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Pi-calcul et LCC, une odyssée de ’espace

Résumé : Nous présentons une traduction du pi-calcul asynchrone vers les langages
linéaires concurrents avec contraintes (LCC), puis utilisons cette traduction et les avancées
récentes de la sémantique logique de LCC pour obtenir une représentation de 'opérateur de
restriction en Logique Linéaire Intuitionniste. Ceci nous permet d’exprimer comme théorie
en Logique Linéaire, une notion d’espace similaire & celle récemment introduite par Gabbay
et Pitts pour la logique modale. Une autre conséquence est une meilleure compréhension des
relations entre pi-calcul et langages CC, qui ont été soumis & comparaison depuis longtemps.

Mots-clés : Pi-calcul, programmation concurrente avec contraintes , logique linéaire
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1 Introduction

The 7-calculus has become, since its introduction [23], a standard paradigm for specifying
concurrent processes. The asynchronous version introduced by Boudol [5], though it has
been proved less expressive [24], allows a more realistic behavior for distributed systems and
has therefore been used as basis for those, for instance in the join-calculus [12].

The tools used to analyze these languages, remain however centered around the notion
of (bi-)simulation, which, being very operational, is not always satisfactory in terms of
expressing declaratively certain high level properties about concurrent processes. The main
purpose of this article is to provide a logical semantics to the asynchronous 7-calculus , and
thus the possibility to use new tools to reason about processes.

There is a long tradition of comparison between the Concurrent Constraint Program-
ming family of languages [27] and different variants of the m-calculus : CC was from the
beginning considered as a process calculus, however the fact that the constraint store was
always growing monotonically made very inconvenient the encoding of the message pass-
ing primitives of the other well known process calculi [19]. The development, in the last
decade, of the Linear Concurrent Constraint paradigm (LCC) that generalizes CC simply
by allowing constraint systems based on Linear Logic [14] instead of classical logic, greatly
extends the expressive power of CC, as non monotonic evolutions of the store are possible
through the consumption of constraints by ask agents [28, 4, 11]. This generalization allows,
as we shall see, for a much more natural encoding of process calculi like for instance the
m-calculus , as was already suggested more than ten years ago in [28].

There have also been lots of research about the LL based logic programming models of
concurrency (for instance [18]), and there is a long history relating LL and the CC family as
will be briefly recalled in section 2.2; finally there is one main work (though it was labelled
“preliminary results”) relating directly the reduction in 7-calculus and theories of LL: that
of Miller in [21].

After some preliminary section for introducing the notations used throughout the article,
the paper is thus articulated around two encodings.

First, we give in section 3 a simple, compositional, sound and complete encoding of the
asynchronous 7-calculus into LCC (without resorting to higher order). The impossibility
of a reverse embedding is also discussed. This first step already gives rise to a new way of
reasoning about w-calculus processes, namely translating them into LCC and using there
the tools developed for that framework [10, 11, 29].

We then build on this natural encoding to take into account the latest version of the
logical semantics of LCC [30]: one of the interesting points about this semantics, based
on the Intuitionistic Linear Logic, is that it manages to capture the restriction operator of
LCC through a simple theory of ILL. This operator, which has always been a problem from
the logics side [8], was formerly identified with the existential quantifier of the underlying
logic, with not completely satisfactory results (detailed in section 4.1). It has recently been
proposed to add new operators to capture more precisely the meaning of the restriction
operator, the most advanced proposal using binders [13], and allowing a precise capture of
the spatial notion of restriction in process calculi [6]. We propose here to use the same
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4 Sylvain Soliman

construction used for the logical semantics of LCC to give a characterization of the spatial
nature of the m-calculus by a theory of ILL, thanks to the encoding mentioned above. This
last point is to be related with the work of Miller [21] which already succeeded in representing
the m-calculus as a theory in LL, however we manage to go one step further than that work
as we encode even the restriction operator in the theory, in contrast with using sequents
equipped with a signature.

This Linear Logic theory of the asynchronous m-calculus gives us, in turn, new tools
for reasoning about the processes. Section 5 starts to describe how these tools can be
put to work; the article is then concluded by a discussion about the strong links between
m-calculus and LCC, space and linear logic, and a few words concerning the future work and
perspectives in these domains.

2 Preliminaries

2.1 The asynchronous m-calculus

We briefly recall the syntax and semantics of the asynchronous 7-calculus , as given in [5]:
Let NV be an infinite set of names, ranged over by z,y, z, . . ., the context-free syntax of
processes is the following:

Pu= zz
z(y)P
P|P
P
(vz)P

The intuitive meaning of these constructs being that Tz outputs the message z on the
channel z, z(y)P receives a message on channel x and then executes the process P where y
represents the received message, P | P runs the two processes in parallel, | P replicates the
process P and (vx)P restricts the scope of the name = in P.

We shall see in the next sections that the last two of these constructors, namely ! and
v are the ones that are the most difficult to characterize logically. However the restriction
operator v is crucial to the expressivity of the w-calculus , especially as the sharing of names
can be seen as a structuring of the processes in spatial regions, the mobility of names allowing
the jump from CCS to w-calculus and thus for instance an easy encoding of the \-calculus;
it should therefore not be neglected.

The input and restriction constructors z(y)P and (vy)P both bind the name y in P. As
usual, substituting a name y for a name z in a process P, yielding P[y/z]|, may require to
rename some bound names to avoid unduly binding y. We shall denote by fn(P) the set of
free names of the process P, defined as usual.

The operational semantics is given in the style of the CHAM [3], with =, the structural
congruence, defined as the smallest congruence on processes, satisfying the rules of table 1.

INRIA
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(la) PlQ=QIP

(Ib) PIQIR)=(P|Q)IR

(2a) (v2)P|Q=w2)(P[Q) (z¢ fn(Q))
(2b)  (va)P = (vy)Ply/z] (y & fn(P))
(2¢)  (vx)(vy)P = (vy)(vx)P

(2d) (vz)P=P (z & fn(P))
(3) 'P=P]|IP

Table 1: Structural Congruence

The transition relation — is the least binary relation satisfying the rules of table 2.

(1) 2(y)P | 2z — Plz/y]
(2) P—P = PIQ—P'|Q
3 P—P=> (vx)P — (vx)P’
(4) P=P.P—QQ=Q=> P —Q

Table 2: Transition Relation

2.2 Preliminaries on LCC languages

There are several reasons to consider constraint systems based on linear logic instead of
classical logic in the study of CC languages. First, as shown in [28, 10, 11] linear logic
provides a faithful logical semantics to CC agents, it is therefore natural to adopt the same
logic for agents and for constraints. Second, thanks to the standard translation of classical
logic into linear logic, linear constraint systems are a generalization of classical constraint
systems, that is any classical constraint system can be presented as a linear constraint
system. Third, in order to escape from the fact that constraints can only be added to the
store along a computation in CC languages, several variants of CC where the constraints
can be consumed by ask agents and thus removed from the store, have been introduced
by Saraswat and Lincoln [28, 31] or Best, de Boer and Palamidessi [4]: these variants
enhance significantly the expressive power of CC and the constraints are naturally modeled
as formulae of linear logic. In this section we present the variant LCC used in [10, 11].

2.2.1 Syntax

In this paper, a set of variables is denoted by X, Y,..., the set of free variables occurring in
a formula A is denoted by fv(A), a sequence of variables is denoted by #, A[t/#] denotes
the formula A in which the free occurrences of variables Z have been replaced by terms i
(with the usual renaming of bound variables, avoiding variable clashes).

RR n° 4855



6 Sylvain Soliman

For a set S, S* denotes the set of finite sequences of elements in S. For a transition
relation =, =* denotes the transitive and reflexive closure of =.

The essential difference between LCC and CC is that constraints are formulae of linear
logic and that communication (the ask rule) consumes information.

Definition 2.1 (Linear constraint system) A linear constraint system is a pair (C,F¢),
where:

e C is a set of formulae (the linear constraints) built from a set V of variables, a set &
of function and relation symbols, with logical operators: the multiplicative conjunction
®, its neutral element 1, and the existential quantifier 3;

o ¢ is a subset of C x C which defines the non-logical axioms of the constraint system.

o ¢ is the least subset of C* x C containing k¢ and closed by the following rules of
intuitionistic linear logic (see appendiz A for the complete sequent calculus):

I'ekd AbFc C1 I'ke
T.AFd TiFe
T'tep Abcey Tye1,e0F ¢
I'NAFec ®co e ®e ke
T'Fcft/z] Tekd
TF3zc Farerq ™ & /00ad)

ckec

The syntax of LCC agents is given in table 3, where || stands for parallel composition,
+ for non-deterministic choice, 3 for variable hiding and — for blocking ask. The atomic
agents p(Z) ... are called process calls or procedure calls, we assume that the arguments in
the sequence ¥ are all distinct variables. The ask agent in LCC is written with a universal
quantifier in order to make explicit the variables which are bound in the guard.

Recursion is obtained by declarations. We make the usual hypothesis that in a declaration
p(Z) = A, all the free variables occurring in A occur in Z. The set of declarations of an LCC
program, denoted by D, is the closure by variable renaming of a set of declarations given
for distinct procedure names p. A program D.A is a set of declarations D together with an
initial agent A.

2.2.2 Operational semantics

The operational semantics is defined on configurations where the store is distinguished from
agents. A configuration is a triple (X;c; A), where c is a constraint called the store, A is an
agent or ) if empty, and X is a set of variables, called the hidden variables of ¢ and A. The
operational semantics is defined in the style of the CHAM [3] by a transition system which
does not take into account specific evaluation strategies. The structural congruence = is the
least congruence satisfying the rules of table 3. For convenience here, and unlike in [11],
the logical equivalence of constraints is not built-in in the congruence. We write I', A, ... for

INRIA
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Agents Ax=p(@) | tell(c) | (A]| A) | A+ A | TzA | VE(c — A)
Declarations Du=e|p@=A|D,D
Program P:=DA
. z & fu(4)
a-Conversion A= 32412/
Parallel comp. A||B=A,B

(X;eT) = (X551 — (Y d; A = (YV;d; A)

Procedure calls

Local choice

Equivalence (X:cT) — (V. d A)
Tell (X;¢tell(d),T) — (X;ecd;T)
Ask chedlt/fl®e _

(X; & vﬁ(d - A)7 F) - (X7 €] A[t/m7 F)
Hiding y ¢ XU foel)

(X563AT) — (X U{y};6AT)

(p(y) =A) e D
(X56p(9),I) — (X5 A T)

(X;6A+B,T) — (X;¢, A1)
(X;¢A+ B,T) — (X;¢B,T)

Table 3: LCC syntax and operational semantics.

multisets of agents in configurations. Congruence is extended to multisets of agents in the
obvious way: ' =T1"iff ' = {Ay,..., A}, IV ={4],..., A} and Vi = 1,...,n, A; = A,.
Two configurations are said congruent, (X;c;T) = (X';¢/;T), when the sets X and X’
are equal, the constraints ¢ and ¢’ are C-equivalent, and the multisets of agents I" and T
are congruent. The transition relation — is the least transitive relation on configurations

satisfying the rules of table 3.
We will call store of a configuration (X;¢;T") the constraint 3Xc.

RR n° 4855




8 Sylvain Soliman

3 Encoding 7 into LCC

In this section we give an encoding of the asynchronous 7-calculus into LCC, following the
ideas of [28], however we do not need here to resort to higher order. Indeed there is a one to
one correspondence between rm-calculus and LCC operators that lead to a very simple and
natural translation.

One should note that the usual choice is to use a local operator for the non-determinism in
LCC, this could allow an encoding of a corresponding operator for the m-calculus , however,
even the guarded version of the choice operator of LCC, is only input-guarded and is thus not
able to replicate the global choice of the (synchronous) 7-calculus , this is why only the stan-
dard (deterministic) asynchronous m-calculus
will be treated here!. One might also want to use a non-standard version of LCC, with
synchronous tell and ask, however that kind of decision, besides being unnatural (see most
papers about non-monotonic versions of CC [28, 31, 4, 11]) would lead to a failure similar
to that encountered in [19] when comparing CC with the 7-calculus .

The encoding of the messages is the one suggested in [28], obtained by adding all messages
to the store and retrieving them by matching the channel name.

The translation is given in table 4, for the Herbrand constraint system and with decla-
rations D.

[Zz] = tell(msg(z,z))
[z(y)P] = Vy(msg(z,y) — [P])
P1Q] — (P]]Q)
[[P] = bangP
with bangP = [P] || bangP in D
[(va)P] = Fz([P])

Table 4: Translation of the asynchronous 7-calculus into LCC

This compositional translation is both sound and complete with respect to the two
transition systems:

Proposition 3.1 (Soundness) Let P and Q be asynchronous w-calculus processes, if P —
Q then there exist X, T and Q' such that: (0;1;[P]) —* (X;1;T),

with Q' = Q using only the rule 'R =!R | R, and (0;1;[Q']) —* (X;1;T) using only
hiding and equivalence rules.

Proof.

We reason by case on the reduction P — ). Rules 1 and 2 of table 2 have immediate
counterparts in LCC, noting that some of the possible Tell rules may have to be applied
before an Ask, even if those reductions correspond to nothing in 7-calculus .

1See also section 4.1 for a reason why local choice is not very interesting in the asynchronous m-calculus

INRIA



Pi-calculus and LCC, a Space Odyssey 9

For rule 3, the Hiding rule needs to be applied, which is the reason we do net get exactly
(05 1:[Q)-

For rule 4, we can simply remark that most rules of table 2 correspond to the definition
of = in LCC, except rule 3, handled by the Procedure calls rule, when it is in the right
direction, or leading to the difference between @ and Q' otherwise. O

Proposition 3.2 (Completeness) Let P and Q be asynchronous m-calculus processes, if
0;1;[P]) —* (X;1;T), and (0;1;[Q]) —* (X;1;T) using only hiding rules, then P —*
Q.

Proof.

Reasoning by induction on the length of the LCC reduction, and then by case on the
last step, we get an even more direct correspondence once we notice that as we have taken
Herbrand constraint system, it is now straightforward to check that only a message sent on
channel z (i.e. msg(x,z)) can entail the guard Vy(msg(xz,y) — A) and thus unblock the
ask; that if a tell rule is fired without the corresponding ask, we do not get (X;1;I") (the
store cannot be empty); that procedure calls will be mimicked by replications; and thus
that the only rules amounting to a difference will be hiding rules. g

It is worth noticing that there have been attempts at a reverse encoding, more specifically,
at embedding CC into some variants of the w-calculus , see for instance [32] for a fusion-
calculus encoding of name equations and inequations. However such a reverse encoding, can
only capture a small part of the CC paradigm by restricting the constraint domain (basically
to Herbrand), which is the main difference between CC and some languages like Linda.

Moreover, the ask operation of LCC does allow some very powerful consumption of
resources, as it permits an atomic consumption of two (or more) constraints, leading for
instance to trivial solutions of problems such as the dining philosophers as it is possible
to grab two forks atomically. These two points are the main arguments forbidding such a
reverse encoding.

4 A theory for space in Linear Logic

The recent results concerning the logical semantics of LCC (cf. [30] for details and proofs)
suggest that the existential quantifier of LL is sufficient to properly encode the restriction
operator of LCC, and thus thanks to the above encoding, that of the w-calculus .

Along the lines of what is done in [21] for the synchronous 7-calculus , we will thus define
a translation of the asynchronous w-calculus processes into LL formulae. Our goal being to
identify the reflexive and transitive closure of — with the entailment relation .

4.1 Technical issues of the encoding

The idea of encoding v by 3 is not new, however it usually results in sound but not complete
encodings. The problem lies in the right rule for 3 (but both left and right rules are necessary
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10 Sylvain Soliman

for the soundness as shown later in lemma 4.1):

I+ Alt/x]
T'F3zA

If we want to interpret this as m-calculus processes, we get that if P —* Q[t/z] then
P —* (vz)Q, which is obviously false, for instance with zz +—* (vy)zy.

However, we do not want to change the logics by adding a second part to the sequents
to hold a signature as was done in [21] (to take into account hidden variables). Using some
new connectives would also be a solution to characterize the restriction operator; a good
candidate would then be the freshness operator of [13, 25], as used in [6], but as we shall see
the usual operators of IMLL are sufficient and allow us to be able to keep using the tools of
LL to reason about the resulting semantics (see for instance [29] for some use of the phase
semantics of LL to check the correctness of protocols expressed in LCC) without falling into
the usual trap of the 3 encoding explained above.

We cannot use here a translation of z(y)P using V and — because of completeness
reasons similar to those explained for the semantics of LCC in [11]. Basically the right
implication rule leads to false receivers, for instance we have A, msg(z,y) F A ® msg(z,y)
and thus A+ msg(x,y) — msg(z,y) ® A which of course does not correspond to anything
in m-calculus . For this reason we stick with a second order based translation even if this
problem could probably be avoided with non-commutative logic as in [30].

The second order is also necessary for ! as it is well known that the ! of LL cannot
replicate that of m-calculus .

Finally, it would be possible in LL also to encode a local version of the choice operator,
which is what was done in [21], but we do not feel that it would be worth explaining in more
details, and will therefore stick with the asynchronous w-calculus ; especially since the local
choice can be embedded in the (deterministic) asynchronous 7-calculus like that:

P+Q = (va)(vy) (Ty [ 2(2).P | 2(2).Q)

4.2 The theory

The processes of the asynchronous w-calculus are then translated following the inductive
definition of table 5 into formulae built with the three atoms rcv, msg and loc of respective
arity 3 (third argument is second order), 2 and 1.

[zz] = msg(x,z)
[zw)P] = rev(x,y,[PT)
[Plel = [Plo]]

7 = Pl
[(vz)P] = ZFz(loc(x) @ [P])

Table 5: Linear Logic Semantics

INRIA



Pi-calculus and LCC, a Space Odyssey 11

Where rcv and ! are defined using second order as in [21] (we use the same ! notation
here to be consistent, however it should not be confused with the “of course” operator of LL
noted in the same way in appendix A):

rev(z,y, P) @ msg(x, z) b Plz/y]

|PH-P®!P

We also impose the following non-logical axiom:

Jz(loc(x))--1.

These are all the axioms forming our simple LL theory, and with the above encoding,
they are enough to encode precisely the asynchronous m-calculus as will be shown in the
following sections.

4.3 Soundness

We will first focus on soundness results, which although often quite trivial, are the most
important when needing to use (practically) the semantics, for instance for proving safety
properties (see for instance [10] for a discussion about this issue).

Lemma 4.1 (Equivalence) Let P and Q be some asynchronous m-calculus processes, if
P = Q then [P]H-[Q].

Proof.

We reason by case on the rules of table 1, our translation being based on that of Miller,
we will concentrate on the differences and thus detail only the rules 2a to 2d.

Rule 2a leads us to prove that 3z (loc(z) ® R) @ SH-3x(loc(z) ® R® S) when z & fn(S),
the F part is obtained by a left 3 rule, followed by a right 3 rule (with ¢ chosen to be z) and
axioms. The - part follows exactly the same proof structure.

Rule 2b leads us to prove that Jz(loc(z) ® R)-"+3y(loc(y) ® R[y/x]) when y &€ fn(R).
The proof structure is exactly the same as above, but t is now chosen to be x for - and y
for .

Rule 2c is done in a similar manner, using the same technique as 3c to get = and y
different, and then the same technique as 3a to get the loc(x) inside Jy and reciprocally.

Rule 2d, is a direct consequence of left 3 rule and of the non-logical axiom Jz(loc(x))-H1.

]

Theorem 4.2 (Soundness) Let P and Q be some asynchronous w-calculus processes, if
P —* Q then [P] F [Q].

Proof.

By induction on the transition P —* Q.

The base case P —* P is obvious (axiom rule).

For the induction, we proceed by case on the last transition P —* R — (@), noting
that by induction hypothesis we already have [P] + [R] and that using the cut rule we only
need to prove that R — @ implies [R] + [Q]-

RR n° 4855



12 Sylvain Soliman

We prove that by induction on the size of the proof (for =) that R — @Q; the basic
case corresponds to rule 1 of table 2, and the induction is obtained by case on R — @ with
rules 2 to 4. We detail here the rules 1 and 4, the other ones being trivial applications of
the induction hypothesis.

The case of rule 1 is easily obtained from the application of the non-logical axiom for
rcv.

The case of rule 4 is the following: we need to prove that [R] F [(Q] knowing that
R =R\ R — @ and Q' = Q. From lemma 4.1 we get [R]4-[R'] and the same for @,
and by induction hypothesis we have [R'] F [Q'], we then just need to apply twice the cut
rule to get the expected result.

O

We will now tackle the more complex completeness results, giving us a perfect match
between the transition relation and its logical counterpart.

4.4 Completeness

We will start by some preliminary remarks on the structure of the proofs obtained by
translation of w-calculus processes.

Lemma 4.3 (Rule grouping) If [P]  [Q] is provable, then there is a proof of that se-
quent with oll left 3 rules grouped together with the corresponding left @ rule, and the same
goes for the right rules.

Proof.
Let us start with the case of right 3:

LT Floc(z) @ A
D, T+ Jz(loc(x) @ A)

All the rules above that one that are not right ® rules only act on the left part of the
sequent; as there is no condition on left rules, they could have been applied before the right
3, there is thus another proof of the same sequent with the right ® just above the right 3
rule.

For the left rule:

Tloc(z) @ AT
T, 3z(loc(z) @ A) F '

The same kind of reasoning applies: rules on the right can be swapped without any
trouble; on the left more rules can be applied on the lower sequent than on the upper one
(less free variables), and thus rules that do not touch the ® can be swapped freely too.

All this proof can also be seen as a simple consequence of a generalized version of focusing
proofs [1] (3 and ® have the same synchrony), for IMLL with some non-logical axioms. [

Theorem 4.4 (Completeness) Let P and Q) be some asynchronous m-calculus processes,
if [P] F [Q] then P —* Q.

INRIA



Pi-calculus and LCC, a Space Odyssey 13

Proof.

We reason by induction on the proof of [P] - [Q]. More precisely, we can notice that
in the proof, the right side of the sequent will always be of the form [R] (using lemma 4.3
for the right 3 rule), and that on the left we can always replace commas by ® and put an
Jz around if there is a loc(z) to get the translation of a process, the induction thus makes
sense. Note that we have to allow cuts on non-logical axioms in the proofs, but that this
does not invalidate the above reasoning.

For the base case, if the last rule is an axiom then we get the result by reflexivity of
—*,

The case of the non-logical axioms is also immediate as they correspond directly with
their m-calculus counterpart.

The case of the cut rule is directly derived from the transitivity of —*.

If the proof ends with a right ® rule (thanks to lemma 4.3, the case of the ® inside an
3 can be treated separately), we have [P] = [PA] @ [P2] thus P = P, | P, and the same for
Q@ with Q1 and Q2. By induction hypothesis we have P, —* Q1 and P, —* ) thus by
applying repeatedly rules 2 of table 2 and 1la of table 1 we get Py | P, —* Q1 | Q2, qed.

The case of the left ® is immediate.

If the proof ends with a right 3 rule, preceded immediately by a right ® rule, thanks to
lemma 4.3, we get:

I'Floc(z) AF[Q4]

T, A+ Jz(loc(z) @ [Q1])

We get that I' necessarily equals loc(x) as there is no logical axiom concerning loc(x)
and no way to add an 3 in front of it. We can now use the induction hypothesis on A and
Q1 and conclude by noticing that from applying repeatedly rule 4 of table 2 if R —* R’
then (vx)R —* (vx)R', qed.

The case of the left 3 is immediate.

5 Using a Linear Logic theory for 7

Providing a theory for the asynchronous w-calculus in Linear Logic allows us to use all the
tools of LL to reason about m-calculus processes. In this section we will give examples of
how that can help understanding better the behavior of some m-calculus agents.

5.1 Proof search

The first basic use of Logics to reason about programs is proof search. In our context, one
can note that the completeness theorem 4.4 can allow us to reason about liveness properties
of m-calculus processes ([P] - [@Q] implies P —* @), and the soundness theorem 4.2 about
safety properties ([P] I/ [Q] implies P +* Q).

More precisely, making a lazy use of the non-logical axioms forming the theory, a proof
search in first order IMLL can become reasonable (recall that, with no theory, first order

RR n° 4855



14 Sylvain Soliman

IMLL is in PSPACE [20]). There are already lots of Linear Logic theorem provers available,
especially since LL has become quite popular as a specification language [22, 2, 16, 15], and
they can be used for a proof search that will use both forward reasoning for the left side of
the sequent (copying the m-calculus reductions) but also backward reasoning for the right
part (conclusion guided search).

5.2 Phase semantics

The phase semantics is the natural provability semantics of Linear Logic [14]. It has been
recently used with the specific aim of proving safety properties of LCC agents [10, 11, 29|
and is currently studied as a paradigm for infinite state systems model-checking.

Using the soundness theorem 4.2, it is possible to use the same technique as that used
for LCC agents, to prove safety properties by searching for phase counter-models, which
amounts to some kind of abstract interpretation. It is also of course possible to use the
encoding given in section 3 and to use then the LCC tools mentioned above.

5.3 Program equivalence

The results given in the previous section already give some program equivalence based on
LL equivalence, however, one can, along the lines of what Miller already did in [21], notice
that we can enrich the syntax of the agents to use the power of LL and thus obtain some
finer equivalences.

If one defines:

(P) ={Q | Q is a co-agent s.t. [P]+ Q}

Allowing co-agents to be more than just translation of agents ([R]) but also include the
T constant, one can allow the erasing of some part of a process; the & operator realizes
two checks at the same time, while the @ only needs one test or another, ...

6 Conclusion and perspectives

One objective of this paper was to understand in more details the old problem of the 3
encoding of the restriction operator, and to find some way around it, if possible without
resorting to all the current work around binders ([13, 25, 6]) in order to be able to use the
powerful tools of LL.

Combining a formal encoding of the m-calculus into LCC and the author’s results about
the semantics of the restriction operator of LCC into ILL made possible to discover the two
main results of this paper:

First, that the asynchronous m-calculus is easily encoded in a sound and complete way
in the standard LCC, the reverse encoding being impossible.

Second, that the first order quantifier 3, though it does not give directly the restriction
operator, provides the means to get it through a simple theory based on one main atom of
arity one: loc.

INRIA



Pi-calculus and LCC, a Space Odyssey 15

From these results it is now possible to understand better the very peculiar nature of
the first order quantifiers in LL: they bind variables, but also tend to allow some sort
of weakening (A(t) - JzA(z)). If we take this unwanted property away, we are able to
reconstruct a structure of nested 3 inside the formulae, corresponding to the sharing of
names in 7m-calculus and thus to some notion of space.

It is now very interesting to continue in that way in order to provide a framework to
compare all the current attempts at providing locations inside the logic, like in the modal
LL of [17] or the spatial logic of [6].

The direct use of the embedding outlined in section 5 is currently under study, especially
the use of the phase semantics. More or less, as expected, the complexity of the counter
models to exhibit seems to depend a lot on the use of the restriction operator. This new
topic needs much more work and could lead to some other view at the restriction.

Another direction of work is a better understanding of the links between the binders of
Gabbay and Pitts and the simple existential quantifier, which was until now left aside for
the reasons explained before. The first distinction is that of the sequent calculus, which
comes for free in the case of the 3, compared to the completeness, which on the other hand
comes for free for the binders. This seems to show a difference related to the use one makes
of the logics: for proof search or for describing objects, but a much deeper comparison is
required.

Finally, the very active field of the modeling of bio-chemical networks by process calculi
(see for instance [26, 9, 7]) also seems to open a whole range of applications of either the
encoding into LCC, using then the already existing tools for LCC, or of a direct LL semantics
with the creation of specialized tools for checking properties quite different than the usual
simulation-based analyses of the m-calculus processes.
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A Intuitionistic Linear Logic

We give here a brief description of the intuitionistic version of Linear Logic (ILL) with the
full sequent calculus (see [14] for more details).

Definition A.1 (Formulae) The intuitionistic formulae are built from atoms p, q, ... with
the multiplicative connectives ® (tensor) and —o (linear implication), the additive connec-
tives & (with) and ® (plus) the exponential connective | (bang), and the universal ¥V and
existential 3 quantifiers.

Definition A.2 (Sequents) The intuitionistic sequents are of the form T' - A, where A is
a formula and I' is a multi-set of formulae.

The sequent calculus is given by the following rules, where the basic idea is that the
disappearance of the weakening rule makes the conjunction ® count the occurrences of for-
mulae, and the implication —o consume its premise:

Axiom - Cut
'HA AAFB

ArFA ATHB
Constants _
Tira F1 T'HT
'k
1k TEL I or A
Multiplicatives
I''A,B+-C 'rA ABEFC
INA® BEC AT,A—-oBFC
'-rA ARB I'AFB
I''AFA®B I'+HA—B
Additives
T'HA '=B
T'HFA® B '-Ae B
I'N'AFC T,BFC I''AFC
MA@ BEC IN'A&BFC
B-C '-A I'+B
A& BFC I'FA&B
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Bang
I'A-B ITHA
I'''A+B T"HA
[,IAAF B I'+B
T,)AF B T,)AF B
Quantifiers
I, Alt/z] - B 'A
T.VzAF B TFvza © & /00
I, A+ B T+ Alt/a]
T 3arp L&/ B) TF 3zA

RR n° 4855



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



