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Abstract: We give a general Riemannian framework to the study of approximation of cur-
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mental form of a hypersurface, and to extend this notion to geometric compact subsets of a
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Approximation de la seconde forme fondamentale d’une
hypersurface d’une variété Riemannienne

Résumeé : Nous étudions "approximation des mesures de courbures dans un cadre Rieman-
nien, en utilisant la théorie du cycle normal. De plus, nous introduisons une forme diffé-
rentielle qui permet de définir un nouveau type de mesure de courbure décrivant la seconde
forme fondamentale d’une hypersurface. Enfin, nous comparons les mesures de courbures
d’une hypersurface lisse et d’un compact géométrique qui lui est proche en bornant leur
différence en fonction de certains invariants géométriques et de la masse des différents cycles
normaux.

Mots-clés : Cycle normal, approximation, variete riemannienne, courbure,
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1 Introduction

This report is a continuation of [2] and [3]. Its has a double goal: First of all it gives a
general Riemannian framework to the study of approximation of curvature measures. In [2],
we dealt with surfaces and geometric compact subsets in E®, while in [3] we considered only
smooth surfaces and polyhedra. Here, we generalize the frame by working in any arbitrary
Riemannian manifold M. Of course, our results depend in general on its curvature tensor,
but its topology is not involved. As in E™, the main geometric objects lie in the tangent
manifold TM of M, whose geometry is rich.

The second goal of this report is to give a interpretation of the second fundamental form
of a hypersurface M of M in terms of curvature measures. Using this interpretation, we
can compare the second fundamental form of a smooth hypersurface of M with the second
fundamental form of a geometric compact subset of M strongly close to it. Here is the main
result: we suppose that M bounds compact subset K and C is a geometric compact subset
of M whose boundary B = 8C is strongly close to M; B is any regular Borel subset of M
included in B; M% , resp. M) denotes as usual the k-th measure of curvature associated
to C, (resp. K); (see also the notations below, in particular 3.2.1):

Theorem 1 Let B be any regular Borel subset of B. Then, for every k,0 <k <mn -1,
|ME(B) — M§ (pr(B))| <
C(n, k, R) max(6p, ap) max(1, |[fis]| ") (M(N(C), 1 51) + MON (C)1y 11));

Moreover, if X,Y are vector fields of H,
|hg ¥ (B) — by (pr(B))| <
C1(n, k, R)||X|11]|Y ||l: max(85, ap) max(L, ||hs||" ™ ) (M(N(C) 1y siry + MON(C), 1, 11));

where C' and Cy are constant depending on the dimension and on the curvature of the
ambiant space.

Finally, we would like to mention the preprint of A. Bernig and L. Brocker [1] in which
some computations are close to ours.

2 A brief survey on the geometry of a tangent manifold

This paragraph summaries the geometry of the tangent bundle (M = M) of a smooth
manifold M; (see [11] [12] for details). If the dimension of M is n, T M is a smooth manifold
of dimension 2n. We shall adopt the following notations: If a generic point m of M belongs
to a domain U of coordinates, we write m = (). If a vector z,, lies in the fiber T,, M, it
will be expressed locally (z*,y~).

Consider the tangent bundle (T'M, 7, M) of a smooth manifold M, and the second tan-
gent bundle (TTM, ™" TM). We shall deal with the following diagram:

RR n° 4868



4 Cohen-Steiner € Morvan

TTM T TM

Trum | lm
™ = M

and the following exact sequence:

0—TM xy TM 5 TTM % TM x 3 TM — 0,
where ¢ is the natural injection defined by
. d
i(v,w) = E(v + tw)|¢=0,
and j = (7, ).
The vertical bundle V(M) is the kernel of j:
V(M) = Kerj = Imi.
If z is a point of T M, there is a natural isomorphism
iz Tn(zyM — V.(M),

defined by
i.(v) =i(z,v).

We put 7.(v) = v*, and v* is called the vertical lift of v at z. We denote by ¢, the inverse
of i,.

The vector field C associated to the one parameter group of homotheties with a positive
ratio acting on the fibers of 7'M, is called the canonical vertical vector field. It can be
defined as follows: Consider the diagonal morphism 6 : TM — TM X T M given by:

6(z) = (z,2)-

We put:
C=i06:TM — V(M).

The vertical endomorphism J is defined by
J=1io07.
It is an almost tangent structure of TM, (J? = 0), such that

Ker J=Im J =V(M).

INRIA
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A linear connexion on M can be defined as a right splitting of the exact sequence,
(also linear in the variable y), that is, a bundle morphism

v :TM xy TM — TTM,

such that
jo’y = IdExMTM‘
If w,2 € T,,M z" = v,(2) is called the horizontal lift of z at w. The subbundle
H, (M) =TIm(y(w,.))

is called the horizontal bundle at w.
Now,
h=~o0j:TTM —TTM,

is called the horizontal projection on the horizontal bundle H. We denote by
v=Id—nh

the vertical projection on the vertical bundle V(M).
Clearly, at every point z of T'M, one has:

T.TM =V,(M)® H,(M).
Moreover, at each point z of T M, one has an isomorphism
Je X6t Hy(M)x V(M) —TM x TM.

When M is endowed with a connexion, the bundle (w7 : TTM — T M) is also endowed
with an almost complex structure F, (F? = —Id) defined by

{ FJ = h,

Fh = -—-J.

One has
TTM = V(M)® H(M),
FV(M) = H(M),
FH(M) = V(M).

The covariant derivative associated to the linear connexion + is defined as follows: for
every (local) vector field y € TM and every tangent vector w,

Vil = Gx(2) 0V 0 24 0 W.

Suppose now that M is endowed with a Riemannian metric. Then, 7'M has a canonical
Riemannian structure defined as follows

RR n° 4868



6 Cohen-Steiner € Morvan

1. V(M) is endowed with the metric defined on M transported by the identification
induced by .

2. H(M) is endowed with the metric defined on M transported by the identification
induced by j.

3. V(M) and H(M) are orthogonal.

In the following, we shall systematically endow M with the Levi-Civita connexion asso-
ciated to the metric of M.

Remarks
1. If C is the canonical vertical vector field, one has locally:
C = (¢%,9%,0,y%), FC = (z,y%,9% —y"y’T5s),
which implies that F'C is a semi-spray, in the sense of [11], [12].

2. The couple (<, >, F) induces a symplectic structure =< F.,. > on the manifold
TM. Tt is the image of the symplectic structure defined on the cotangent manifold
T*M, via the identification of TM and T*M given by the metric.

3. It is easy to check that

JEF = v,
hF = Fu,
vF = Fh=-J.

In our context, it will be useful to deal with the connexion forms of the connexion, and to
use the Maurer-Cartan formalism. In this context, we introduce the bundle 7M = TM\0,
that is, the tangent bundle without the 0-section. Let z,, #7# 0 be a point of 7M. Let
(e1,...,en) be any orthonormal frame T, M, such that e, = 727+ We denote by (e1,...,ex)

the dual frame. If w denotes the (Levi-Civita) connexion form on T'M (considered as a
vector valued one form taking its values in the Lie algebra of SO(n)), the Maurer-Cartan
structure equations can be written as:

def:waej,dwf:wawi+Qg, (1)

where Q) are the curvature forms of the connexion, related to the curvature tensor R of
M by:

QI(X,Y) =< R(X,Y)es,e; >,YX,Y € TM.
The Bianchy identity is

Al = Wk A Q.

INRIA
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Now we take the pullback of the one forms e} by m. We get n covectors (64, ...,6,) on
T M, null on the vertical bundle V(M):

0, = 7*(e}), Vi.

One has: VX, Y € TM,
do;(X*,Y")=0,;

do; (X", Y") == (w] Ae))(X,Y);
do;,(X",Y") =o0.
We define the 1-forms w’ on TM by

@) (X" = w!(X),w! (X") = 0,VX € TM.

K3

Finally, we obtain: ‘
de; = wf A 9]'. (2)

Associated to this frame, we define the n 1-forms
F*(6;) = ©;,Vi.
These forms are null on the horizontal bundle H(M), and satisfy:
@i(e;f) = bij.

One has:
dO; = wk A Oy + R, 3)
where R? is the 2-form on 7 M defined at z by:

R (X,Y) =< R(dn(X),dn(Y))z,e; > .

3 Invariant (n — 1)-forms on 7'M

3.1 The curvature forms

Let M be a n-dimensional Riemannian manifold. Let z = (m, ym ), ym 7# 0 be a point of 7 M.
Let (e1, ..., €,) be any orthonormal frame T, M, such that e, = ﬁ With the notations of

the previous section, we can build the (n — 1)-form
(01 + t@l) VAN (0n_1 + t®n—1)z~

When z varies, this defines a differential (n — 1)-form on 7M. Consider this expression
as a polynomial in the variable ¢; (remark that the coefficient of every ¢ is a differential

RR n° 4868



8 Cohen-Steiner € Morvan

form which does not depend on the orthonormal frame (eq, ..., e, = Hzll ). We denote by ¢

the differential form which is the coefficient in ¢*. Trivially one has:

Or = Z(—l)ror(l) A A ew(k) A (‘)ﬂ.(k_H) AN ®7r(n—1)-

K

As usual, we give the following

Definition 1 For 1 < i < n — 1, the (n — 1)-form ¢, on TM is called the k*"-Lipschitz-
Killing curvature form.

Proposition 1 Let M be a n-dimensional Riemannian manifold. Then,

e cach invariant form @i satisfies ||pr|| = 1;

e moreover, if the norm of the curvature form Q of M is bounded by a positive constant R,
then

||d¢k|| < C(k7n7R)7
where C(k,n, R) is a positive constant depending on the dimension and on the bound R.
Proof of Proposition 1:
e The first item is trivial.

e One has:
doy, = Zﬂ:d[eﬂ(l) JARAN 0,,(16) A @ﬂ.(k_H) AN @,r(n_l)] =

D EOr(1) A AdBa(y A oo Aty A Origty A oo A O 1)+
Z ie,,(l) Ao A A G,F(k) A @ﬂ(k_H) A A d®r(k+l) A A ®7r(n—1)'

To bound ||d¢x||, we use equations 3, 2, replacing the terms df; and dO; by their
values in terms of w! and R?. We get a sum of indecomposable forms which are the
wedge products of 6;, ©; and R, (the terms involving w’,1 < 4,5 < n — 1 cancel).
The conclusion follows.

Remarks:

1. In particular, if M is flat, (R = 0), then we deduce that d¢, has an expression of
the type > £6;, A ... Aw! A© A ... A©,_1. The norm of each decomposable

fn—k—1 in—k
term of this sum is 1, each term appearing at most k + 1 times, and the terms of type
D40, A.AO; _  ANO; _ A...AO,_; appearing k + 1 times. We deduce that
[|dor|| =k +1,Vk < n —2;

|ld$n—1]| = 0.

INRIA
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2. In the case where the manifold is the three dimensional Euclidean space E2, we get
three 2 forms on TE>. We give here their explicit expressions in the standard frame
(1'1,.%'2,.’1,'3, Y1,Y2, ?/3): at any pOil’lt (’ITL, y) such that ||y|| =1:

¢_A = ’yldl'z A dl‘3 + y2d$3 A d.??l + y3d.’L‘1 A d.’L‘Q;
¢g = y1dya Adys + yadys A dy1 + yzdy: A dys;
on = yl(dl'g Adys + dxs /\dyg) +y2(dl'3 Adyi + dys A da:l) + y3(dﬂ71 Adys + dys A dl’g)

Since these forms are invariant when we replace y by Ay, we deduce that

llgall = llogll = llonll =1,
ldpall = 1, |ldg|| = 0, ||don|| = 2.

3. Suppose now that the manifold is the unit sphere S®. In this case, the curvature form

is non zero, and satisfies: .
Qz =6; A 0]‘.

We deduce by a direct computation:

lleall = llogll = llonll =1,
ldpall = 1, |ldgg|| = 2, |don|| = 2.

3.2 The fundamental (n — 1)-form on 7 M associated to a couple of
horizontal vector fields

In this subsection, we introduce a (n — 1) form depending (bi)linearly on horizontal vector
fields. Let M be a n-dimensional Riemannian manifold. We introduce the (n—1) dimensional
subbundle H of the horizontal bundle H (M) orthogonal to FC:

H=FC*".
We shall build a tensor field of type (0, 2)
h:HxH— A" 1TM,

acting H and taking its values in the space of differential (n — 1)-forms on TTM. We give
two equivalent constructions. The first one uses local orthonormal frames, the second one
is more geometric.

RR n° 4868



10 Cohen-Steiner € Morvan

3.2.1 Two constructions of the tensor h
Let U be an open neighborhood of a point (m,&,,) € TM. Let (eq,...,e,) be a local or-

thonormal frame on U, such that e, = Hg_H Let 6, = 7*(ef),1 < i < n. For two fixed

vectors e;, # en, €j, # €n, we define the (n — 1)-form
hiyjo =0 A ABOA NG A AGAO;,.

When the two indices 4, jo vary, the previous formula defines a tensor of type (0,2),
independent of the orthonormal local frame (e, ...,e,): if X, Y € H, X = Y X'l Y =
S Yiel, then
h(X,Y) =Y X'Y’h;;.
J

Here is a global construction of the same tensor h: Let X,Y € H.

e Let 7x be the (n — 2)-form on H defined by

Tx (U1, ey Un—2) = det(FC, X, u1, ..., Un—2);

e Let Y* be the dual form to FY in V(M);

o define
h:HxH—A"'"TM,

by
h(X,Y)=7x AY".
Both constructions are equivalent. To simplify the notations, we put h(X,Y) = h%Y,

Definition 2 The form h*Y is called the fundamental form associated to the couple
(X,Y). Moreover, if C is a geometric subset of M, we denote by hé(’y the corresponding
curvature measure.

The following proposition gives a bound on the norm of h. The norm ||.||; used here in
'H is defined by || X||1 = sup(||X]|[,||VX]||), where V is the covariant derivative in TM.

Proposition 2 For all X,Y € H, one has:

e ||hXY|| < C(n,R)||X||||Y||, where C(n,R) is a real constant depending on the dimension
of M, and on the norm of its curvature tensor;

e ||[dhXY || < Ci(n, R)||X||1]|Y||1, where Ci(n, R) is a real constant depending on the dimen-
sion of M, on the norm of its curvature tensor.

INRIA
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Sketch of proof of Proposition 2: The map
h:HxH—-(X,)Y)— ATM),
defined by h(X,Y) = h*Y is bilinear and C*; the differential
d: (ATM),||[1) = (ATM),[II)

is linear and continuous. Using Maurer-Cartan equations, we see in the local expression of h
that the differential of terms of type d©; involves the curvature tensor of M. The conclusion
follows by simple computations.

3.2.2 Generalization

It must be noticed that this construction can be generalized as follows: instead of taking
two indices 49, o, it is possible to take an arbitrary number of indices 4, ..., [, different to
n and to consider the tensor h;, . ; obtained by taking off the 1-forms 6;, and adding the
corresponding ©;;. In such a way, one constructs new tensors

hy, i, =0 A AGLA L ABR AL AN, AL AB,.

For instance, if we take four indices, and if we plug the resulting tensor on the unit
normal bundle of a hypersurface, (see 5.1), one gets an expression involving its curvature
tensor, by Gauss equation. The computation is left to the reader.

4 Background on currents and normal cycles of geomet-
ric subsets

4.1 Rectifiable currents and integral currents

For this section, see [5], [13] for details. Let M™ be a C*° n-dimensional manifold. We
denote by D™ the E-vector space of C*° differential m-forms with compact support on M™.
The algebraic dual of D™ is the R-vector space D,, of currents on M™. We can endow D,,
with the weak topology:

T; - T < Tj(¢) > T(¢),Yp € D™

We shall also deal with the mass and the flat semi-norm on defined D,, as follows: for every
T in Dy,
M(T) = sup{T'(¢), ¢ € D™, [|¢]| < 1};

F(T) = sup{T(¢),¢ € D™, [|9]| < 1,||do|| < 1.}

RR n° 4868
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Qne can associate a m-current to any oriented rectifiable subset S of dimension m of M:
let S be the unit m-vector associated to almost every point = of S. For every ¢ € D™ (M),
we define a current (still denoted by S) by

<5,¢>=/ < 5,¢>ds,
S

and more generally,
<a$,¢>= a/ <8,¢>dS,Va € Z.
s

If the support of S is compact, we say that S is rectifiable. We denote by R,, the space of
rectifiable currents.

A current is said integral if it is rectifiable and if its boundary is rectifiable. The space
of integral m-currents is denoted by I,,. We mention the constancy theorem for integral
currents, ([5], 4.1.31):

Theorem 2 Let M be an oriented compact submanifold of EV, and T be an integral current
(of the same dimension), whose support lies in M, and such that the support of OT lies in
OM . Then, there exists an integer k such that T = kM.

4.2 Normal cycle associated to geometric compact subsets

It is well known that the integral of curvatures of a hypersurface M of a Riemannian mani-
fold, can be considered as the integral of curvature forms on the unit normal bundle of M,
(see the important work on [16], [17], [18], [19], [6], [6], [7], [8], [9], [10]). In this context, this
bundle appears as an integral (closed) current, called the normal cycle associated to M.
Given a singular subset, it is interesting to find an analogous to the unit normal bundle. The
good category in which this research can be done seems to be the category of subanalytic
sets, which contains in particular the class of smooth submanifolds, the class of subsets of
positive reach, and the class of polyhedra. When it exists, a characterization of the normal
cycle is due to [8]. Following [8], a compact subset of M is said to be geometric if it admits
a normal cycle.

5 The fundamental (n — 1)-form on normal cycles

5.1 The case of a smooth hypersurface

Let 2 : (M,g) — (M,§) be a codimension one isometric immersion of a Riemannian sub-
manifold M into a Riemannian manifold M. We will use the following notations: A de-
notes the second fundamental form of the immersion ¢, (that is the symmetric tensor with
values in the normal bundle T+ M), A denotes the Weingarten endomorphism. One has
VX, Y e TM,V¢ € T M,

INRIA
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VxY =VxY +h(X,Y),
Vxé=Vxé—AcX.
Let £ be a unit normal vector field on the hypersurface M. We denote by G the Gauss
map associated to the immersion of M:

G:M—TM
is defined by
G(m) = (m,&m).
Using the isomorphism jg,, x ¢, between He, (M) x Ve (M) and T,, M xT,,,M, we get:

(Jem X Sm) 0 AG(Xm) = (M, Xpn), (M, (VxE)m)),
that is

(jﬁm X gfm) o dG(XM) = ((vam)v (mv _Afm (X))a
since &, is a unit vector.

Proposition 3 Let M be an (oriented) hypersurface of an oriented n-dimensional manifold
M. Let b be its second fundamental form. Let dv be the volume form of M. Then VXY €
TM,

R(X,Y)dv = G*h(X", Y").

Proof of Proposition 3: Let eq,...,e, be a local frame of M such that €1,...,En_1 are
tangent to M and e, is normal to M. Let (e;,,ej,) be two vectors of this frame, different
to e,. One has
G*h(em , ;7'0 )(617 cany en_l) =
h(ezovefo)(dG(el) 5 dG(en-1)) =
jo dG(elo)) = h(eiov ejo)'
Remarks:
e A direct consequence of Proposition 3 is that, for X,Y € H, one has
G*(h®Y) = h(m, X, 7Y )dv.
An immediate global corollary can be state as follows: let U be a domain of M and
denote by ST+U the portion of the unit normal bundle over U. We have

Corollary 1 Forall X,Y € 'H, on has:

/ hX’Y:/ (m. X, 7. Y )dv.
STLU U

e Proposition 3 implies the symmetry of the tensor G*h(.”, ), since the second funda-
mental form A is symmetric on T'M; (this last property can be seen directly by using
the fact that the normal bundle of the hypersurface is Lagrangian in TT M).

RR n° 4868



14 Cohen-Steiner € Morvan

5.2 The case of a hypersurface of an Euclidean space

In this paragraph, we assume that the ambiant space is E™. The canonical parallelism of E™
and TE"™ allows to identify at each point m, T,,E" and E", and at each vector &, € T,,E",
He (E™), V¢, (E™) and E". If X, Y are parallel vector fields on E", X and Y can be
considered as horizontal vector fields, and one can evaluate their projection X', Y’ on H. If
M is a hypersurface of E", remark that the restriction of X', Y’ to ST+ M is nothing but
their (orthogonal) projection on TM. Consequently, Corollary 1 can be state as follows: let
U be a domain of M and denote by ST+U the portion of the unit normal bundle over U.
We have

/ hPTrar XoPrarY Z/ A(prry X, proyY)dv.
STLU U

Remark also that h(prp,, X, prrY) has a particular expression. Indeed, since Y is
constant, we have on M Vpr_ Y =0, (where V denotes the Levi-Civita connexion on E").
If we decompose the restriction of Y to M in its tangent and normal component,

Y =prryY @ ayé,

we have:
h(prry X, pryyY) = —proy X (ay).

/U G*(h%Y)

measures the average on U of the variation of the gradient of ay in the direction prp,,X.

In other words,

5.3 The case of a polyhedron
Let P be a polyhedron of E™, and let N(P) its normal cycle. We shall evaluate

< N(P),h’%Y >,

for any vector field X,Y € H. Since the cycle N(P) can be decomposed as a sum of
elementary currents, the support of which lies above each simplex of dimension 7,1 <4 <
n —1, we shall evaluate h*>Y above each simplex. We need he following notations: let o) be
any k-dimensional simplex of a polyhedron P. The support of N(P),, is the product of oy
by a portion of (n — k — 1)-sphere. In particular, the support of N(P),,_, is the product
on_2 X C, where C is a portion of circle. Let (ey,...,e,_2) be an orthonormal frame field
tangent to o, 2. Any point of o, 5 X C is a couple (m, e, 1), where m is a point of o, »
and e, _1 is a unit vector orthogonal to o,_o. With these notations, we have the following

Proposition 4 Let o, be a k-dimensional simpler of a polyhedron P, and X,Y be any
vector fields lying in H. Then,

INRIA
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ifk#n—2,<N(P),,_,,h"Y >=0,
and
< N(P)y,_,, hY >=/ < X,em-1), ><Y,em_1), >,

On—2xC

where e(,_1), denotes the horizontal lift of e(n_1)-

6 An approximation result

In this section, we shall compare the second fundamental form of a smooth hypersurface
of a Riemannian manifold M and the second fundamental form (as defined in the previous
paragraph) of a geometric compact subset close to it. The result we obtain can be considered
as a quantitative version of the approzimation theorem of J.Fu, [9]. Remark that we shall
not use the compacity theorem, which is a crucial tool in [9]. For simplicity, we restrict
ourselves to hypersurfaces. In the following, M is a smooth closed (oriented) hypersurface
of M bounding a compact subset K and C be a geometric compact subset of M whose
boundary B = AC is strongly close to M. Finally, B is any regular Borel subset of M
included in B.

6.1 Fine tubular neighborhood of a hypersurface

Let M be a closed (oriented embedded) hypersurface of Mn, bounding a compact subset
K. We denote by ¢ the outward unit normal vector field to K on M. One can define the
orthogonal projection of a (small) tubular neighborhood U of M onto M as follows: If p is
a point of U, one associates to p the only point m of M which realizes the distance between
m and M. We put m = pr(p). Remark that p and m = pr(p) lie on the (unique) geodesic
orthogonal to M, based at m and throwing p; (it is tangent to &,,).

For our purpose, this neighborhood will still be to large. We shall shrink it so that the
differential of the exponential map (restricted to M) will be large enough: let m be a point
of M, and 7™ be the geodesic whose base point is m, and which is tangent to &,,. Then the
exponential map is a diffeomorphism of a neighborhood of (m, 0) € T'M onto a neighborhood
of m € M, and the norm of its differential at (m,0) is 1. Then, for ¢ "small enough", the
norm of the differential of exp at (m,t£) is "large enough".

This allows us to give the following

Definition 3 A tubular neighborhood U, of M (of radius r) is said to be fine if
— the projection of U, onto M is well defined;

— the exponential map restricted to M satisfies

1

|| D exp,, rX|| > 3

for all m € M and all unit vector X,, tangent to M.
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A geometric compact subset C of such a tubular neighborhood U of M in M is said to be
strongly close to M if it lies in a nice tubular neighborhood of M, and if the orthogonal
projection pr defines an homeomorphism from G onto M.

We shall prove the following

Proposition 5 Let M be a closed (oriented embedded) hypersurface of M, and U, o fine
tubular neighborhood of radius r. Then, the orthogonal projection

pr:U—- M
is differentiable and satisfies
Il1D pryll < 2.

Proof of Proposition 5: Let 0 < p < r. The differentiability of pr is a classical result.
Denote by S, the smooth hypersurface of points at distance p to M. We have

prig, o exp p§ = Idy.

Since ||D exp,, p|| > %, we deduce that ||D prig, || < 3. Since pr is constant on the geodesic
orthogonal to M, we conclude that ||D pr || < 2.

6.2 The deviation of a geometric subset with respect to a hyper-
surface

Let M be a closed (oriented embedded) hypersurface of Mn, bounding a compact subset
K, and C be a geometric compact subset of M™ whose boundary B is strongly close to M.
The main invariant involved in the study of the couple M and C is the angular deviation.
We give now a precise definition. We need some notations: let p be any point of B, and ?
be the geodesic whose end points are p and pr(p), (this geodesic is tangent to the normal
vector field £ of M at pr(p)). If (p,np) is a point of spt N(C), we denote by n the vector
field parallel along v? and whose initial value is n,.

Definition 4 Let p be any point of B. The angular deviation between p and pr(p) is
the mazimal angle o, between npr,) and Eprep), when n, describes sptN(C),. If B is
any Borel subset of B, the angular deviation between B and pr(B) is the real number

QB = SUp,cp Qp.

7 The 3-dimensional case

In this paragraph, we shall simplify the previous construction when the ambiant space is E.
The identification of TE® with E? x E2, the existence of the cross product, and the existence
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of a global parallelism implies simplifications.

For each couple of 3-vectors in E*, we define two 2-differential forms on TE® ~ E* x E?
from which we shall recover the fundamental form studied in the previous sections.

Definition 5 Let X, Y two (constant) vectors in E. Given a point (p,n) € E* x E3, we
set y

~XY _

Dy =X A (nxY).

Note that these 2-differential forms are bilinear in X and Y but they are not symmetric
in general. The two following theorem relate these two forms with the fundamental forms,
and compute them explicitly on a smooth surface and on a polyhedron.

Let M is a smooth closed (oriented) surface of E* bounding a compact subset K and P

be a polyhedron of E* with boundary B. Let B be any regular Borel subset of E® included
in B.

Theorem 3 Let M be a closed (oriented embedded) hypersurface of M, bounding a compact
subset K, and C be a geometric compact subset of M™ whose boundary is a triangulation P.
Let B be a Borel subset of M, (resp. P. Then,

over M,
<N 5, >= [ gy X prpaY )
B

and over P,
< N(C)p,w™Y >=

J%i4<xmm§><xem§>x
l(lenB)
eedge of P

where e N B denotes the 3-vector with the same direction as the edge e, the same length as
eNB.

To evaluate @ in the smooth case, we need to introduce the tensor h on a smooth surface,
which is deduced from h by inverting the eigenvalues of h: if €1, es are the two eigenvectors
of h with eigenvalues A\;, A2 at a point m of M, then e, ey are the two eigenvectors of h
with eigenvalues Ao, \; at the same point m. In other words, A(.,.) = h(j.,j.), where j is
the almost complex structure of M compatible with the metric.

Theorem 4 One has:

< N([()\Baa)X7Y >= / ﬁ(prTMXa prTMY)dva
B
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Moreover,
< NB)jg,w* >=

{ B — -
Y B 50) —sinBe)) < e, X >< et Y > +(Be) 4 5in B(e)) < €7, X >< e,V ]
eedge of P
where et (resp. e~ ) denote the normalized sum (resp. difference) of the unit normal vector
to triangles incident on e.

The proof of these two theorems is left to the reader.

8 An approximation theorem

Let M be a closed (oriented embedded) hypersurface of Mn, bounding a compact subset K,
and C be a geometric compact subset of M ™ whose boundary B is strongly close to M. The
purpose of this section is to prove the following

Theorem 5
f(N(C)|TBJ\~l - N(K)|Tpr(13)1\7[) S

2"~  max(6p, ap) max(L, ||hp||" ") (M(N(C) 1y iy + M(ON(C) 1, 57))-
The rest of this section is devoted to the proof of Theorem 5.
e Let K be the compact domain whose boundary is M. Consider the map f defined by

the following diagram:

TU L spt N(K)
Tl TG

v B oy

For further use, we need the following

Lemma 1
[[Df| < 2sup(L,[|A]])-

Proof of Lemma 1: One has Df = DG o Dpr o Dr. On the other hand,
IDG|| < sup(L, [|h]]), || Dpr|| < 2,[|Dx|| < 1,

from which we deduce Lemma 1.

Let B be any Borel subset of TM. To simplify the notations, we define the (n — 1)-
current D by D = N(C) g, ;- Define the (n — 1)-current E by E = N(K)|Tpr(3)z\71
and the n-current:

C = hy(D x [0,1]).
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Lemma 2 One has:
fi(D) = E.

Proof of Lemma 2:
We apply the constancy theorem, (2): the support of the image of D (resp. dD) by
f is included in the support of E, (resp. OF). Consequently, there exists an integer ¢
such that f3(D) = cE. To prove that ¢ = 1, we evaluate f3(D) on the form wy. One
has

vol(pr(B)) =< fy(D),wo >=< E,wp >,

since f is one-one from B to pr(B).

e Now, we define a homotopy g between f and the identity: to every point p in U, we
can associate the (unique) geodesic

AP 1 [0,1] — M™

from p to m = pr,,(p) satisfying v?(0) = p,v?(1) = m. We shall also use the geodesic
% from m to p, (tangent at p to the normal vector field £), but with the reverse
orientation: 4™(0) = m,4™(1) = p.

Let 7y», (resp. 75m) be the parallel transport with respect to 47, (resp. 3™). Let X
be the vector field over « obtained by transporting X, by parallelism:

Xor(e) = Tyr(2) (Xp)-

In the same way, let 5m(,) be the vector field over 4™ obtained by transporting the
normal vector &, by parallelism:

Eim () = Ty (u) (€m)-
We define the homotopy

g:TU x [0,1] — sptN(K) C TM™,
by
g(anza t) = (’yz(t)a (1 - t)X'yT(t) + tfﬁpr(z)(l_t))'
Let B be any Borel subset of B. One defines
— the (n — 1)-current D by D = N(C)lTprM;

— the (n —1)-current E by E = N(K), 1,1 p)<E")5
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— the n-current:
C = g4([0,1] x D).

The homotopy formula for currents (cf. [5], 4.1.9.), gives immediately
0C = fy(D) — D — ¢4([0,1] x dD).
Theorem 6

F(D - E) < (M(D) — M(0D)) sup (II—II) Sup (DA DA 1),
spt D t D

Proof of Theorem 6:

To evaluate the flat norm of D — E, we decompose D — E in a sum of a (n — 1)-current
and the boundary of a n current, by writing:

D — E =0C — g([0,1] x aD). (4)

By definition of the flat norm,

F(D - E) < M(C)+ M(hy([0,1] x D)). (5)

To evaluate M (C), we use the fact that D is representable by integration. In a local
frame parallel along a geodesic «y from z to pr(z), one can express the homotopy g by

9(@. Xe,t) = (1= o + tpr(e), (1 = )X + tépr(e) = (L= O + ¢)(2, Xo).

By a computation similar to ([4] 4.1.9.), we deduce that:

M(C) = M(gy(D x [0,1])) < M(D) sup (|| II) Sup (DI 1 zd]™=), - (6)

spt D
and p
g n— n—
M(hy(0D x [0,1])) < M(9D) sup |||l sup (||Df]] 2 \12d|[*™?). (7)
spt D spt D

Using Lemma 1, we deduce Theorem 6. Theorem 1 is an obvious consequence of Theorem
6 and Propositions 1 and 2.
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