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Abstract: We present and validate TICP, a TCP-friendly reliable transport proto-
col to collect information from a large number of receivers spread over the Internet.
TICP is a stand-alone protocol that can be used by any application requiring the
collection of information: quality of reception in a multicast session, numbering of
population, weather monitoring, etc. The protocol does not impose any constraint
on the nature of the collected information. It ensures two main things: (i) the infor-
mation to collect arrives entirely and correctly at the source where it is stored to be
treated later, and (ii) the implosion at the source and the congestion of the network
are avoided by controlling the rate at which receivers send their information. The
congestion control part of TICP is designed with the main objective to be friendly
with applications using TCP. We implement TICP in ns-2, and we validate that
it allows to quickly and reliably collect information from receivers, while avoiding
network congestion and being fair with competing traffic.
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TICP: Un protocole TCP-friendly pour la collecte
d’informations

Résumé : Nous présentons et validons TICP, un protocole transport TCP-friendly
fiable pour collecter des informations d’un grand nombre de récepteurs distribués a
travers 'Internet. TICP est un protocole indépendant qui peut étre utilisé par toute
application demandant la collecte d’informations, par exemple, collecter la qualité
de la réception dans une session multimédia multipoint, recenser une population,
contrdler le temps, etc. Notre protocole TICP n’'impose aucune contrainte sur la
nature de I'information & collecter. Parmi d’autres, le protocole assure que les deux
objectifs suivants soient réalisés: (i) l'information & collecter arrive entiérement &
la source, et (ii) l'implosion du réseau est évitée, ceci se fait en controlant le débit
auquel la source envoie ses demandes et les récepteurs envoient leurs informations. La
partie controle de congestion du protocole est développée de fagon & étre équitable
avec les applications utilisant TCP. Nous implémentons TICP dans le simulateur
réseau ns-2, et nous montrons par simulations qu’il permet de collecter correctement
et rapidement l'information désirée, tout en évitant la congestion du réseau, et tout
en restant équitable avec le trafic concurrent (TICP ou TCP).

Mots-clés : TICP, collecte d’informations, équité avec TCP, contrdle de congestion
et d’erreurs, multipoint.



TICP: TCP-friendly Information Collecting Protocol 3

1 Introduction

This paper describes TICP, a reliable transport protocol to be used for collecting
information from a large number of receivers spread over the Internet. TICP stands
for TCP-friendly Information Collecting Protocol. The information is collected by
a single source, where it is stored and treated. The source reaches the receivers by
multicast (point-to-multipoint). For example, one can consider the scenario where
messages from the source are broadcasted to receivers through a satellite link. Re-
ceivers send their information to the source through the wired Internet using unicast
(point-to-point). The protocol can be used to collect any kind of information from re-
ceivers. One example could be the case of a source that wants to know if (and which)
receivers have well received a certain document, that the source has transmitted to
the receivers before the collect-information session. Other examples include the qual-
ity of TV or video reception, the weather, the electronic vote, the numbering of a
population, etc. The protocol can be occasionally used as when the source collects
information at the end of a working day. It can be frequently used as what hap-
pens when the source desires to know the quality of reception during a multimedia
broadcast (loss rate, average delay).

Our protocol is based on the following requirements. Some of these requirements
are not really necessary and can be easily removed or alleviated.

e The source has a list of all receivers. This list can be the list of IP addresses
used by receivers, the list of IDs identifying the receivers at the session level,
the names of receiving machines, etc.

e Multicast is used to send messages to receivers. Multicast issues are not ad-
dressed in this paper. Only transport issues are addressed.

e Each receiver sends its information in unicast to the source when it receives a
message from the source inviting it to send its information. We consider in this
paper the case where the information of the receiver can be included in one
packet, and we call that packet the report of the receiver. We leave the case of
large reports for future research. The message of the source sent to a receiver
is called request message. A request packet is a packet sent by the source that
carries multiple request messages to different receivers. The source can put in
one packet more than one request message. A receiver sends a report to the
source if it receives a packet including a request message addressed to it.

e The source aims at receiving the entire information detained by receivers. The
information of a receiver has to be received at least once by the source. The
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4 Chadi Barakat , Naomichi Nonaka

source does not ask a receiver that has sent its information to send it a second
time. The source asks however a receiver whose report was lost in the network
to send it back.

e A receiver answers quickly the request messages of the source by sending its
report. The same report can be sent multiple times if multiple request messages
are received by one receiver.

The main challenge with such a transport protocol is that the available bandwidth
in the network is limited and the number of receivers can be very large (thousands or
more). The limitation of bandwidth is more pronounced on the reverse path, where
the volume of reports is likely larger than the volume of request messages. First,
we cannot ask many receivers to send their reports at the same time, otherwise the
network will be congested. Request messages sent by the source and reports sent by
receivers may also result in an aggressive traffic that is harmful to other applications.
TICP has to implement some kind of congestion control so that the resulting traffic
(in both directions) does not congest the network and does not harm the other
applications. Second, TICP has to implement some kind of error control. Reports
sent by receivers and lost in the network have to be resent in a way to minimize the
session duration.

We explain in this paper the different functions of our protocol. We implement
the protocol in ns-2, the network simulator [12], and we validate its performance.
The congestion control part of TICP is inspired from that of TCP [1, 9], and this is
for the purpose to make TICP friendly with the TCP protocol. Applications using
TCP generate the majority of Internet traffic [14]. We also want multiple sources
using TICP to share fairly the network resources and to be friendly with each other.
The error control part of TICP is based on retransmissions and is developed with
the main objective to minimize the session duration.

In the next section, we outline the related literature and we illustrate the origi-
nality of our protocol. Section 3 describes the protocol. Each subsection in Section 3
describes one function of the protocol, and explains how this function is implemented.
In Section 4, we put all the functions together and we provide the main algorithm of
our protocol. Section 5 discusses the fairness of our protocol with TCP. In Section 6,
we present simulation results that validate the effectiveness of TICP in controlling
the congestion of the network and in enforcing fairness. We end the paper with
conclusions and perspectives on our future research on TICP.

INRIA



TICP: TCP-friendly Information Collecting Protocol 5

2 Related work

Different works have addressed the problem of collecting information from receivers
in a multicast session [2, 3, 7, 8, 11]. Usually, the collected information is identical for
all receivers (e.g. negative ACK corresponding to one packet in a reliable multicast
session, a reply message sent in response to a source "hello" message), so it can be
filtered at the receiver side to avoid the problem of feedback implosion. By filtering
we mean that the information sent by a receiver can be substituted by that sent by
another receiver without altering the source behavior. Our work is different from
previous works by the fact that receivers do not send the same information, and that
the source requires the receipt of the entire information sent by all receivers. In our
context, the information sent by receivers cannot be filtered at the receiver side.

Another difference between our work and the previous works is that our protocol
is a stand-alone protocol that can be used in different scenarios. Our protocol does
not impose any constraint on the nature of the collected information. The congestion
control part of TICP does not require that the collected information be filterable, as
it is the case with the previous works. The collected information can be general, for
example the IDs of receivers that did not correctly receive a certain object. We can
imagine many other information that can be collected from receivers, as the quality
of TV reception, the weather, the electronic vote, the numbering of a population,
etc.

The collection of information has been studied in the literature in two contexts:
reliable multicast and counting the number of receivers. Both applications are some-
how linked together, since some reliable multicast schemes require the knowledge of
the number of receivers [7].

In reliable multicast, receivers that did not receive a packet send a NACK asking
the source for a retransmission of the packet. Many NACKs may cause a congestion
in the network or at the source. The problem is called "NACK implosion". But, the
NACK information can be safely filtered; there is no need that a host sends a NACK
if its neighbor has already sent a NACK for the same packet, since the source will
retransmit the lost packet to all members of the multicast session. The aggregation
of NACKs can be done either in the network by routers, or by receivers. In [7], a
receiver waits for a random time before sending a NACK, and listens at the same
time if another receiver has sent a NACK for the same packet. If so, the former
receiver cancels its request, otherwise it sends it when the timer expires.

Counting the number of receivers in a multicast session requires that each receiver
sends a "I am here" message to the source. Sending all these messages is not feasible
when the number of receivers is large. However, given that the messages are identical,

RR n°® 4807



6 Chadi Barakat , Naomichi Nonaka

the source can only ask a subset of receivers (say 10%) to send their messages, and try
to infer the total number of receivers from the number of messages received. Different
works have studied such counting scheme, and the selection of the subset of receivers
is usually done with a message transmission probability detained by each receiver.
Periodically, a receiver transmits the "I am here" message with this probability. Some
works have considered the case of a fixed population of receivers |8, 11|, and others
have considered the case of a variable population [2, 3]. Clearly, this filtering of
messages at the receivers is only possible since messages are identical. The problem
will be much more complex if the source decides to know, in addition to the number
of receivers, some additional information that changes between receivers, as the name
or the preferences. Filtering the information is not possible in this latter case. A
protocol as the one we are proposing in this paper is then absolutely needed.

3 Protocol description

We shall describe in this section the main functional blocks of our protocol. We
also define the different variables and methods required to implement each block. In
Section 4, the different blocks are grouped together in one algorithm. Note that the
main purpose of our protocol is (i) to control the congestion that may be caused by
requests of the source and reports of the receivers, (ii) to enforce fairness, and (iii)
to minimize the time necessary to get reports from all receivers.

For the congestion control part, we choose to do it in a TCP-friendly way. Most
of Internet traffic is carried by TCP [14], and being friendly with applications us-
ing TCP is a requirement for a stable and fair Internet [6]. Our main concern is
that our protocol has to react to congestion in the network in the same way TCP
does (by dividing its congestion window by two), and that it has to increase the
volume of requests and reports in the network in a conservative way, so that com-
peting TCP traffic does not suffer. TCP is known to implement an additive-increase
multiplicative-decrease algorithm for adapting its congestion window as a function
of network conditions [9]. The transitory phase of a TCP connection, called Slow
Start, implements an exponential window increase algorithm. Our protocol imple-
ments similar algorithms to TCP. In Section 5, we discuss the issue of friendliness of
our protocol with applications using TCP.

INRIA



TICP: TCP-friendly Information Collecting Protocol 7

3.1 Filtering receivers

The source of the collect-information session sends request messages asking a certain
number of receivers to send their reports. A request message is received by all
receivers (at the IP level), but only those receivers to which the request is addressed
(at the session level) send their reports. Filtering of requests is supposed to be done
at the session level. This can be realized by sending the session IDs of receivers of
interest in request packets. When receiving a request packet, the receiver looks at
the list of IDs carried by the packet, and sends its report if its ID exists in this list.
If its ID is not found, the receiver discards the request packet and does not send its
report.

The IDs of receivers can be sent separately. They can also be aggregated by the
source so as to reduce the size of request packets. The aggregation of IDs can be
done in different ways. For example, instead of sending a set of contiguous IDs, the
source can send the first and the last ID in the set (in the same way SACK does [10]).
All receivers with the ID in the set respond by sending their reports. Aggregation
can also be done by using masks, as IP addresses are aggregated in CIDR (Classless
Inter-Domain Routing). Suppose that IDs are of 32 bits. The source can ask all
receivers with IDs in the set X.Y.Z/24 to send their reports. This set covers all IDs
with the highest-order three bytes (or 24 bits) equal to X.Y.Z. Bloom filters [4] based
on hash functions can also be used to aggregate IDs in some bit mask that can be
transmitted in request packets.

We suppose that such a mechanism for aggregating IDs exists. It is up to the
source to choose the best aggregation method. If there is enough bandwidth on
the forward path (e.g. a high speed dedicated satellite channel), the source can
avoid aggregation by sending separately the IDs of the receivers of interest. Sending
separately the IDs reduces the processing time at the source. However, it consumes
more bandwidth and requires more CPU power at the receivers. When the list of
IDs is long, a receiver needs more processing time to search the list and to decide
whether to send its report or not.

3.2 Error recovery

The TICP source is interested in minimizing the time necessary to get reports from
all receivers. Clearly, this objective can be only achieved if the source operates in
the following way:

e In a first round, the source sends requests to all receivers (at a rate determined
by the congestion control mechanism to be described later). It does not re-

RR n°® 4807



8 Chadi Barakat , Naomichi Nonaka

transmit request messages to receivers whose reports are (supposed to be) lost.
Note that the absence of a report from a receiver can be the result of the loss
of the request itself rather than the loss of the report. Still in this case, the
source does not retransmit its request.

e In a second round, the source sends requests to receivers whose reports were
not received in the first round.

e In a third round, the source sends requests to receivers whose reports were not
received in the first two rounds.

e The source continues sending requests in rounds until all reports are received
(or the session is stopped by the source since its duration exceeds some allowed
time).

The explanation for this behavior in rounds is simple. It is better to try new
receivers rather than wasting time sending multiple requests to a receiver that is
located behind a congested link. Multiple requests to the same receiver result at
maximum in one report, however sending the same number of requests to different
receivers may result in more than one report. Furthermore, the absence of a report
is most probably a sign of network congestion. This congestion may be transitory,
so it is better for the source to wait a little before retransmitting requests to reports
that were not received, hopefully during this time the congestion disappears and the
retransmitted requests and their corresponding reports succeed to get through.

The operation in rounds has another advantage, that of absorbing the excessive
delay that some reports may experience. Between the transmission of a request in a
round, and its retransmission in the next round, there is enough time for the report
to arrive at the source (supposing that the report is simply delayed in the network
and not lost). As we will explain later, the excessive delay of a report is considered
by our protocol as a sign of network congestion. The delayed report is however not
discarded when it arrives at the source; its content is considered in the same way as
that of non-delayed reports.

3.3 Flow control

The main task of a TICP source is to control the rate at which requests and reports
are injected into the network. The congestion of the network may appear on the
return path from receivers to the source. It may also appear due to requests in the
forward direction. To avoid network congestion, we consider a window-based flow

INRIA



TICP: TCP-friendly Information Collecting Protocol 9

control mechanism similar to that of TCP [9]. The source detains one variable cwnd
that indicates the maximum number of receivers it can probe at the same time. We
call it congestion window. Two particular cases to be cited:

1. cwnd=1: The protocol operates in a stop-and-wait manner. The source probes
one receiver, waits for its report, probes another receiver, and so on. To avoid
deadlock, the source can take the decision that a report is lost if not received
within a certain time, e.g. within a source estimate of the round-trip time.
A request to a new receiver (or to the same receiver if there is still only one
receiver that did not send its report) is sent when this time elapses.

2. cwnd=00: The source probes all receivers at once. It waits for a certain time,
then decides that some reports are lost, and probes the corresponding receivers
again.

With this congestion window, TICP limits the number of request packets and
reports in the network. At any moment, cwnd limits the number of receivers that were
probed and whose reports were not received. If there is enough receivers to probe,
cwnd is equal to the number of expected reports. New requests are transmitted only
when the number of expected reports is less than the value allowed by cwnd. Later
we explain how the source decides that the number of expected reports is less than
cwnd, and that new (or retransmitted) requests can be transmitted.

3.4 Congestion control

To avoid the congestion of the network, the source adapts its congestion window
cwnd. We propose two algorithms for adapting cwnd, similar to those of TCP: Slow
Start and Congestion Avoidance.

Before describing the two algorithms, we suppose for instance that the source dis-
poses of a mechanism to detect network congestion. We describe later our congestion
detection mechanism. The principle of congestion control is then simple: increase the
congestion window until the network becomes congested, back it off, and increase it
again.

3.4.1 Packet request size

A TICP source probes RS receivers (RS > 1) in each request packet; we allow request
packets to carry the IDs of multiple receivers. This improves the efficiency of the
network and reduces the number of request packets in the forward direction. RS also
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10 Chadi Barakat , Naomichi Nonaka

serves as a lower bound on the congestion window. If it happens that cwnd becomes
smaller than RS, it is reset to RS. The TICP source is allowed to send request packets
of size smaller than RS in the sole case when there is not enough receivers to probe
(this happens at the end of the session).

3.4.2 Slow Start

The TICP source starts the session by setting its congestion window to RS. This
allows the source to send a request packet of size RS at the beginning of the session.
Some time later, reports start to arrive. Upon each good report, the source increases
its congestion window by one: cwnd < cwnd + 1. The source does not increase
its congestion window when a bad report arrives. We explain later in details what
we mean by good and bad reports. For instance, we note that the words good and
bad have no relation with the content of reports. They are only used for congestion
control. Both types of reports reach the source and their contents are good. A good
report indicates that the network is not congested and that the source can go on
in increasing its congestion window. A bad report indicates the opposite, and the
source refrains from increasing its congestion window if the number of bad reports
exceeds some threshold that we define later.

During Slow Start, the congestion window doubles when all expected reports (of
number cwnd) arrive. The Slow Start phase continues until the network becomes
congested. Here, the source divides its congestion window by two and enters the
Congestion Avoidance phase. Clearly, the objective of Slow Start is to gauge quickly
(and not aggressively) the network capacity at the beginning of the session. The
source passes by Slow Start at the beginning of the session. If the network is not
severely congested, the source will not come back to Slow Start. It comes back
to Slow Start when a severe congestion appears. We call this severe congestion a
Timeout event, and we explain later when it happens while describing our congestion
detection mechanism.

3.4.3 Congestion avoidance

Congestion Avoidance follows Slow Start. It represents the steady state phase of
TICP, whereas Slow Start represents the transitory phase. During Congestion Avoid-
ance, the source increases slowly its congestion window cwnd. Upon each good re-
port, the congestion window is increased by the following amount: cwnd < cwnd +
RS/cwnd. With this rule, the congestion window increases by RS when all expected
reports (of number cwnd) arrive at the source. This allows the source to probe RS

INRIA



TICP: TCP-friendly Information Collecting Protocol 11

more receivers, which increases the sum of requests and reports in the network by
RS. When congestion is detected, the congestion window cwnd is divided by two, and
a new Congestion Avoidance phase is started. The Congestion Avoidance phase is
similar to that of TCP where the window is slowly increased by one packet every
round-trip time (when the number of expected acknowledgements arrive) [9].

3.4.4 Timeout

The network may become severely congested. We describe later how the source can
detect such an event. Here, we only explain how the source reacts. The TICP source
reacts by closing its congestion window cwnd to RS, and by resorting to a new Slow
Start phase. Thus, in case of Timeout,

cwnd < RS
return to Slow Start

3.5 Sliding the window and sending new requests

The source detains a variable that indicates the number of expected reports, or the
sum of requests and reports flying in the network. This is also the number of receivers
that were probed and whose reports were not received. We denote this variable by
pipe. When a good report is received, the source decreases pipe by one. When
pipe falls below cwnd, the source transmits a new request packet (or more) of size
RS, clearly if the window allows. Therefore, when a good report arrives,

pipe < pipe -1

if ((cwnd - pipe ) > RS) do {
send a request packet of size RS
pipe « pipe + RS }

until ((cwnd - pipe ) < RS)

For instance, note that when a bad report is received, the source simply tries to
transmit new requests without changing the variables pipe and cwnd.

As explained in Section 3.2, the source probes the receivers in rounds. Consider
the first round. When congestion control allows the source to inject new requests
into the network, it probes receivers to whom it did not send any request. When
the list of all receivers is crossed (from left to right) , the source comes back to the
left, starts a new round, and transmits requests to receivers whose reports were not
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received in the first round. The same thing applies when the second round ends, and
so on. This continues until all reports are received.

This section mentions that the source sends requests when reports are received.
In fact, there are other moments at which the source can send requests, if its window
allows. Our protocol disposes of a timer, and when this timer expires, the source
checks (as above) if the congestion window cwnd allows to probe new receivers, and
if so, new requests (or retransmissions) are emitted. We explain in the next section
this timer, which is an important component of TICP used for congestion detection.

3.6 Congestion detection mechanism

This mechanism forms an important part of our protocol. It can be designed in
different ways. We choose to design it with a timer. This mechanism serves for
different purposes. It serves to distinguish good reports from bad reports. It serves
to decide if a report (or a request) is lost or not. It serves to slide the left-hand
side of the congestion window. Finally, it serves to trigger the transmission of new
requests, in the same way the arrivals of reports do. This mechanism is similar to
the Retransmission Timer in TCP.

3.6.1 Round-trip time estimator

Our aim is to set the timer of our mechanism to an estimate of the round-trip time,
using the samples of the round-trip time seen so far. This choice will be made clear
later. We compute the value of the timer using estimates of the average round-trip
time and of its variance. This computation is similar to what is done by TCP [13].
The difference from TCP is that in our case, the round-trip time mainly varies due
to the presence of different receivers with different paths to the source, however in
the case of TCP, the round-trip time varies due to the variation of queuing time in
routers.

As with TCP, our protocol estimates the average round-trip time and its variance
using Exponentially Weighted Moving Average algorithms. Let srtt and rttvar be
the average and the mean deviation of the round-trip time. The source timestamps
the requests and the receivers echo the timestamps in their reports. The source can
then measure the round-trip time when reports arrive. Let rtt be a measurement of
the round-trip time obtained when a report arrives. The source updates its estimates
in the following way:

rttvar < (3/4) rttvar + (1/4) |srtt - rtt]|
srtt « (7/8) srtt + (1/8) rtt

INRIA



TICP: TCP-friendly Information Collecting Protocol 13

The value of the timer (T0) is then set to: TO < srtt + 4 rttvar . The coeffi-
cients of the estimator are taken equal to those of TCP retransmission timer, which
has proven its efficiency in controlling the congestion of the Internet.

At the beginning of the session, TO can be set to a default value, for example 3
seconds. It can also be set to its value in past collect-information sessions. srtt can
be set to the first round-trip time measurement, and rttvar to half this measurement.
They can also be set to their values in past sessions.

With the value of TO set in this way, we are quite sure that reports corresponding
to a request packet sent when the timer is scheduled, will arrive before the expiration
of the timer, of course if these reports were not lost in the network. This is exactly the
idea behind the retransmission timer of TCP [9]. A TCP packet not acknowledged
before the expiration of the timer is a strong indication that the packet was lost. With
TO, we have then a (dynamic) time window that allows to decide whether the network
is congested or not, by simply computing the loss rate of reports expected to arrive
during this time interval (between the scheduling of the timer and its expiration).
The next sections explain the role of this timer in detecting the congestion (and the
severe congestion) of the network.

3.6.2 Scheduling the timer

The timer is scheduled at the beginning of the session after the transmission of the
first request. It is rescheduled (with a new value of TO) every time it expires.

3.6.3 Detecting network congestion

The idea is to compute the loss rate of reports expected to arrive during a time
window equal to TO. The source compares this loss rate to two thresholds to decide
whether the network is not congested, congested, or severely congested. The compu-
tation of the loss rate, and consequently, the adaptation of the congestion window,
are done when the timer expires. This is done in the following way.

When the timer is scheduled, the source detains in one variable the number of
reports to be received before the expiration of the timer. Denote this variable by
torecv. Let recv be the number of good reports received between the scheduling
of the timer and its expiration. The source makes the assumption that (torecv -
recv) reports were lost in the network. It estimates the lost rate of reports to 1
- recv/torecv. The network is considered as congested if this loss rate exceeds a
certain threshold CT (Congestion Threshold). The congestion window is then divided
by two. The network is considered as severely congested if the loss rate exceeds a
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higher threshold SCT > CT (Severe Congestion Threshold). The congestion window
is reset in this latter case to RS, and Slow Start is entered.

CT and SCT are two parameters of our protocol. They can be set to some default
values, for example, to 10% for CT and to 90% for SCT. We set them as follows:

CT = min (0.1 , RS/cwnd)
SCT = max (0.9, (cwnd - RS) / cwnd)

The minimum and maximum functions in the expressions of CT and SCT are
necessary to ensure that these thresholds do not take unrealistic values when the
congestion window is of small size (close to RS). One can use other default values
than 0.1 and 0.9. For large congestion windows, CT is equal to RS/cwnd, which means
that congestion is concluded when more than RS reports are not received (resp. severe
congestion is concluded when less than RS reports are received in a window). We
recall that a report is not received if it is lost (resp. delayed), or if the corresponding
request itself is lost (resp. delayed).

The way we set the two thresholds is compliant with TCP, which considers that
the network is congested if one packet is lost. A TCP packet corresponds in our case
to RS reports. The network is considered by TCP as severely congested when all
packets are lost. This is reflected by the way we set our SCT parameter. With this
setting of CT and SCT, our protocol is able to control the congestion in the forward
and reverse directions in a TCP-friendly way. We explain this issue in Section 5. For
instance, if we consider the forward direction, the loss of a request packet results in
the loss of RS reports, which leads to a division of TICP congestion window by two,
exactly the same reaction of TCP to the loss of a data packet. The loss of all request
packets in the forward direction triggers a Timeout, a reset of the congestion window
to RS and the call of Slow Start, which is similar to TCP behavior. The friendliness
with TCP comes also from the fact that TICP increases its congestion window in
the same way TCP does (during both Slow Start and Congestion Avoidance).

3.6.4 Good and bad reports

We come now to the formal definition of good and bad reports. A good report is a
report received before its deadline. The deadline of a report is the expiration of the
timer. After this deadline, the report is assumed to be lost, and will be considered
by the source as a bad report if it arrives later at the source. A bad report is used
to update the round-trip time. However, it is not used to increase the congestion
window, nor to change the variable pipe.
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regtime
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Figure 1: Good and bad reports

The content of a bad report is considered and added to the list of received infor-
mation. The source does not ask a receiver that has sent a bad report to resend it
in subsequent rounds. A report is only bad from congestion control point of view.
In subsequent rounds, the source only sends requests to receivers whose reports did
not arrive in previous rounds.

We explain now how a source can distinguish good reports from bad ones. This
explanation is illustrated in Figure 1. Let startTO be the scheduling time of the
timer. Let startprevT0O be the last scheduling time of the timer. When a report is
received, the source extracts from its header the timestamp echoed by the receiver,
which indicates the time at which the corresponding request has been issued. Denote
this time by reqtime. The report is good if and only if startprevI0 < reqtime.
The report is bad in the opposite case. In other words, a report is good if it is received
before the expiration of the first timer that is scheduled after the transmission of the
corresponding request.

When the timer expires and before it is rescheduled, the above variables are
updated in the following way:

startprevT0 < startTO
startTO0 < now

3.6.5 Sliding the left-hand side of the window when the timer expires

In Section 3.5, we explained how the left-hand side of the window slides when good
reports arrive. This sliding is realized by decrementing the variable pipe by the
number of good reports. The variable pipe has also to be decremented when reports
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are considered by the source to be lost, otherwise we end up with a situation where
pipe overestimates the number of reports in the network, which drains out the
network and stops the protocol.

The source decides that some reports are lost every time the timer expires. The
number of (supposedly) lost reports is approximated by the source to torecv -
recv. Therefore, when the timer expires, the source decrements its variable pipe
by pipe < pipe - (torecv - recv) . If the congestion window allows, the source
transmits then new requests of size RS and increases its variable pipe so as to account
for these new transmissions.

3.6.6 Updating the variable torecv

We already saw that this variable indicates the number of reports to be received
between the scheduling of a timer and its expiration. To update torecv, we need to
introduce a new variable, which is the number of requests sent by the source between
the scheduling of the timer and its expiration. Denote this latter variable by sent.
When the timer expires, the source does the following:

torecv < sent
sent < O

3.6.7 Updating the variable sent

This variable indicates the number of requests sent between startprevT0 and startT0,
and to be received before the timer scheduled at time startTO expires. The vari-
able sent is incremented when new requests are transmitted, i.e. sent < sent
+ number of request messages sent. The number of request messages sent is in
general equal to RS times the number of request packets sent.

The variable sent is reset to zero when the timer expires. It can also be decre-
mented when a good report arrives. Indeed, when a good report arrives, we have
two distinct cases: (i) startprevI0 < reqtime < startTO, and (ii) startTO <
reqtime. In the first case, sent is not decremented. In the second case, it is decre-
mented by 1, i.e. sent < sent - 1. This decrease is necessarily, since a good
report satisfying (il) must not be included in the number of reports to receive after
the expiration of the timer scheduled at startT0. Recall that the variable torecv is
set to sent when the timer expires.
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4 Main algorithm

We group together in one algorithm the different functions and variables explained
in the protocol description section. We implemented this algorithm into the network
simulator ns-2, and we validated its performance. The results of the simulations are
presented in Section 6.

The source starts the collect-information session by sending one request packet
of size RS (that probes RS receivers). It sets its variables as follows,

cwnd < RS
pipe < RS
torecv < RS
sent < 0
recv < 0

The source then schedules its timer with the following parameters,

TO < default value, e.g. 3 seconds
startprevl0 < -1
startTO0 < now

When a report arrives, the first thing to do is to update srtt, rttvar, and TO,

rtt < measured round-trip time

rttvar « (3/4) rttvar + (1/4) |srtt - rtt]|
srtt « (7/8) srtt + (1/8) rtt

TO < srtt + 4 rttvar

Then the source proceeds to the adaption of its congestion window and the trans-
mission of new requests. The congestion window is adapted if the report is good.
Requests are transmitted for both types of reports.
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if the report is good i.e. (startprevT0 < reqtime) {
if (Slow Start) cwnd < cwnd + 1
if (Congestion Avoidance) cwnd + cwnd + RS/cwnd

if (reqtime < startT0) recv ¢ recv + 1
else sent < sent - 1

pipe « pipe - 1 }

send new request packets of size RS each (if the window allows)
pipe < pipe + number of request messages sent

sent < sent + number of request messages sent

Now, when the timer expires

if (CT < (1 - recv / torecv) < SCT)
cwnd ¢ cwnd/2 (network is congested, stay in Congestion Avoidance)

if ((1 - recv / torecv) > SCT)
cwnd ¢ RS (network is severely congested, go to Slow Start)

pipe ¢ pipe - (torecv - recv)

send new request packets of size RS each (if the window allows)
pipe < pipe + number of request messages sent

sent < sent + number of request messages sent

torecv < sent

recv < 0

sent < O

startprevl0 < startTO
startTO0 < now

Reschedule the timer using the current value of TO

The source always crosses the list of receivers from left to right, and sends requests
only to those it has never probed, or to those whose reports are (supposed) lost. The
source does not resend a request to a receiver before taking the decision that its report
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is lost. The algorithm stops when all reports are received (or when the duration of
the session exceeds some allowed time).

5 Friendliness of our protocol with TCP traffic

Our protocol is developed with the main objective to be friendly with applications
using the TCP protocol. The TCP-friendliness is also an indication on the intra-
fairness of our protocol, i.e. fairness between multiple sessions using TICP. We
illustrate this TCP-friendliness in two cases. We keep the study of the other cases
for future research.

The first case is when the bottleneck exists in the forward direction, and all
requests cross this bottleneck. The network on the return path is not congested. One
can consider the example of a TICP source accessing the receivers via a slow satellite
link, and the receivers sending back their reports via high speed terrestrial networks.
Suppose that a TICP session shares the forward path with a TCP connection having
approximately the same average round-trip time. Both the TICP session and the
TCP connection increase their congestion windows in a similar way (linearly during
Congestion Avoidance by roughly one packet every round-trip time). They both
divide their congestion windows by two when one or more packets are dropped on the
forward path (Section 3.6.3). Indeed, the loss of one or more request packets results
in a report loss rate larger than RS/cwnd, which triggers our congestion detection
mechanism. Our protocol achieves then the same throughput on the forward path
as that of the TCP connection in terms of packets/s, of course if the network drops
packets from both flows in the same way. The throughputs of the two flows are
equal in terms of bits/s if the size of a request packet is that of a TCP packet. As
for the throughput of TICP reports on the reverse path (receivers to source), this
throughput depends on RS and the size of reports.

We study now the second case. The bottleneck exists on the return path and all
reports cross this bottleneck. The forward path is not congested. Consider that a
TCP connection shares the bottleneck with the reports sent by receivers, and that
both the TCP connection and the TICP session have approximately the same average
round-trip time. Our protocol divides its congestion window by 2 when more than
RS reports are lost, and increases the number of reports in the network by RS reports
when cwnd reports are received (Congestion Avoidance mode). The flow of reports
behaves then approximately as an aggregate of RS TCP connections having a packet
size equal to the size of a report. If the size of RS reports is equal to that of a normal
TCP packet, the throughput of reports on the reverse path in bits/s will be then
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comparable to that of the competing TCP connection. If we want the throughput
of reports on the reverse path to be equal to that of N TCP connections, and given
the size of TCP packets and that of TICP reports, one can find a value for RS that
realizes this objective.

Clearly, RS is an important parameter to decide the TCP-friendliness of our
protocol. Let us define TCP-friendliness as realizing a throughput equal to that of
a single concurrent TCP connection having the same average round-trip time. If we
want TCP-friendliness in the forward direction, we have to choose RS so that the size
of request packets is equal to that of TCP data packets. If we are concerned with
TCP-friendliness in the reverse direction, RS has to be chosen so that the size of RS
reports is equal to that of a TCP data packet. The simulation results presented in
the next section illustrate the TCP-friendly feature of our protocol in the above two
cases.

The situation becomes more complex when the TICP session crosses at the same
time multiple bottlenecks. A TICP source measures the total loss rate in the network,
and distributes its requests to receivers without taking into consideration their posi-
tions with respect to bottlenecks. Thus, some bottlenecks may see more reports than
what a TCP connection would achieve through these bottlenecks. The TICP session
may be less aggressive than TCP at other bottlenecks. TICP is a TCP-friendly pro-
tocol if we look at the network as a single bottleneck. The distribution of reports
over bottlenecks may be unfriendly with TCP. A future research is to make TICP
TCP-friendly everywhere. This will most probably require that the source considers
the positions of receivers with respect to bottlenecks while sending requests. One
possible solution to this problem is to divide receivers into regions, and to probe
the regions in parallel or in sequence. By doing that, one can hope that receivers
of one region will be behind the same bottleneck, which will avoid the problem of
multi-bottleneck scenarios.

6 Validation of the protocol by simulation

We implement our protocol in the network simulator ns-2 [12]. Then, we simulate
different scenarios to prove the effectiveness of our protocol in controlling the con-
gestion of the network, and in fairly sharing the available resources with competing
traffic.

The first objective of a congestion control protocol is to optimize the utilization
of network resources. This is equivalent to a high utilization and to a low loss rate.
The low loss rate is synonymous to short queues in routers (short queuing delay).
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Figure 2: Simulation testbed

The tradeoff between utilization and loss rate can be illustrated by changing the
congestion window cwnd. Consider a version of TICP where the congestion window
is constant during all the session. When cwnd is small, the utilization is low, and
the loss rate too. When cwnd increases, the utilization increases until approximately
100%, but the loss rate increases as well. There is an optimal congestion window that
leads to a high utilization and to a low loss rate. The objective of a congestion control
protocol is to operate around this optimal window. Above this optimal window, the
network is congested, the utilization drops due to retransmissions, and the loss rate
increases fast.

The second objective of a congestion control protocol is to fairly share the avail-
able bandwidth with competing traffic. A distributed protocol like TCP is known
to distribute the available bandwidth among connections inversely proportional to
their round-trip times and to the number of routers they cross [5]. When our proto-
col is used in presence of competing traffic (TCP or TICP traffic), it must achieve
a fair share of the available network resources. The competing traffic must not be
penalized by the presence of our collect-information session, and at the same time,
our session must not obtain much less than its fair share. The following simulations
validate that our protocol TICP realizes the above objectives.
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6.1 Simulation scenario

We study different simulation scenarios, which are illustrated by the network in Fig-
ure 2. All scenarios have in common the fact that one (sometimes two) TICP source
(located at Source) probes a large number of receivers (thousands) uniformly spread
over 100 Internet sites. The source joins the receivers by Centralized Multicast, which
is an implementation in ns-2 of PIM-SM. The source is connected to the Internet
via a slow link of 100 kbps, which forms a potential bottleneck for both requests and
reports. The 100 sites are connected to the Internet via high speed links that are
always non-congested. The round-trip time (excluding queuing delay) between the
source and receivers on site i, 7 = 1,...,100, is set to 2.(10 + 10 + ) = 40 + 2.7 ms.
This round-trip time covers a large number of Internet paths ranging from terrestrial
links to satellite ones. Buffers at the two sides of the 100 kbps link are set to 20
packets and are of DropTail type. The receivers have IDs ranging from 0 to IV, where
N is the total number of receivers. The N IDs are randomly affected to the 100 sites.

We run three sets of simulations. The first set corresponds to a TICP session
running alone in the network. The objective of this set of simulations is to show how
well our protocol avoids network congestion and how efficiently it uses the available
bandwidth. In the second set, two TICP sessions share the 100 kbps, both sessions
run in the same direction. In the third set, a TICP session shares the 100 kbps
link with a TCP NewReno connection. The two-way propagation delay between the
source and the destination of the TCP connection is taken equal to 100ms, which
is approximately the average round-trip time between the TICP source and the N
receivers in the 100 sites. The TCP connection is used to transfer an infinite amount
of data. It has a large receiver window and packets of size 1000 bytes. The objective
of the second and third sets of simulations is to illustrate the TCP-friendliness feature
of TICP.

We consider different values for RS, the size of request messages, and the size
of reports. We change these values in order to move the congestion of the network
between the forward and the backward paths, and to control the TCP-friendliness
of our protocol, as discussed in Section 5. For a certain request message size MS,
the TICP source sends request packets of size RS.MS. The request message to a
receiver includes its ID plus some additional information that may help the receiver
in preparing its report.
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Figure 3: One TICP session, congestion in the forward direction

6.2 Scenario without competing traffic

We consider a single TICP session that collects information from 10000 receivers.
We run our protocol until all the information from receivers is well received. First,
we allow the congestion to appear in the forward direction by setting the size of
request messages to a large value 1000 bytes, and the size of reports to a small value
100 bytes. Then, we move the congestion to the reverse direction by interchanging
the sizes of request messages and reports. Concerning the value of RS, we set it to
1 in the first case and to 10 in the second case. The size of request packets is then
constant in both cases and equal to 1000 bytes. Figure 3 corresponds to the case
where congestion is on the forward path. This figure shows the utilization of the 100
kbps in the forward direction (source to receivers) and the queue length at its input.
Figure 4 corresponds to the case where congestion is on the reverse path. This latter
figure shows the utilization of the 100 kbps in the reverse direction (receivers to
source) and the queue length at its input. The utilization is computed by averaging
the number of bits transmitted over 1 second time intervals, then by normalizing this
average by the link speed. Clearly, our protocol adapts to the available bandwidth
in each direction of the 100 kbps link, and does not overload the buffers. This is
illustrated by the duration of the session, which is very close to its ideal duration
800 seconds, i.e. the duration achieved when the utilization of the bottleneck link is
100% and no packets are lost.
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Figure 4: One TICP session, congestion in the reverse direction

6.3 Scenario with competing traffic

We run two sets of simulations to study the fairness of our protocol and its TCP-
friendliness. First, we consider the case where 2 TICP sessions run together in the
network, then we study the case where TICP shares the network with TCP.

6.3.1 Fairness of TICP

Two TICP sessions collect information from 5000 receivers each, spread uniformly
over the 100 sites. The first session starts at time 0. The second one starts at time
250 seconds (before the end of the first one). As before, we allow first congestion to
appear in the forward direction (source to receivers) by setting the size of request
messages to 1000 bytes and the size of reports to 100 bytes, then we move congestion
to the reverse direction (receivers to source) by interchanging the sizes of request
messages and reports. We set RS to 1 in the first case and to 10 in the second
case, which leads to request packets of constant size equal to 1000 bytes. When
congestion is on the forward path, we plot the bandwidths consumed by requests
of both sessions over the 100 kbps link. When congestion is on the reverse path,
we plot the bandwidths consumed by reports of both sessions over the 100 kbps
link. This gives rise to Figures 5 and 6. Consumed bandwidths are computed by
averaging transmitted data over 1 second time intervals, then by normalizing to the
link speed. As we see, before 250 seconds, the first session fully utilizes the link
bandwidth. When the second session arrives, the bandwidth consumed by the first
session is divided by two, and the second session consumes the other half of the link
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Figure 5: Two TICP sessions, congestion in the forward direction
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Figure 6: Two TICP sessions, congestion in the reverse direction

bandwidth. This continues until the end of the first session, where the second session
sees its bandwidth multiplied by two, and it keeps fully utilizing the link bandwidth
until its end at a time slightly longer than the ideal total duration of both sessions,
i.e. 800 seconds.

6.3.2 TCP-friendliness of TICP

We consider now one TICP session that collects information from 10000 receivers
spread over the 100 sites. The session shares the 100 kbps link with one long-lived
TCP connection of round-trip time 100 ms. First, we run the TCP connection in
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Figure 7: One TICP session and one long-lived TCP connection, congestion in the
forward direction

the forward direction, and we let it share the 100 kbps link with request packets.
Second, we consider the same TCP connection but this time in the reverse direction,
and we let it share the 100 kbps with TICP reports. In this way, we are able to check
the TCP-friendliness of our protocol in both directions.

For the forward direction, we set RS to 1 and the request message size to 1000
bytes, which means that request packets have the same size as that of TCP packets
(1000 bytes). We set the size of reports to a small value 100 bytes in order to remove
any congestion from the reverse path. The TCP connection starts at time 0, the
TICP session starts at time 250 seconds. We plot the bandwidths consumed by TCP
packets and TICP requests in Figure 7. Consumed bandwidths are normalized by
the link speed. During the lifetime of the TICP session, the 100 kbps link bandwidth
is almost fairly shared between both flows (TCP and TICP requests); the arrival of
the TICP session does not penalize the TCP connection, and the TCP connection
does not consume more than its fair share of the available bandwidth. When the
TICP session is off, the TCP session fully utilizes the available bandwidth.

Then, we run the TCP connection in the reverse direction. We set RS to 10 and
the size of reports to 1000 bytes. The size of request messages is set to a small
value 100 bytes in order to remove any congestion from the forward path. We plot
in Figure 8 the bandwidth consumed by TCP data packets and that consumed by
reports over the 100 kbps link. The consumed bandwidths are averaged over 1 second
intervals and are normalized by the link speed. We notice how our protocol is more
aggressive than TCP because the product of RS and report size is much larger than
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Figure 8: One TICP session and one long-lived TCP connection, congestion in the

reverse direction

TCP packet size (see discussion in Section 5). The flow of reports behaves approxi-
mately as 10 long-lived TCP connections. The TCP-friendliness of our protocol can
be improved by reducing RS or the size of reports, this if we define TCP-friendliness
as realizing a throughput equal to that of a TCP connection running in the same
network conditions. One should expect a rate of TICP reports close to that of TCP
when the product of RS and the report size is equal to TCP packet size 1000 bytes.
To prove that, we rerun the same simulation as that in Figure 8, but this time with
RS equal to 1 - report size equal to 1000 bytes, and RS equal to 10 - report size equal
to 100 bytes. In both cases, the product of RS and report size is equal to TCP packet
size. We plot the results in Figures 9, where it is clear that our protocol is more
TCP-friendly than in Figure 8. We also notice that when we reduce the report size
to 100 bytes, the duration of the TICP session is shorter since less information is to
be collected from receivers.

7 Conclusions

We present in this paper TICP, a TCP-friendly Information Collecting Protocol. A
source running TICP is able to collect the entire information from a large number of
receivers spread over the Internet. TICP provides a reliable data collection service,
while controlling the congestion of the network and ensuring fairness with other
sessions using TICP, or with other flows using the TCP protocol.
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Figure 9: One TICP session and one long-lived TCP connection, congestion in the
reverse direction, better TCP-friendliness

Our work on TICP can be extended in different directions. A first extension is to
cope with situations where multiple bottlenecks exist at the same time in the network.
Another extension is to consider the collection of large reports that cannot fit in one
packet. We are also intending to implement TICP and to test its performance on
real network testbeds.
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