
HAL Id: inria-00071820
https://hal.inria.fr/inria-00071820

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UML 2.0 Structure Diagram for Intensive Signal
Processing Application Specification

Cedric Dumoulin, Pierre Boulet, Jean-Luc Dekeyser, Philippe Marquet

To cite this version:
Cedric Dumoulin, Pierre Boulet, Jean-Luc Dekeyser, Philippe Marquet. UML 2.0 Structure Diagram
for Intensive Signal Processing Application Specification. [Research Report] RR-4766, INRIA. 2003.
�inria-00071820�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50452942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00071820
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
47

66
--

F
R

+
E

N
G

ap por t
de r ech er ch e

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

UML 2.0 Structure Diagram for Intensive Signal
Processing Application Specification

Cédric Dumoulin — Pierre Boulet — Jean-Luc Dekeyser — Philippe Marquet

N° 4766

March 11, 2003

Unité de recherche INRIA Futurs
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

UML 2.0 Structure Diagram for Intensive Signal

Processing Application Specification

Cédric Dumoulin∗, Pierre Boulet∗, Jean-Luc Dekeyser∗, Philippe Marquet∗

Thème 1 — Réseaux et systèmes
Projet DaRT

Rapport de recherche n
�

4766 — March 11, 2003 — 15 pages

Abstract: Complexity in the digital systems integration rises from the heterogeneity of the
components integrated in a chip. The simulation or code generation of such systems require
to validate methodologies, platforms and technologies to support integration, verification
and programming, of complex systems composed of heterogeneous virtual components.

Several formalisms are needed according to their applicability in order to propose a
framework of formal specification. The unification of these formalisms leads to visually model
intensive signal processing applications for embedded systems. A part of this methodology
has come down from the Array-OL language. An application is represented by a graph of
dependences between tasks and arrays. Thanks to the data-parallel paradigm, a task may
iterate the same code on different patterns which tile its depending arrays.

The visual notation we propose uses a UML 2.0 standard proposal. This allows usage of
existing UML 2.0 tools to model an application. A UML profile dedicated to Intensive Signal
Processing with a strong semantics allows automatic code generation, automatic mapping
on SoC architectures for early validation at the higher level of specification.

Key-words: UML 2.0, structure diagram, intensive signal processing, modeling, data-
parallelism, data dependences

This work has been supported by the ITEA 99038 project, Sophocles.

∗ Laboratoire d’Informatique Fondamentale de Lille, Université des Sciences et Technologies de Lille, Cité

Scientifique, 59655 Villeneuve d’Ascq cedex, France

Utilisation du diagramme de structure d’UML 2.0 pour

la spécification d’applications de traitement de signal

intensif

Résumé : La complexité d’intégration des systèmes numériques vient de l’hétérogéné̈ıté
des composants intégrés sur une puce. La simulation ou la génération de code pour de tels
systèmes nécessite la validation de méthodologies, de plate-formes et de technologies pour
supporter l’intégration, la vérification et la programmation de systèmes complexes composés
de composants virtuels hétérogènes.

En fonction de leur domaine d’application, plusieurs formalismes sont nécessaires pour
proposer un cadre de spécification formelle. L’unification de ces formalismes conduit à la
modélisation visuelle d’applications de traitement de signal intensif pour systèmes embar-
qués. Une partie de cette méthodologie vient du langage Array-OL. Une application y est
représentée comme un graphe de dépendances entre des tâches et des tableaux. En utilisant
le paradigme du parallélisme de données, on peut décrire la répétition d’une même tâche sur
différent motifs pavant les tableaux avec lesquels elle est en relation de dépendance.

La notation visuelle que nous proposons utilise une proposition de standard UML 2.0.
Nous pouvons ainsi réutiliser les outils UML 2.0 pour modéliser une application. Nous
proposons ici un profil UML dédié au traitement de signal intensif avec une sémantique
forte permettant la génération de code automatique ou le placement sur des architectures
de type SoC pour une validation au plus tôt des spécifications.

Mots-clés : UML 2.0, diagramme de structure, traitement de signal intensive, modélisa-
tion, parallélisme de données, dépendances de données

Structure Diagram for ISP Application Specification 3

1 Introduction

In the next decade, the high performance software and hardware system development will
play a crucial role in the field of telecommunications and multi-media applications. These
systems will have to cover various problems, according to different points of view: from
specification of the application to the realization of embedded hardware systems, via the
implementation on high performance COTS (Components Off The Shelf). These systems
relate to intensive signal or image processing (numerical filtering, JPEG2000). They will re-
quire programming environments for specification, simulation/verification, compilation and
execution in order to reduce the time to market. The architecture of these systems will be
basically heterogeneous. It will be based on the integration of various processing units (soft-
ware and hardware) devoted to specific functions like intensive processing, decision-making
and monitoring. Unfortunately, the effort of programming and monitoring such digital sys-
tems becomes increasingly complex. The evolution of the environments as often does not
compete with the technology evolution.

The targeted embedded architectures have multiple processing units and very often some
of them are parallel. Indeed, to exploit parallelism in architecture allows to reduce the
clock frequency and by way of consequence its voltage supply. Consequently two fields
of computing are brought to meet: systematic signal processing associated with intensive
data processing where the processing of quantity of data must be ensured in respect of
time constraints; and high performance computing in order to exploit parallelism as well as
possible and to take into account intensive data flows.

In a SoC (System on Chip), the heterogeneity of the virtual components (or Intellectual
Properties, IPs) and the scarcity of a development environment for each one oblige to have
recourse to some IP assembler. The user goes to and fro between specification of the appli-
cation and optimization of the code produced on a given machine, often using tools of low
level where differentiation between these two tasks is not clearly established.

Our objectives are the same ones as those of the traditional programming: to model, to
unify and to re-use! The difference comes from the application domain itself. The restriction
to a domain makes these objectives reachable by the proposal of a specific framework for
the development of data-parallel applications dedicated to signal processing. We propose a
model based on single assignment and the explicit expression of dependences which they are
temporal or spatial. To ensure respect of the standards used in the industrial world, our
proposals are integrated in the UML (Unified Modeling Language) formalism [8].

Needs of independence between application and architecture result from the diversity
of our targets. Currently, due to the lack of high level specification tools, the developers
mix the application itself with its execution on a particular machine. The consequence of
this type of development is the lack of reusability, dynamicity and thus a heavy and often
repetitive work. The observation of implemented techniques in industrial projects leads us
to propose a separation of application specification, architecture specification and mapping
specification of an application on a particular architecture. This specification methodology in
a“Y”style [5] authorizes by construction to re-use as well the application as the architecture.

RR n
�

4766

4 Dumoulin, Boulet, Dekeyser & Marquet

The“Y”Model The“Y”model is based on three models in a single environment allowing
a visual specification of ISP (intensive signal processing) applications, target architectures
and deployment of applications on architectures. This particular model allows to differentiate
the specification, the support of execution and the execution as such.

The separation of the three models opens the way of the reusability. The same architec-
ture or application will be able to appear in several projects; in particular one must be able
to re-use an application on a new architecture, to develop a new application or to transform
an application on an existing architecture. Of course the mapping remains related on the
application and architecture, even if it is independent of the execution/simulation platform
(SystemC, etc).

From this analysis we can extract a certain number of criteria common to the three
models:

To use the same formalism: a user must be able to go easily from a specification to
another without having to learn new concepts. It comes from the expression of the
dependences: spatial and temporal for the applications, data flow on time for the
hardware components.

To use the same notation: here we retain the UML “visual language”, to which we add
appropriate profiles: one dedicated to ISP, one to the architecture, and one for the de-
ployment. We plan thereafter to provide a language derived from UML and dedicated
to ISP. This language will be expressed using the MOF [7].

To use the same internal representation: the visual and exploitation tools of the mod-
els use internal representations (memory or persistent representations). We propose a
common representation to all the tools we develop, as well as basic interfaces/libraries
which allow its handling.

To use the same external tools: the tools used can be the same ones for the various
specifications, so that the users can go easily from one specification to another.

To ensure an automatic exploitation: various methodologies will allow automatically
to obtain models of mapped applications usable by various tools such as code genera-
tors, simulators...

At this level, the model remains independent of the execution or simulation platform. It
is then, in respect of MDA [1] philosophy (figure 1), that projection on execution models
such as SystemC, VHDL, CORBA or IP simulators will produce a heterogeneous specific
representation to the target platforms. All these codes will have to be inter-operable in order
to ensure the communications between the IPs.

Only the application specification model will be described in this paper. From the Array-
OL language we will show how it is possible to reach a formal specification model in a UML
framework. Thanks to the UML 2.0 proposal, structure diagrams will be used to describe
several levels of data dependences.

INRIA

Structure Diagram for ISP Application Specification 5

Figure 1: Specification with a MDA philosophy

2 From the Array-OL Language. . .

Array-OL (Array Oriented Language [4, 2]) was developed by Thomson Marconi Sonar in
order to fulfill the needs for specification, standardization and efficiency of multidimensional
signal processing. Array-OL relies on a graphical formalism in which the signal processing
appears as a graph of tasks. Each task is performed on multidimensional arrays.

Array-OL proposes a two level approach. The first level is a global level (figure 2) and
defines task coordination by the way of dependences between tasks and arrays. A second
level, which is local (figure 3), details the elementary actions which are carried out by a task
on array elements.

Figure 2: Array-OL global model: a directed acyclic graph of tasks and arrays

RR n
�

4766

6 Dumoulin, Boulet, Dekeyser & Marquet

Figure 3: Array-OL local model: parallel instances of an elementary task

Global Model: This looks like the well-known static data-flow model. The application is
represented as a graph where each node represents a task and the edges define dependences
between tasks. Each edge carries an array. Nevertheless, in the static data-flow model,
the graph edges carry a continuous token flow of all the tasks running in parallel. In the
Array-OL model, an edge carries a single array (which may be of infinite size) and each task
is triggered only once. A graph node (task) execution produces its output arrays from its
input arrays. The task specification and the details of the array element usage are hidden
at this specification level.

The array defines a data structure for signal processing:

� Signal processing applications are organized around a regular and potentially infinite
stream of data. Array-OL captures this stream in arrays with one possible infinite
length dimension.

� Some spatial dimensions of arrays used in signal processing correspond to sensors.
Such sensors may be organized in a circle. Consequently, Array-OL array dimensions
wrap around to form a toroid.

Local Model: It details the task specification. It defines the access to the data in the
arrays and the computations to be done on those data. The whole task execution is divided
into small identical computational units called Elementary Transformations (ET). An ET
operates on subsets of the arrays called patterns. Output patterns (patterns in the output
arrays) are produced by applying the ET on the patterns of the input arrays. So, a task
always consists of an iterator constructor which iterations are independent.

� Fitting and Paving

– Patterns are multidimensional arrays. Equidistant elements in a pattern are also
equidistant in the array. A pattern may be defined by an origin in the array and

INRIA

Structure Diagram for ISP Application Specification 7

a set of vectors (fitting vectors; one vector being associated to each dimension of
the pattern).

– Two equidistant output patterns are produced by two equidistant input patterns.
The array paving with patterns is given by a first pattern in each array and a set
of paving vectors.

� ET Library or Hierarchical Definition

– For each paving iteration, the input patterns are extracted from the input arrays
and an ET is applied on these patterns to produce the outputs. These patterns
are then stored in the output arrays.

– A library of predefined ETs is available on different computer architectures to
process generic data parallel tasks.

– A hierarchical extension of Array-OL allows the programmer to define his own
ET in Array-OL. Input/output patterns of the first level are considered as arrays
on the sub-level of the hierarchy. A new Array-OL global level defines tasks that
manipulate these arrays. This hierarchical construction may be applied as many
times as necessary.

Signal processing dedicated to detection systems refers to multidimensional arrays. As
in digital sound processing, a first dimension allows sampling the signal in chronological
order. A second dimension generally represents the different sensors; the temporal sampling
is applied on each of them. During the signal processing, other dimensions may appear. For
example during the FFT implementation a new dimension represents the frequency. The
temporal reference is modified and matches the sampling of the different FFT execution
ages.

Despite its ability to express signal processing applications, Array-OL lacks a formal
visual modeling tool and associated compilers. This is a gap that we wish to fill.

3 . . . To UML

The choice of UML [8] and especially the UML 2.0 proposal from U2 partners [11] as a
common language of modeling was essential because of its advantages:

� UML is a recognized standard and more and more used, especially in industrial
projects.

� It offers extension mechanisms (stereotypes, tagged values, profiles) enabling us to
bring our own elements without modifying UML itself.

� It does not impose the use of a particular methodology. We can validate our own
methodology, in particular our “Y” model.

� It is visual as well as textual.

RR n
�

4766

8 Dumoulin, Boulet, Dekeyser & Marquet

� Various visual tools already exist around the UML standard (Rational Rose [13], Ob-
jecteering [12], Tau G2 [16], etc).

� UML is modeled by a metamodel specified itself by the MOF [7]. This enables us
to provide our clean metamodel which will be initially an extension of UML. Later,
by reduction of these specifications our metamodel will provide only what is really
necessary to the specification of ISP applications.

� The exchange of models between the tools is (more or less) ensured by standard
XMI/XML [10]. The tools we will develop will profit from an internal representa-
tion based on the metamodel of our ISP UML language (expressed using the MOF).
Persistence, as well as the exchange with the other tools, is done using XMI/XML.

UML was originally designed in order to model the artifacts of a system with a large software
part. This includes the specification of applications, architectures and the deployment of
applications on architectures. It is thus theoretically possible to specify an ISP application
with UML. However, no methodology allowing an automatic exploitation of the model exists
for ISP applications. This is the gap we propose to fill. Moreover, the concepts of UML
allowing the visual specification of an architecture and the deployment of the application
based on this architecture are recognized as being the “poor relations” of UML. Here again,
we will propose a methodology using UML to allow the specification of complex architectures
used in ISP and the application deployment on these architectures.

Other projects proposing the modeling of real time or embedded applications also made
the choice of the UML(-like) language. Thus, telecommunications are proposing a new ver-
sion of SDL (Syntax Description Language), SDL-2000 [15] UML-oriented. The theoretical
model of SDL is based on finite state machine, parallel agents (kind of classes) communicate
together by signals. SDL does not allow the specification of architectures or the deployment.
The UML community proposes extensions of UML (UML-RT, RT-UML [14, 9]) dedicated
to the modeling of real time applications. These proposals are also oriented towards ap-
plications communicating by signals. They allow code generation but do not integrate the
architecture specification. The “Embedded UML” proposal [6] develops a synthesis of the
existing models by retaining only the attractive points. It proposes to separate the three
specifications: application, architecture and deployment. The link with the execution plat-
forms is done during the deployment specification. Again the communication between the
“blocks” is done by signals. Our approach is different from the preceding projects: we want
to model applications by the expression of the dependences, rather than by signal exchanges
or message passing. Moreover, we want clearly to separate the different specifications and
thus to allow the re-use of applications and architectures

4 ISP UML: Application Specification

Our objective relates to the specification of algorithms on a high level of abstraction. We
deduced the following constraints from the observation of various models of specification
used by industrial partners.

INRIA

Structure Diagram for ISP Application Specification 9

Single assignment: The data are mainly arrays which are produced by an elementary
processing task and consumed without modification by other elementary tasks. This
single assignment of arrays facilitates the visual specification of an application.

Unification of temporal and spatial dimensions: Dimensions of arrays are mainly as-
sociated with concepts suitable for the application (hydrophones, sensors, energy...).
One among them can be associated with time. It allows the identification of the var-
ious values of these same concepts during the life of the application. This dimension
size becomes infinite for an embedded application.

Expression of the temporal and spatial dependences: The dependences represents the
only bond which links the various objects handled by the program. They express the
dependences between the elements of the objects (arrays) in input/output of each ele-
mentary task. Only true dependences are explicited, either at the array level or at the
array elements level. It covers as well space dimensions as temporal ones. It allows di-
rect implementation of the compilation techniques. It guarantees implicit parallelism
by the expression of partial order based on the dependences between objects. We
identify two types of dependences

1. “Array” dependences: Global model of Array-OL, process networks, Yapi [3].

2. “Iterative” dependences: local model of Array-OL, forall of the data-parallel lan-
guages.

5 ISP UML Framework

The main concept of our proposal is the “intensive signal processing component” (ISP-
component. An application is modeled by assembling “ISP-components”, connected with
“connections”, through their “ports”. ISP-components represent Array-OL global model
tasks. Connections between ports materialize dependences. Some object oriented (OO)
concepts enable to reuse of ISP-components.

5.1 ISP-Components

The ISP-component is the main modeling element. It is composed of an interface and it
embeds a behavior. The interface describes ports that are used as potential endpoints for
connections. The interface is the only way for a component to interact with the outside
world. Its implementation is encapsulated and is completely hidden from outside world.
This allows to change an implementation independently of any other components, as long
as the new implementation respects the behavior and the interface.

The behavior is described in what we call the component structure. It is a graph of
(sub-)components connected by their ports. This structure allows a hierarchical description
of components (figure 4). An application is itself a component made of sub-components,
themselves eventually described with other components, etc.

RR n
�

4766

10 Dumoulin, Boulet, Dekeyser & Marquet

Figure 4: Compound component structure

As an alternative, the behavior can be specified by the name of a function from an
existing library, or written in some language. In these cases the component corresponds to
an Elementary Task of Array-OL.

5.2 Ports

The ports represent proxies for data handled by components. They are used as endpoints
of connections. They are directed: “In”-ports require some inputs, and “out”-ports provide
some outputs. The interconnections of components via their ports form a directed acyclic
graph representing the dependence graph.

A port also specifies the type of the data it carries. This type is defined by an interface
in the OO sense. The framework does not impose any type. It is possible to define user
types, and, thanks to the OO concept, to create a hierarchy of types. In the ISP model,
ports are defined to carry arrays using a given ancestor array type.

5.3 Connections

The connections are used to connect ports of components. A connection is directed and
represents the dependence between two components. To ensure model consistency only ports
with compatible types can be connected. Compatible means that the types are assignment
compatible in the OO sense.

INRIA

Structure Diagram for ISP Application Specification 11

5.4 Data-parallelism Expression

In ISP UML, we introduce “data-parallel components” to perform parallel signal process-
ing (similar to the “local model” of Array-OL). A nested sub-component represents the
task applied in parallel over data (check the sub-component in figure 4). The ports of the
data-parallel component and those of the nested component are indirectly connected: an
intermediate tiler (a special component) represents the “iterative dependences”. The tilers
describe how paving and fitting are applied to gather/scatter the corresponding patterns.
The sub-component is executed once for each resulting set of patterns. The model says
nothing about the execution model (sequential, parallel, pipe-line).

5.5 OO Concepts

There is a clear separation between an ISP-component definition and its usage. Thus we
have a class/instance relationship similar to the one found in OO languages. The definition
of an ISP-component (a class) is made of a component interface and a component behavior.
ISP-component instances are found in component structures that describe behavior. This
separation between a definition and its instances allows to build libraries of reusable com-
ponents. A component can be defined by inheritance from another one, like inheritance of
classes. This allows to reuse of existing ISP-components. The same OO concepts can be
applied to ports, providing libraries of reusable ports and extensions of the existing ones.

A component with no behavior can be considered as an “interface” in the meaning of OO
terminology. Interfaces are useful to define families of interchangeable components.

6 UML 2.0 Profile

The translation of our framework to UML profile uses the stereotype and tagged value
extension mechanism. ISP-components and ports are classes with appropriate stereotype,
while attributes like port direction are specified with tagged values.

The description of a component behavior (the component structure) is modeled with the
new UML 2.0 diagram, the “structure diagram”.

The modeling can be done with any UML tools, but it is preferable to chose one able to
export and import model in the standard XML/XMI way. This allows our automatic tools
to exploit the model.

6.1 Structure Diagrams

In the proposed structure diagram (figure 5), the current component is visualized as a
surrounding box containing sub-components which are visualized as a nested box. The
ports are drawn on the border of the component. The connections between components
are materialized by connectors between the corresponding ports. Such a connection can be
indirected via a single tiler in the case of data-parallel components.

RR n
�

4766

12 Dumoulin, Boulet, Dekeyser & Marquet

A

c1 : Comp1
result

c2 : Com
result

A p2
resultA

B B ComposedComponent

Figure 5: Structure diagram of a compound component (from TAU G2)

The UML 2.0 tools provide edition and visualization of tagged values and attributes and
interactive navigation between ISP-components.

The UML 2.0 structure diagram is largely inspired from its counterpart in UML-RT. The
difference is, once again, that connectors represent dependence expressions instead of signal
exchanges. Its usage should be familiar to the users of the UML-RT formalism.

6.2 Ports

Our port concept is mapped onto the port modeling element of UML 2.0. A concrete port
type is defined in a class stereotyped «portType». It is possible to refine its description
by using the OO extension mechanism. In ISP UML, all port types inherit from a well-
known class called AolArray which defines array basic attributes: element type, number of
dimensions and size of each dimension.

6.3 ISP-components

The ISP-component concept is mapped to a class stereotyped «IspComponent». The com-
ponent interface is described by a set of attributes stereotyped «port».

ISP-components are derived in three flavors 7:

� Compound components stereotyped «compoundComponent»; their structure are com-
posed only from ISP-components and connectors. This corresponds to the global model
of Array-OL. See figure 5.

� Data-parallel components stereotyped «dataParallelComponent», composed of a unique
nested ISP-component and one tiler component on each connection. This corresponds
to the local model of Array-OL. See figure 6.

� Elementary components stereotyped «elementaryComponent», which have no struc-
ture but directly refer to an external implementation.

INRIA

Structure Diagram for ISP Application Specification 13

input1

input2

'output'

task:ElementaryFilter

input1

input2

'output'

qd1: aol::AolTiler
<<aolTiler>>

array pattern

qd2:aol::AolTiler
<<aolTiler>>

array

pattern

qd3: aol::AolTiler
<<aolTiler>>

arraypattern

Figure 6: A data-parallel component

elementaryComponent
<<stereotype>>

::TTDMetamodel::Class
<<metaclass>>

CompoundComponent
<<stereotype>>

IspComponent
<<stereotype>>

dataParallelComponent
<<stereotype>>

Figure 7: The ISP-component stereotypes hierarchy

6.4 Tiler Components

The tiler component concept is mapped to the part (structured class modeling element
introduced in UML 2.0) stereotyped «tiler». The «aolTiler» stereotype is derived from the
previous one and adds the tagged values to specify the origin, fitting and paving values.

RR n
�

4766

14 Dumoulin, Boulet, Dekeyser & Marquet

7 Conclusion and Perspectives

We have presented a methodology to visually model intensive signal processing applica-
tions using the UML 2.0 proposal visual notation and the Array-OL formalism based on
dependence expressions. This methodology allows the development of reusable “pieces of
software” aimed to intensive signal processing embedded applications. Reuse is one of the
key to reduce development time and to achieve the “time to market” constraint.

The resulting models can be exploited automatically by tools like visualization, simula-
tion, transformation, code generation. This is possible because we restrict our domain to
intensive signal processing applications and because we strictly specify the rules to model
such applications in our ISP UML profile.

In the future, heterogeneous embedded systems will be taken into account by the adjunc-
tion of the architecture and deployment specification in what we call a“Y”model (separation
of application, architecture and deployment description).

The architecture and deployment specifications will follow the same formalism used for
the application description, providing a consistent set of high level specification tools for
embedded system design.

We also consider integration of new elements to our “visual language”. As example, we
will develop a new kind of dependence allowing modeling of irregular applications with non
systematic processing.

ISP UML together with architecture and deployment specifications stay independent
from the simulation and execution platforms. A model to model translation (mapping
rules of MDA) will allows to target different platforms such as SystemC and CORBA for
simulation and specific assembly languages for IPs.

References

[1] OMG Architecture Board. Model driven architecture (MDA). Technical report, OMG,
2001. ormsc/2001-07-01.

[2] Pierre Boulet, Jean-Luc Dekeyser, Jean-Luc Levaire, Philippe Marquet, Julien Soula,
and Alain Demeure. Visual data-parallel programming for signal processing applica-
tions. In 9th Euromicro Workshop on Parallel and Distributed Processing, PDP 2001,
pages 105–112, Mantova, Italy, February 2001.

[3] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M. Krui-
jtzer, P. Lieverse, and K. A. Vissers. YAPI: Application modeling for signal processing
systems. In 37th Design Automation Conference, Los Angeles, CA, June 2000. ACM
Press.

[4] Alain Demeure and Yannick Del Gallo. An array approach for signal processing design.
In Sophia-Antipolis conference on Micro-Electronics (SAME), France, October 1998.

INRIA

Structure Diagram for ISP Application Specification 15

[5] D. D. Gajski and R. Kuhn. Guest editor introduction: New VLSI-tools. IEEE Com-
puter, 16(12):11–14, December 1983.

[6] Grant Martin, Luciano Lavagno, and Jean-Louis Guerin. Embedded UML: a merger
of real-time uml and co-design. http://www.gigascale.org/pubs/101.html, March
2001.

[7] Object Management Group, Inc. MOF meta object facility, specification, version 1.3.
http://www.omg.org/cgi-bin/doc?formal/00-04-03, January 2000.

[8] Object Management Group, Inc., editor. Unified Modeling Language (UML), Ver-
sion 1.4. http://www.omg.org/technology/documents/formal/uml.htm, September
2001.

[9] Object Management Group, Inc., editor. (UML) Profile for Schedulability,
Performance, and Time Specification. http://www.omg.org/cgi-bin/doc?ptc/

2002-03-02/, May 2002.

[10] Object Management Group, Inc., editor. XML Metadata Interchange (XMI), Version
1.2. http://www.omg.org/technology/documents/formal/xmi.htm, January 2002.

[11] Object Management Group, Inc., editor. U2 Partners’ (UML 2.0): Superstructure,
2nd revised submission. {http://cgi.omg.org/cgi-bin/doc?ad/03-01-02/}, Jan-
uary 2003.

[12] Objecteering Software. Objecteering version 5.2. http://www.objecteering.com/,
2002.

[13] Rational. Rational Rose v2001: Visual modeling, UML, object-oriented, component-
based development with Rational Rose. http://www.rational.com/products/rose/

index.jsp, 2001.

[14] B. Selic and J. Rumbaugh. Using UML for modeling complex real-time systems. White
paper, Rational Rose, 1998.

[15] Telecommunication Standardization Sector of Itu. Specification and description lan-
guage (SDL). http://www.itu.int/ITU-T/studygroups/com10/languages/Z.100_

1199.pdf, 1999.

[16] Telelogic. Tau generation 2. http://www.taug2.com/, 2002.

RR n
�

4766

Unité de recherche INRIA Futurs
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

