ay}> See Figure 2.
e Second case. K(a) =2* ljo<q<a,}> see Figure 3.

This kind of behaviour has been confirmed and matched to experiments on various type
of cells including cancerous cells (see [23], [8], [4]). Especially the importance of transition
times has been well reported in the above references and more experimental works ([6]).

5 Numerical results on the circadian control (two phases)

We now come to the case of two phases in the model (2.3)—(2.5) for the cell cycle. The
motivation for keeping only two phases is simplicity, this still allows a reduced number of
parameters in the model while dealing with a more realistic structure. Still assuming that
the cycle speeds are constant in the two phases (of equal length even though G1 phase is
usually reported as the longest and the most fluctuating), it can be discretized exactly as
explained previously in §4 and we do not give additional details.

76

75F

73

72

7nE

70F

69

68

67
0

Figure 4: Solution of the cell cycle equation (two phases) without periodic control. Left:
the total population density in the first phase as a function of time. Right: the steady state
N1 (a)

We first consider the uncontrolled case, we are in the situation of transition rates given
by (2.1), see Figure 4 and compare with Figures 2 and 3. Again, the results are shown

RR n 4892



14 Jean Clairambault , Béatrice Laroche , Stéphane Mischler , Benoit Perthame

after normalizing the solution by the growth factor e*, with X the first eigenvalue (Malthus
parameter) which has been analysed in §3.

Next, we have investigated the effect of a circadian control that can affect the transitions
as motivated in the introduction. It is known that healthy cells are highly affected by the
circadian rhythm ([16], [5] for instance). It may act in various ways: on each of the two
transitions, and either stopping the transitions during a certain time of the day or, on the
contrary, in allowing phase transitions during a certain time interval. In each of these cases,
as long as this circadian control is of small amplitude, we have observed that it creates (after
some transition) a circadian period in the cell dynamics. In Figure 5, we show an example
where the circadian control blocks the transition from phase 1 to phase 2 periodically, as
proposed in (2.2). The function ;(t) is taken equal to one except that is drops to 1/2 on
periodic intervals of length (k 1.2,k +1.2 4 .2) in cell cycle units. The oscillations that can
be seen in Figure 5 exhibit variable pseudoperiod; (i) the double of the cell cycle period at
the beginning, (ii) the period of the circadian control at the end (see Figure 6).
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Figure 5: Solution of the cell cycle equation (two phases) with periodic blocking. The total
population density in the first phase as a function of time (unit=cell cycle).
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Figure 6: Zoom in Figure 5. Left: at the beginning, the pseudoperiod is half the cell cycle
time. Right: after some time, the pseudoperiod is the circadian clock.

6 Conclusion

Motivated by understanding the role of cell cycle in tumour developments we have con-
sidered a mathematical model to describe a cell population structured by its age in each
phase. This model is especially designed to incorporate control parameters at several, bio-
logically based, points (death rate, transition rates) in order to take into account therapy or
circadian clock. A mathematical theory for existence and long time asymptotics has been
developed which uses an entropy method introduced recently in this subject. The numer-
ical tests are in accordance with this theory and with several previous comparisons with
experiments. Numerical results are also given on the effect of a circadian control showing,
again, as reported in experimental works, that it imposes a circadian rhythm to the cell cycle.
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