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Abstract: In the mobile computing area, short-range wireless communication
technologies enable to envision direct interactions between mobile devices. In the
scope of data access, devices can now be considered as both data providers and
data consumers. Thus, each device can be provided with a remote access to data its
neighbours agree to share. Such a service enables applications to consult a set of data
providers which dynamically evolves according to the mobility of the neighbouring
devices. The set of data sources an application may access by this way is therefore
representative of its physical neighbourhood. For this purpose, we propose to design
a tool enabling the continuous consultation of neighbouring shared data. We present,
in this paper, the PERSEND system we develop in this scope. Based on relational
databases systems, PERSEND enables applications to define continuous queries over
neighbouring data.
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PERSEND: Requétes Continues de Proximité en
Environement Mobile

Résumé : Dans le domaine de I'informatique mobile, les technologies de commu-
nication & courte portée rendent aujourd’hui possible la mise en ceuvre d’interactions
directes entre calculateurs mobiles. Dans le cadre de ’accés aux informations, les
calculateurs ne sont plus confinés au simple réle de consommateurs de données mais
doivent également étre considérés comme des fournisseurs autonomes d’information.
Chaque calculateur peut ainsi disposer d’un accés distant aux données que ses voisin-
s souhaitent partager. La mise en place d’'un tel service permet aux application-
s d’accéder & un ensemble de fournisseurs de données dont la composition évolue
dynamiquement en fonction des mouvements des calculateurs voisins. L’ensemble
des sources de données accessibles a une application & un moment donné est donc
représentatif du voisinage physique de cette derniére. Dans ce cadre, nous proposons
de développer un outil permettant la consultation continue des données partagées
avoisinantes. Nous présentons dans cet article le systéme PERSEND que nous avons
congu dans cet objectif. Reposant sur un systéme de bases de données relationnelles,
PERSEND permet aux applications de définir et d’exploiter des requétes continues
portant sur des données avoisinantes.

Mots-clé : Informatique mobile, Bases de données, Requétes continues, Interroga-
tion de proximité
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1 Introduction

The recent development of powerful mobile devices has made mobile computing a
more and more popular paradigm. Typical mobile environments are today com-
posed of mobile devices accessing data by the mean of a fixed infrastructure (such
as 802.11b cells). These environments are based on non-symetrical interactions s-
ince the infrastructure is the only data provider, the mobile devices being confined
to a role of data consumers. These client/server exchanges mainly bear on struc-
tured data (such as visiting cards, buses timetables, ...) which are usually stored in
database systems. Using wireless communication channels, mobile devices can down-
load information as long as they are situated in the network communication area.
Disconnections from the fixed network occur as soon as mobile devices move away
from the network communication area. Although, in such environments, they are
supposed to be temporary events, disconnections raise many challenges in the data
management domain. Some approaches, such as hoarding and optimistic replication
[1], have been introduced in order to address data access issues.

Recently, in the area of pervasive environments, the rise of short-range commu-
nication technologies, such as Bluetooth [2], has enabled the emergence of a new
type of mobile environments dealing with direct and proximate interactions between
devices. Considering each device as a potential data provider, they aim to pro-
mote direct exchanges between physically close enough devices. Due to their limited
communication range, considered devices can only directly communicate with their
closest neighbours. Thus, two mobile devices are declared to be neighbour as soon
as they are able to directly communicate one with the other. In the remaining of
this paper, such environments are called prorimate environments. As proximate
interactions are based on direct communications between mobile devices, fixed net-
works are no longer necessary. Such an approach enables us to envision new kinds
of applications.

In proximate environments, each device sharing some local data has to be con-
sidered as a data provider. In such a context, the data set each device can access
at a given time includes both local data and data shared by the neighbouring de-
vices. Mobility, which makes devices coming closer or going away from the others,
breaks and establishes neighbourhood relationships. Due to this mobility, the set of
neighbours of each device evolves in time. Therefore, the data set each entity can
access evolves according to its set of neighbouring data providers. As devices may
update their own shared data, the data set a device can access also has to evolve
according to the modifications processed in its neighbourhood. Consequently, data
which are available to a device in a proximate environment not only depend on the
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4 D. Touzet, F. Weis, M. Bandtre

neighbouring devices but also on the updates these devices perform on the data they
share.

Whereas mobile systems attempt to enhance data availability for mobile devices
despite intermittent connections with the fixed network, proximate environments
aim to enable neighbourhood interactions in which wireless connections are used to
define the set of data providers to be considered. Accordingly, techniques developped
for mobile systems do not suit to proximate environments. Thus, no tools were
developped for nomadic systems which enables to manage the concept of visible space
as previously defined. In mobile environments, mobile devices usually communicate
with a single entity at once: the base station which acts as a gateway to the wired
network. Moreover, whatever its position, and more generally whatever its physical
context (including its physical neighbours), a mobile device can access the same data,
assuming it is situated in a covered area.

In this paper, we propose a system enabling applications to access available neigh-
bouring data in the scope of proximate environments. As a large part of data is today
managed by databases, our system has been developped using relational databases
systems (RDBMS). In this context, shared data can be modified by the mean of
the three data handling commands: data insertion, data removal and data update.
Rather than providing a complete view of the available data, our system is designed
to enable users to query these data for some specified subsets. Just as the whole set
of available data, the data subsets queried by users evolve according to the set of
neighbouring data providers. However, they also have to reflect the conditions users
specify. In order to enable applications to be continually aware of their currenlty
available data, our system provides them with persitent data sets which match the
users’ conditions. For this purpose, it enlarges some works previously performed in
the continuous queries area.

This paper is organized as follows. In Section 2, we present the concept of contin-
uous queries and highlight the main issues to be addressed in order to process such
queries in proximate environments. Section 3 details the semantics we have consid-
ered to develop proximate continuous queries. In Section 4, we describe PERSEND
(PERsitent SEnsing for Neighbouring Data), the continuous query system we de-
signed for proximate environments. We discuss, in Section 5, some implementation
issues. Section 6 deals with related works. Finally, Section 7 presents some conclu-
sions and future works.

INRIA



PERSEND : Enabling Continuous Queries in Prozimate Environments 5

2 Continuous querying challenges in proximate environ-
ments

In this section, we first review some of the main existing continuous queries systems.
We briefly present the context of these studies and the architectures which have been
developped. Then, we explain how proximate environments differ from these works
and what kind of specific constraints they have to face.

2.1 Continuous queries: goals and design

Users querying continually changing databases may want to be notified of data up-
dates which occured since a query has been submitted. The simplest way to provide
this service is to process the query again each time the database is updated and to
return to the user the corresponding data set. This approach can prove to be ex-
tremely ineffective. Given a user’s running continuous query C'QQ bearing on a single
table, let us consider the insertion of a record r which is relevant to C'Q. Then,
providing the user with an up-to-date data set can be achieved by adding selected
fields from r to the current data set.

Terry introduced the continuous query concept in order to manage such chal-
lenges. They are defined as queries that continually run once issued [3]. Considering
a model limited to append-only tables (tables only accepting new insertions), Terry
designed a system enabling the continuous querying of the Tapestry messaging sys-
tem. By the mean of continuous queries specified using the SQL querying language,
users can define some messages filters. Thus, they are notified as new messages
matching their filters are received by the system and inserted in storage tables. Sub-
mitted continuous queries are recorded by the system and are processed so as to
build corresponding incremental queries enabling to efficiently get up-to-date result-
s. Notification frequency can be defined on a per user basis: for example, once a day,
once a week or as soon as inserts are processed (this last option enables to have a
continuous up-to-date view of requested data).

The previous continuous query model is highly centralized since a front-end server
has to store all managed data and to perform the whole querying process. In the
sensors database area, on going works on long-running queries are extending this
restricting model [4]. Observing that interconnected sensors are now widely deployed
[5], sensors database systems aim to enable to efficiently collect data from this kind
of information providers. Centralized schemes proved to be unsuited to sensors
database interrogations:
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6 D. Touzet, F. Weis, M. Bandtre

e sensors continually have to send captured data to the front-end server, thus
overloading the communication network

e answering a query on a single sensor is performed by searching through the
entire database: this process includes data from non-relevant sensors

Typical queries submitted to sensors database systems ask for values currently mea-
sured by some sensors. For example, a user can ask temperature sensors situated
in a building for the current temperature every ten minutes. As each sensor is as-
sumed to embed storage, computing and networking capabilities, distributed query
processing schemes can be used. For this purpose, a front-end server is used to store
a description of managed sensors. Each sensor is associated with an ID and some
physical attributes (such as its location). Thus, queries execution can be distributed
on sensors specified by users’ conditions: non-relevant sensors are not included in
the query execution plan. Moreover, only data which are relevant to the query are
transmitted from concerned sensors to the front-end server. Otherwise, the concept
of wirtual relation, introduced by Bonnet [4], enables users to interrogate sensors
database using the SQL syntax. Data scanned by sensors are indeed represented as
append-only relational tables in which new measures are inserted associated with a
time stamp.

Beyond this distributed model, the moving objects databases deal with contin-
uous queries which involve mobile objects, such as cars. Usual storage schemes are
not suited to manage such objects. As the value of their location continually e-
volves, keeping an up-to-date representation of mobile objects requires databases to
be continually updated. Observing that the description of a mobile object motion
is updated less frequently than its position, these systems chose to associate motion
vectors to objects representations [6]. Thus, each mobile entity is associated with its
last known location, its motion vector and the time stamp of its last update. Assum-
ing a mobile object has kept an unchanged trajectory since its last update, its actual
position can be calculated at any time without requiring its stored position to be
explicitly updated. Continuous queries submitted to moving objects databases may
involve several mobile entities. For example, a user can ask for the devices which are
less than one hundred meters away from him. The described storage scheme enables
systems to compute at once the data set currently associated to a continuous query,
and further ones. For this purpose, a set of tuples (7, begin, end) is built, where the
record r belongs to the data set between time begin and time end.

INRIA
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2.2 Querying proximate environments

The architecture of proximate environments fundamentaly differs from those of s-
tudied continuous queries systems. Because proximate environments are totally
distributed, each mobile device potentially has to be considered as both a data
provider and a query transmitter. As opposed to this model, continuous queries
over Tapestry are based on a centralized scheme. In sensors database systems, the
continuous querying process is distributed between two different kinds of entities.
The sensors are the data providers whereas the front-end server acts as the query
transmitter. Moving objects databases offer a more flexible architecture. Queries
can be processed over multiple mobile objects which store each a subset of required
data [6]. These systems however assume a global connectivity between all mobile
objects by the mean of a wireless communication infrastructure. Such an assump-
tion is no more considered as valid in a proximate context. Due to their short-range
communication capabilities and to their unconstrained mobility, devices participat-
ing in proximate environments can be disconnected one from the others with no
undertaking for further reconnections.

Beyond the developped architectures, many differences can be observed between
proximate environments and existing continuous queries systems. Contrary to mov-
ing objects databases, we do not assume any knowledge about devices motion. This
implies that the only computable data sets are those that currently satisfy the con-
tinuous queries. Otherwise, the data model proximate environments have to consider
is more flexible than those previously described. Consider users sharing information
stored in their adress book. Insertions, removals and updates should be allowed by
a proximate continuous queries system. Such handlings are not managed by the
Tapestry continuous query system which is limited to append-only tables. Likewise,
data scanned by sensor databases are modelized by virtual relations which are also
append-only.

Proximate environment querying has to deal with more constraints than de-
scribed querying systems. Its objectives are also different. Whereas most of the
systems attempt to enable transparent querying of data providers, whatever their
physical location, data providers a device can query in proximate environments are
restricted to the device’s vicinity. Thus, a continuous query submitted in a proximate
environment provides the user with a continuous view of available data matching the
query in his physical neighbourhood. We call such a data set a Continuous Result
Set (CRS). This model implies that data stored by a device should be required to
answer continuous queries issued by some of the device’s neighbours. Consequently,
devices participating in proximate environments have to watch for local data updates
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8 D. Touzet, F. Weis, M. Bandtre

nu_cd | cd_title cd_price
1 War 8
2 Transformer 16
3 Animals 20
4 Kind Of Blue 32

Table 1: The cd to_sell table

in order to notify interested neighbours of the occured modifications. Notifications
have to enable interested neighbouring devices to keep continuous result sets up-to-
date.

In order to enable efficient continuous queries over proximate environments, we have
brought out three main challenges to address.

Data providers management. In a proximate environment, each continuous
query is submitted to the data providers located in the vicinity of the query transmit-
ter. Each device has to know which are its neighbouring devices. Reminding that
considered devices communicate by the mean of short-range wireless technologies,
and that they are mobile, the neighbours set of a device can evolve. Consider two
devices A and B. As B leaves the vicinity of A, continuous queries issued by A have
no longer to take data from B into account. Conversely, as a new neighbour C gets
closer from A, continuous queries submitted by A have to deal with data stored by

C.

Assessment of the data updates impact. In proximate environments, continu-
ous queries have to return the data set both being stored in the device’s vicinity and
matching the user’s expressed conditions. Let a querying device be a device which
has issued a continuous query. Applications initiating such queries are called query-
ing applications. Devices neighbouring a querying device are called queried devices.
As data stored on a queried device are modified, the associated querying device has
to reflect the processed modifications, assuming that they bear on data relevant to
the continuous query. In order to highlight these problems, let us study an example.
Let A provide its neighbours with the list of audio CD its user sells (see Table 1).
Now, consider a neighbouring device B having issued the continuous query C'Qp:
I’m looking for audio CD which price is between 10 and 20. Let CRS(CQg) be its
associated continuous result set. Three kinds of events have to be considered:

INRIA
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e data removal. If removed data are relevant to CQp (i.e. their price is between
10 and 20), they also have to be removed from CRS(CQp).

e data insertion. If some of the inserted rows match C'Q)p’s condition, they have
to be included in CRS(CQB).

e data update. For example, A decides to divide its prices by 2 (price=price/2).
This update has three consequences. First, some of the rows which were rel-
evant to CQp may no longer match its conditions. Second, some of the non-
relevant rows may now be relevant to the query’s conditions. Third, data from
CRS(CQp) which are still relevant to the query have to reflect the executed
update. In our example, the price of Animals has to be set to 10 in the contin-
uous result set. Moreover, Transformer has to be removed from CRS(CQg)
whereas Kind Of Blue has to be added to (with a price of 16).

Notification of data modifications. A querying device has to be notified when
remote data involved in a continuous query it has issued are modified. Queried
devices are responsible for this task: they have to notify their querying devices of
the modifications to perform on their continuous result sets. Let us consider the
update operation of the previous example. Assuming that it knows what data are
handled by CQp, device A is able to deduce what modifications B has to perform
in order to keep its continuous result set up-to-date. For this purpose, A can send
to B a message containing three update commands:

e remove Row?2 from CRS(CQpB)
e add (4, Kind Of Blue,16) to CRS(CQp)
e set price to 10 at Row3

Now we have highlighted the challenges to be addressed, let us define some specific
semantics for proximate environments.

3 Defining semantics for vicinity continuous querying

In this section, we present some data querying semantics which are compatible with
the specific constraints relative to proximate environments. We first study those
related to the vicinity management. Then, we investigate the impact of the duration
parameter introduced by continuous queries.

RR n~4780
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3.1 Vicinity relative issues

Querying neighbouring information supposes that involved devices share some of
their local data. Two different data modes are considered: private and shared. Data
in private mode only accept local accesses. Conversely, shared data can be read by
any neighbouring device. The data mode is defined at the table level: data from a
shared table can be queried by remote devices whereas those from private tables not.

In such an environment, several devices can simultaneously store some data repre-
senting a same physical object (or person). These data can be concurrently updated
in different ways according to the devices storing them. Due to the absence of a
centralized control, the consistency of these co-existing copies can not be insured.
Likewise, and for the same reasons, no global identification scheme is available: stored
data are identified in an independent way on each device. Therefore, we consider
that each database entry locally describes a unique object. In order to prevent any
interference between remote identification schemes, objects are globally identified by
the couple (DeviceI D, LocallD).

In this context, join queries have to be carefully managed. Joining two remote
tables has indeed no sense since they rely on different schemes to identify the data
they contain. Meaningfull join queries have therefore to be processed on a single
device. Consequently, distributed join queries have to be independently processed
on each neighbouring device before merging the computed results.

3.2 Duration relative issues

Considering continuous queries introduces some temporal issues. Indeed, built con-
tinuous result sets evolve according to data which are available in the devices’ vicinity.
Common querying languages, such as SQL, have been designed to define and build
static data sets. Some of the tools and functions they provide do not suit to manage
data sets subject to variations. Thus, SQL enables users to call some aggregation
functions (such as max, sum, count ...) in the queries they define. These functions
usually compute a single value from a static data set.

In order to manage changing data sets, dynamic semantics have been associated
to these functions. Thus, the value to be returned now has to mirror the current
state of the continuous result set. For this purpose, this value has to be evaluat-
ed again each time the continuous result set is updated. However, in most cases,
such computations are not necessary. For example, the value returned by a call to
count (*) can be easily managed: it as to be incremented each time a row is inserted
in the CRS and to be decremented for each removed row.

INRIA
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Likewise, we have defined a dynamic version of the SQL distinct keyword.
When specified, this keyword ensures that returned data sets are composed of distinct
rows. Consider a continuous query C'Q using the distinct keyword. Two CRS are
associated to CQ: the primary one (with no unicity consideration) and the one to
be returned. FEach time the primary CRS is updated, two questions have to be
considered:

e have new distinct rows appeared ?
e have some rows occuring only once been removed ?

We have introduced theorical issues which are specific to proximate environments.
We now present the PERSEND querying system.

4 Design of a vicinity querying system

Besides classical queries, the PERSEND querying system enables the continuous
querying of proximate environments. In this section, we detail the architecture of
this system. First, we introduce some SQL extensions which enable the definition
of continuous and proximate queries. Then, we describe the different components
composing PERSEND. Finally, we present the way the PERSEND system manages
proximate continuous queries.

4.1 Vicinity querying with SQL

SQL has been designed to handle data stored in relational databases. It enables users
to issue instantaneous queries, that is queries which return data matching expressed
conditions just as they are executed. However, its syntax provides no way to define
continuous queries. We have therefore introduced the keyword continuous in order
to distinguish continuous consultations from instantaneous ones. Positioned at the
beginning of a consultation query, it indicates that the query has to be considered
as continuous (see Query 1).

Query 1 Continually querying local audio CD to sell which price is between 10 and
20.

continuous select cd_title, cd_price

from cd_to_sell
where cd_price is between 10 and 20;

RR n~4780



12 D. Touzet, F. Weis, M. Bandtre

In SQL queries, data sources are identified by naming the implied tables and
databases. In the querying model we consider, neighbouring tables can be implied
in the queries a device processes. The system therefore has to know when to only
consider local tables and when to distribute a query. For this purpose, we introduce
the vicinity keyword. It has to be placed at the beginning of a consultation query,
after the continuous keyword (if specified). It indicates that the following query,
continuous or not, has to be distributed among all neighouring devices. We call such
queries prozimate queries. Query 2 extends the previous example by querying all
neighbouring devices.

Query 2 Continually querying proximate audio CD to sell which price is between
10 and 20.

continuous vicinity select cd_title, cd_price
from cd_to_sell
where cd_price is between 10 and 20;

Now our SQL-based querying language is presented, let us study the architecture
of the PERSEND system.

4.2 Overview of the PERSEND architecture

The figure 1 presents the global architecture of the PERSEND querying system.
PERSEND is based on a Relational Database Management System (RDBMS). Be-
sides the neighbourhood manager, which provides applications with information on
neighbouring devices, PERSEND is organized around four main components: the
query interface, the query parser, the update supervisor and the query descriptors
manager. The remaining of this section is dedicated to their description.

The proximate continuous query interface. Queries, whatever their type, are
transparently submitted by the way of the continuous query interface. Two primitives
are currently provided. The first one, executeQuery (QueryText), is used to submit
a query to the system. The type of submitted queries is determined by the query
parser. The instantaneous local consultations are processed as usual. Once parsed,
modification queries are transmitted to the update supervisor. Continuous queries
are, as for them, inserted in the query descriptors list. According to the type of the
submitted query, executeQuery returns a result set (instantaneous consultations of
local data), a query status (data modifications) or a continuous query handler (con-
tinuous queries). Data currently matching a continuous query are stored in the CRS

INRIA



PERSEND : Enabling Continuous Queries in Prozimate Environments 13

Mobile device

Mobile device

Applicationl mﬂ

CRS_1 CRS_2 CRS_3

o

[ Proximate Continuous Queries Interface J

Neighbourhood

- communication ; ;
[ Query Parser ] [ Update Supervisor ] Mobile device
RDBMS
Query Descriptors Manager -
m Neighbourhood Manager —
\4

4
\4

[ Communication Interface }

Figure 1: Architecture of the PERSEND querying system

associated to the query. Handlers enable applications to access CRS associated to
the continuous queries they have issued. They also provide a global idendification of
continuous queries with the couple (DeviceI D, CQueryID). The second primitive,
closeContinuousQuery(CQHandle), enables applications to close a given on-going
continuous query.

The query parser. The analysis of a query associates the query with a descriptor.
Besides its type (select, delete, insert or update), a descriptor contains all avail-
able information on a query: its range (local or proximate), its duration (continuous
or instantaneous) and the data it handles. Data handled by consultation queries
are identified by (db_name,table _name, field name) tuples. Descriptors associ-
ated to continuous queries are indexed, with their handler, in the descriptors list.
Data handled by modification queries are coded in specific ways. Thus, an insert
descriptor just provides the targeted table, identified by a (db_name, table _name)
couple, and the row to be inserted. Descriptors associated to modification queries
are transmitted to the update supervisor before the queries to be executed by the
RDBMS.

RR n~4780



14 D. Touzet, F. Weis, M. Bandtre

The update supervisor. This component has to detect the consequences that
submitted modification queries (insert, delete and update) may have on on-going
continuous queries. Given the descriptor of a modification query @,,, it examines all
continuous queries in the descriptors list. In order to determine if the execution of
Q. interferes with the result of a continuous query C'@Q, it computes the intersection
between data handled by @, and local data which currently match C'Q). If the
computed set is not empty, the device having issued CQ has to be notified of the
modifications to be performed on CRS(CQ).

Remind the example presented in Table 1. We assume the user has sold the CD
Transformer. Now, he wants to remove it from the table with Query 3.

Query 3 Remowving the "Transformer’ CD from cd_to_sell.
delete from cd_to_sell where cd_title = ’Transformer’;

Consider the continuous query C(Q) issued by a neighbouring device is still running
(see Query 2). When Q3 is submitted, the update supervisor computes the inter-
section between data that @3 handles (Row2) and those which locally match CQ
(Row2, Row3). As the computed intersection is not empty, and according to the
type of the modification query (in this case, delete), the querying device has to be
notified of the deletion of data locally identified by (cd_to_sell, Row?2).

The query descriptors manager. It manages the list of the continuous queries
which are running in the device’s vicinity. This list contains two kinds of descriptors:
those associated to locally submitted continuous queries (proximate or not) and
those associated to proximate continuous queries issued by neighbouring devices. A
descriptor is removed from the list when an explicit call to closeContinuousQuery
occurs. When a device leaves the neighbourhood, the system closes all the continuous
queries the device has issued.

The neighbourhood manager. The aim of this component is to provide applica-
tions with an up-to-date list of neighbouring devices. This list is stored in the device’s
neighbourhood table. Each device is associated in the table to a unique handler and
the time stamp of its insertion. Applications can access the neighbourhood table
and read its content each time they require information about their physical vicinity.
Those frequently requiring such information may issue redundant readings as the
table remains unchanged between successive accesses. The neighbourhood manager
therefore provides applications with a notification service. As they subscribe to the
service, applications receive the current content of the table. Afterwards, they are

INRIA
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notified each time a device leaves the vicinity or a new neighbour is detected. The
PERSEND querying system subscribes to the notification service to get information
about its physical neighbourhood.

4.3 Managing continuous queries with PERSEND

We have presented the architecture of the PERSEND querying system. We now
study how proximate continuous queries are managed: first, on the device having
issued it and then on its neighbouring devices. Note that, save the communication
issues, local continuous queries are managed in the same way than proximate ones
are.

Locally submitted proximate continuous queries. A continuous query is sub-
mitted using the executeQuery function. As every query, it is transmitted to the
query parser. If it is not syntaxically correct, executeQuery returns an error to
the querying application. Otherwise, an empty CRS is associated to the continuous
query and executeQuery returns a handler enabling the application to access the
CRS.

The analysis of a query provides the system with its associated descriptor. Con-
tinuous queries’ descriptors are indexed in the descriptors list. Then, PERSEND
broadcasts to its neighbourhood the query associated to its descriptor. In the same
time, it computes the set of local rows which match the continuous query (by sub-
mitting the query to the RDBMS) and inserts them in the associated CRS. As data
sets associated to the query are received from neighbouring devices, they are merged
to the CRS according to the semantics defined in Section 3.

As a device leaves the vicinity, the rows it has provided are removed from the CRS.
A device entering the vicinity is sent all current proximate continuous queries which
have been locally issued. When data modifications are performed, those interfering
with the continuous query are detected by the update supervisor. The supervi-
sor then generates the update commands to be performed on the CRS. Likewise,
when update commands relevant to the query are received from a queried device, the
CRS associated to the query has to be updated according to the transmitted com-
mands. Finally, the querying application can close the continuous query by calling
closeContinuousQuery: the command is then broadcasted to the neighbourhood
before the descriptor to be removed from the descriptors list.

Remotely submitted proximate continuous queries. A device participates
in a remote proximate continuous query as soon as it is notified of the existence of
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such a query. Two cases have to be considered: a neighbouring device creates a new
proximate continuous query or a new device, currently running such queries, enters
the vicinity. In both cases, the queried device receives the continuous query to be
executed and its descriptor. Note that, in the second case, the queried device receives
all the on-going proximate continuous queries of its new neighbour.

The descriptor of a received proximate continuous query is indexed in the local de-
scriptors list. The query is locally executed (on the local RDBMS) and the obtained
result is returned to the querying device. Note that if the local execution of the
query returns an empty set, no message is sent back.

When data modifications are locally performed on data involved in, at least, one re-
mote proximate continuous query, the update supervisor has to notify the querying
device about it. For this purpose, it generates a message containing the suited wup-
date commands and broadcasts it to its neighbourhood. Finally, a remote proximate
continuous query is stopped, and its descriptor removed from the descriptors list,
when the querying device either leaves the vicinity or explicitly closes the continuous
query by calling closeContinuousQuery.

5 Implementation issues

A first prototype of the PERSEND querying system has been implemented. The
experimentation platform we used is based on PocketPC PDAs running Windows
CE 3.0 and equipped with IEEE 802.11b communication cards. Users’ data are
accessed by the mean of the Windows ADOCE 3.1 library.

The neighbourhood manager uses a simple discovery protocol, based on UDP
sockets, in order to build and maintain the neighbourhood table. Devices announce
their presence by periodically broadcasting a Hello message. When an announcement
message is received, its sender is inserted in the local neighbourhood table associated
with the current time stamp. If the sender is already in the table, the neighbourhood
manager simply sets its associated time stamp to the current time. When a fixed
period has elapsed since the last annoucement of a neighbour, its entry is removed
from the neighbourhood table. As devices constituting our platform are equipped with
homogeneous communication facilities, we currenlty assume a symetrical discovery
(a device seeing a neighbour is also seen by this neighbour).

Each device runs a PERSEND server which uses the ADOCE interface to execute
SQL queries. Communications between remote PERSEND servers are also based on
UDP sockets. As ADOCE intern features are not available, we have implemented
our own query parser. Having no knowledge of the queried databases structures,
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this parser is not able to associate fields defined in a query to their respective tables.
Therefore, we assume users to prefix each declared field with either the name of table
it is issued or any defined alias (see Query 4).

Query 4 Rewriting Query 2 to deal with the query parser’s limitations.

continuous vicinity select C.cd_title, C.cd_price
from cd_to_sell C
where C.cd_price is between 10 and 20;

Finally, we implement a basic continuous query viewer in order to experiment our
system. The viewer enables users to submit all types of queries to the PERSEND
server and displays the results of on-going continuous queries. Displayed data are
periodically read from opened CRS.

6 Related works

The PERSEND querying system considers the neighbouring devices as the only rel-
evant data sources. So, the physical neighbourhood of a device can be seen as its
current context. This notion of context is widely used in the pervasive computing
area: pervasive systems aim to provide users with contextual services [7]. Since a few
years, some of these studies have focused on neighbouring interactions in proximate
environments. Some systems have been specifically designed in order to initiate ca-
sual meetings when mobile users meet. Thus, Proxy Lady triggers an alarm when a
person within a pre-defined list is physically close enough [8]. When such a meeting
occurs, Proxy Lady spontaneously provides the user with documents it has previ-
ously specified. Likewise, Proem performs some exchanges of users’ profiles in order
to initiate such encounters [9]. When a user-defined condition (such as mutual inter-
ests, common friends) is met, Proem triggers the action associated to the condition.
The Side Surfer prototype was designed to enable spontaneous exchanges of relevant
information between mobile users [10]. Based on the keywords used to describe its
personal documents, Side Surfer automatically generates each user’s profile. During
physical encounters, these profiles enable a fast discovery of mutual interests.

Some pervasive studies more particularly deal with data access in proximate
environments. Thus, the SPREAD system provides a spatial programming model
[11] in which data can only be accessed in the physical space associated to the device
which manages them. Data are published by the mean of tuples and are queried using
some tuples patterns. By associating a physical space with each device, SPREAD
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provides a larger model than the one PERSEND considers. However, compared to
databases systems, the tuples used to define data only enable to handle basically
structured information. Moreover, SPREAD does not deal with data storage issues.
MoGATU is another system which aims to enable proximate data accesses [12].
Managed data and submitted queries are defined by the mean of a semantic web
language. The MoGATU system only enables to run simple queries, that is, in
a database model, queries involving data stored in a single table. Based on the
profile of the user, and according to its current context, implicit queries can also
be processed. However, and contrary to PERSEND, the MoGATU system allows
queries to be routed to non-neighbouring devices. As devices can, by this mean,
access non-neighbouring data, the notion of physical neighbourhood is partially lost.
Finally, MoGATU does not consider the storage issues.

In the database area, PERSEND is of course close to the studies on continuous
queries. Besides works presented in Section 2.1, we can mention the Alert system
[13]. Alert aims to build an active RDBMS based on a classical RDBMS. It defines
the notion of active table which is an append-only table. Active queries can be run
on active tables: they provide an append-only result set in which new relevant rows
are added at the end. Such result sets are read using the fetch-wait primitive. This
primitive is a blocking read: once the last row of the result set has been returned,
the reading process is blocked until a new row is inserted in the result set.

Finally, the Microsoft ADOCE library [14] enables users to open data sets which
are dynamically linked to the queried tables. When queried data are issued from a
single table, the obtained data set behaves as a continuous result set by reflecting
the updates performed on the data source. However, the library enables neither
to manage continuous result sets associated to join queries nor to define proximate
result sets.

7 Conclusion

In this paper, we presented the design and the implementation of the PERSEND
querying system. This system allows applications running in a proximate environ-
ment to define and access continuous result sets (CRS). These data sets can involve
both local data and data which are stored by current neighbouring devices. The
PERSEND system is based on RDBMS and the continuous result sets are expressed
using the SQL querying language. We defined, in this scope, new semantics for SQL
agregation functions which are suited to proximate environments. We also intro-
duced two new keywords enabling the definition of continuous and proximate queries
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with SQL. The PERSEND system associates each continuous query with a CRS
which can be read by the querying application. Managed CRS are kept up-to-date
by supervising the data updates performed on the neighbouring data sources. In
order to demonstrate our system, we developped a first prototype and implemented
a continuous query viewer application.

During the prototype implementation, additional challenges have arisen. Thus,
in order to make result sets easily readable, users consulting the query viewer appli-
cation may want displayed rows to be sorted according to their time of presence in
the data set. For this purpose, a time stamp has to be associated with each row of
CRS. Likewise, in order to be aware of the last modifications, applications currently
have to periodically scan by themselves the content of the CRS they have opened.
Just as for the neighbourhood table, this scheme is not satisfactory: applications can
miss important updates and perform some unnecessary readings. We therefore plan
to associate CRS with a notification mechanism enabling a querying application to
be warned when its CRS is updated. This mechanism can be provided by the mean
of a blocking event-based primitive. Each time a CRS is updated, such a primitive
could return to the querying process the ID of the updated row and the description
of the performed update.
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