-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Asynchronous Sequential Processes

Denis Caromel, Ludovic Henrio

» To cite this version:

Denis Caromel, Ludovic Henrio. Asynchronous Sequential Processes. [Research Report] RR-4753,
INRIA. 2003. inria-00071834

HAL 1d: inria-00071834
https://hal.inria.fr /inria-00071834
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50452928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00071834
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Asynchronous Sequential Processes

Denis Caromel — Ludovic Henrio — Bernard Serpette

N° 4753 —version 2

version initiale Mars 2003 — version révisée Mai 2003

THEME 2

apport
derecherche







% I N R I A

SOPHIA ANTIPOLIS

Asynchronous Sequential Processes

Denis Caromel , Ludovic Henrio , Bernard Serpette

Théme 2 — Génie logiciel
et calcul symbolique
Projet Oasis

Rapport de recherche n® 4753 — version 2*— version initiale Mars 2003 — version révisée
Mai 2003 57 pages

Abstract: This document presents an object language that allows one to program par-
allel and distributed applications that behave in a deterministic manner, even if they are
distributed over local or wide area networks.

An object calculus, Asynchronous Sequential Processes, is proposed and determinism
properties are proposed. ASP main characteristics are asynchronous communications and
sequential execution within each parallel activity.

Key-words: object calculus, distributed, parallelism, determinism

* This versions includes an index of notations and a new version of rules in table 3 which contained
some minor mistakes. Rules are simplified, some mistakes with notations are corrected (especially inside
rules), and explanation of rules pages 18-20 is modified consequently. These modifications should improve
the readability of technical parts.

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65



Calcul ASP : Asynchronous Sequential Processes

Résumé : Ce document présente un langage objet permettant d’écrire des applications
paralléles et distribuées qui se comportent de facon déterministe, quel que soit le réseau sur
lequel elles sont distribuées.

Un calcul objet, Asynchronous Sequential Processes, est présenté et des propriétés de
déterminisme sont proposées. Les principales caractéristiques du calcul ASP sont des com-
munications asynchrones et une exécution séquentielle dans chaque activité

Mots-clés : calcul objet, distribué, parallélisme, déterminisme



ASP 3
Contents

1 Introduction 6

2 Related work 6

3 Sequential calculus 7

3.1 Syntax . . ... e e e e e 7

3.2 Semantic Structures . . . . . . . . . . . i e e e e e e e e e e e 8

3.2.1 Substitution . . . . . . . ... 8

3.2.2  StOre. . ... e e e e e e e e e e 8

3.23 Configuration . . . . . . . ... 9

3.3 Reduction . . . . . . . . . ... 9

4 Parallel calculus 9

4.1 New Syntax . . . . . v v vttt e e e e e 10

4.2 Principles . . . . . . L e 10

4.3 Informal semantics . . . . . . . . . . . . e 11

4.4 Strategies . . . . . ... 12

5 Examples 13

5.1 Binary tree . . . . . . . e e e e 13

5.2 Distributed sieve of Eratosthenes . . . . . . . . .. ... .. ... ... ... 14

5.3 A bank account server . . . . . . . .. .. 15

6 Parallel semantics 16

6.1 Structure of parallel activities . . . . . . . . .. ..o oo 16

6.2 Parallel reduction . . . . . . . . .. ... 17

6.2.1 Deep copy . . - . .« ..o 18

6.2.2 Reductionrules . . . . . . . . . .. e 18

6.3 Well-formedness . . . . . . . . . . .. ... e 20

7 Properties and confluence 21

7.1 TFutures and parametersisolation . . . ... .. ... ... ... ... ... 21

7.2 Compatibility . . . . . . . . e e e 22

7.3 Equivalence moduloreplies . . . ... ... .. ... ... .. 23

7.4 Confluence . . . . . . . . . . . 24

7.5 Deterministic Objects Networks . . . . . . . . . .. .. ... ... ..., 25

7.6 Case of FIFO service . . . . . . . . . . . . . . . . . . 27

RR n® 4753



4 Caromel, Henrio, Serpette
8 Proofs 27
8.1 Equivalence modulo futures . . . . . . .. ..o 28
8.1.1 Renaming . . . . . . . .. 28

8.1.2 Reordering requests . . . . . . ... ... L. 28

8.1.3 Futureupdates . . . . . . . .. ... 28

8.1.4 propertiesof =p . . . . ..o 31

815 REPLY and =p . . . . . . o o i i it e e e e e e e e e e e e e 33

8.1.6 Equivalence modulo futures and reduction . . . . . . ... ... .... 34

8.1.7 Another formulation . . . ... .. ... ... ... .. ... ... 37

8.1.8 [Equivalence of the two definition . . . .. ... .. ... ... ..... 39

8.1.9 Decidability of =p . . . . . . . . .. .. 41

8.1.10 Examples . . . . . . . L 42

8.2 Proving Confluence: Diamond Property . . . .. ... .. ... ... ..... 44
8.2.1 Context . . . . . . o i i e e e e 44

8.2.2 Localconfluence . ... ... ... ... . ... .. ... .. ... .. 44

8.2.3 Extension . . . . . . . . . e e e e e e 48

9 Conclusion 50
A Notations 55

List of Figures

0O U W iN -

Example of a parallel configuration . . . . . .. ... ... ... ... 11
Example: abinary tree. . . . . . . .. ... oL L 13
Sieve of Eratosthenes (pull) . . . . .. ... ... . ... L L. 15
Sieve of Eratosthenes (push) . . . . . . ... ... .. ... L. L. 15
Example : a bank application . . . . . .. ... ... ... 0oL, 16
REQUEST « & v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 20
SERVE  + + v v v v vt e e e e e e e e e e e e e e e e e e e e e e e 20
ENDSERVICE & &« v v v v v v vt et e e e e e e e e e e e e e e e e e e e 20
REPLY &+ v v v v vttt e e e e e e e e e e e e e e e e e e e e e e e 20
Updates in a cycle of futures . . . . . ... ... ... oo oL 24
Simple example of future Equivalence . .. ... ... ... ... ... ... 29
Simple example of future Equivalence . . . ... ... ... ... ....... 42
Example of “cyclic” proof . . . . . . . ... .. 43
Equivalence in case of cycle of futures . . . .. ... ... ... ... .. ... 43
Another example . . . . . . .. Lo 43
The Diamond property proof . . . . . ... ... ... ... ... .. 49

INRIA



ASP 5

List of Tables
1 sequential reduction . . . . . .. ... L. 10
2 Deep copy - - - o o o o e 18
3 Parallel reduction (used or modified values are non-gray) . . . . . . .. .... 19
4  Paths definition . . . . . . . ... 29
5  equivalence (short) . . . . .. ... .. ... 38
6 Equivalence . . . . . . . .. 39

RR n® 4753



6 Caromel, Henrio, Serpette

1 Introduction

Seeking determinism for parallel programming, we design a calculus named ASP: Asyn-
chronous Sequential Processes and formalize determinism properties on this calculus. ASP
models an object language with asynchronous communications and sequential execution
within each parallel activity.

We start from a purely sequential and classical object calculus (¢imp-calculus) [1] and
extend it with a single parallel constructor that turns a standard object into an active one,
executing in parallel. Automatic synchronization of processes comes from wait-by-necessity
[5]: a wait automatically occurs upon a strict operation on a communication result not yet
available. Both programs (see the included binary tree example, Figure 2), and semantics
illustrate the similarities between the sequential and parallel points of view.

The passing of futures (results of asynchronous calls) between processes, both as method
parameters and as method results is an important feature of our calculus. As futures can
proliferate, a strategy must be specified to choose when and how a value should be updated.
Therefore, in practice many strategies can be implemented (e.g. eager, lazy): the ASP
calculus captures all the possible update strategies, and thus the demonstrated properties
are valid for all of them. While communication is asynchronous, a given process is insensitive
to the moment when a result comes back. This is a powerful characteristic of the convergence
property we exhibit.

On the practical side, the ASP-calculus model is implemented as an Application Pro-
grammer Interface (API), ProActive [6], allowing parallel and distributed programming. It
is freely available for experiments.

The most valuable property states that the execution of a set of processes is only deter-
mined by the order of arrival of requests and asynchronous replies can occur in an arbitrary
order without observable consequence. Further, a stronger condition provides determinism
in ASP. Note that this work can be related to linearized channels in 7-calculus [21] and seems
to some extent more general as will be detailed later on. Moreover, the fact that the model
described here is implemented proves that our calculus is based on realistic hypothesis.

This paper is organized as follows. Section 2 compares our calculus with other concurrent
calculi and their confluence properties. Section 3 presents the sequential part of our calculus,
which is based on the ;. ,-calculus of [1]. Section 4 informally introduces the ASP calculus
and its principles. section 5 gives some examples. Section 6 presents the semantics of ASP
and Section 7 presents its main properties. Appendix gives technical details of some proofs
and definitions.

2 Related work

The ASP-calculus is based on the untyped imperative object calculus of Abadi and Cardelli
(gimp-calculus of [1]). Our local semantics looks like the one of [11] but we did not find any
concurrent object calculus ([12], [15], [27]) with a similar way of communication between
asynchronous objects. Thus our calculus seems to introduce new chacteristics especially

INRIA



ASP 7

in the way of communication with futures which are interesting both theoretically and in
practice.

For example in [4] and the more formal calculus and semantics found in [26], the gen-
eralised references for all mutable objects, the presence of threads and the principle of
serialization (with mutexes) make the Obliq and @jeblik languages very different from our
concepts.

Our calculus can be rewritten in m-calculus ([25], [24]) but this would not help us to
prove our confluence property directly. Under certain restrictions (cf. [32], [21]), m-calculus
terms can be statically proved to be confluent and such results could be applicable to some
ASP terms. But, even if our confluence property is not necessarily statically verifiable it
seems much more powerful. The join-calculus [9], [10] would allow us to express mobility
and distribution but the difference of semantics between this calculus and ASP would lead
us to the same problems.

Proving equivalence between terms can be performed by introducing bisimulation on an
object calculus like in [14]. [11] uses CIU equivalence but deals only with static terms and
we are interested in dynamic properties like confluence.

Process networks [19] provide confluent parallel processes but require that the order of
service is predefined and two processes cannot send data on the same channel which is more
restrictive and less concurrent than ASP.

[31] expressed a programming model ensuring the confluence of programs by analyzing
(mainly dynamically) shared memory accesses in order to ensure non-interference. But, it
is based on a shared memory mechanism with asynchronous threads and not on possibly
distributed programs.

wofBA [16, 18] is a concurrent object-oriented language. A condition sufficient for re-
turning from a method before the end of its execution is expressed, thus increasing the
concurrency without necessarily losing determinacy. mo8\ can be translated in (dialects of)
w-calculus ([17]), then [29] and [23] proves the correction of transformations on moBA like
the one described in [18]. Note that our calculus generalizes the possibility of returning a
result before the end of the return by returning a future representing the result as soon as
the request is received. Further comparison between ASP and woBA will be discussed in
conclusion.

From a static point of view, the topology of object dependence graph can be analyzed
by a static analysis ([7], [28]) like in [3]. Moreover, [2] expressed a way of restricting the
object topology by typing. The balloon types topology is a sub-case of the topology that is
sufficient for confluence of ASP programs but this sub-case is simple to verify (typing).

3 Sequential calculus

3.1 Syntax

We start from an imperative sequential object calculus ¢ la Abadi-Cardelli. Note that a few
characteristics have been changed between g;,,,-calculus and ASP sequential calculus.

RR n° 4753



8 Caromel, Henrio, Serpette

Because arguments passed to active objects methods will play a particular role, we added
a parameter to every method : in addition to the self argument of methods (noted z; and
representing the object on which the method is invoked - self), an argument representing
a parameter object can be sent to the method (y; in our syntax). We do not include the
method update in our calculus because we do not find it necessary and it is possible to express
updatable methods in our calculus anyway. As in [13], locations (reference to objects in a
store) can be part of terms in order to simplify the semantics.

The abstract syntax of the ASP calculus is the following (I; are field names, m; are
method names, ¢ is a binder for method parameters and a location ¢ is an entry in the store
defined below, locations should only appear during the reduction):

a,be L=z variable,
| [li = bi;m; = <(x;,y;)a;] object definition,
|a.l; field access,
|a.l; :==b field update,
| a.m;(b) method call,
| clone(a) superficial copy,
| ¢ location (not in source terms).

As an example, a point object could be defined in the following way:
Point £ [z=0,y=0, color=[R=0,G=0,B=0;print =...];
getX = ¢(s,p)s.z, setX = ¢(s,p)s.z := p, getColor = (s, p)s.color, .. .]
Note that let © = a in b and sequence a;b can be easily expressed in our calculus and will
be used in the following.

3.2 Semantic structures

Let locs(a) be the set of locations occurring in @ and fv(a) the set of variables occurring
free in a. The source terms (initial expressions) are closed terms (fv(a) = @) without any
location (locs(a) = @), such terms are called static terms ([13]). Locations appear when
objects are put in the store.

3.2.1 Substitution

The substitution of b by ¢ in a is written: a{b — ¢}. Substitutions are denoted by 6 ::=
{b — c}. In method calls (INVOKE), substitution is applied in a classical way on bounded
variables : formal parameters are replaced by the locations of the arguments.

Let = be the equality modulo renaming of locations (substitution of locations by loca-
tions) provided the renaming is injective (alpha-conversion of locations).

3.2.2 Store

Reduced objects are objects with all fields reduced (to a location): o == [l; = ;;m; =
s(xj,y;)a;]. A store o is a finite map from locations to reduced objects: ¢ ::= {¢; — 0;}.
The domain of o, dom(c), is the set of locations defined by o-.

INRIA



ASP 9

Let o :: ¢’ append two stores with disjoint locations. When the domains are not disjoint,
o+’ updates the values defined in ¢’ by those defined in ¢. It is defined on dom(o)Udom(o")
by (6 +d')(t) = o) if € dom(o) .

o'(1) otherwise

Note that o :: ¢’ is equal to o + ¢’ but specifies that dom (o) N dom(c’) = 0.

Moreover, we define a function Merge which merges two stores (it creates a new store,
merging independently ¢ and ¢’ except for ¢ which is taken from ¢'):

Merge(t,0,0")=0d'0+0
where 0 = {/ — " | V' € dom(d") Ndom(o)\{¢}," fresh}

3.2.3 Configuration

Let a configuration (a,0) be a pair (expression, store). We denote by F (a,0) OK a well
formed configuration (no free variable and o defines every useful location):

Definition 1 (Well formed sequential configuration)

locs(a) C dom(a) A fv(a) =0
- (a,0) 0K & {‘V’L € dom(c), locs(a (1)) C dom(a) A fo(a(r)) =0

3.3 Reduction

We define a small step substitution-based operational semantics for our sequential calculus
(Table 1). It gives reduction rules for object creation (sTorearLoc), field access (FIELD),
method invocation (INVOKE), field update (UPDATE) and shallow clone (CLONE). This se-
mantics is very close to the one defined in [11]. Table 1 applies one rule on the point of
reduction represented by the unique occurrence of e in the following reduction contexts:
Riu=e | [lo = Lo, lz = R; li+1 = bi+1; My = g(acj,yj)aj]
| R.m; | Ramj(b) |e.m;(R) | R.A; :=b|e.l :=R|clone(R)

We denote by R[a] the substitution inside a reduction context: R[a] = R{e — a}.

To evaluate a source term a, we create an initial configuration (a,?) containing this term
and an empty store. Then, this configuration can be evaluated.

It is easy to show that reduction preserves well-formedness.

Moreover, a sequential reduction is deterministic up to the choice of freshly allocated
locations:

Property 1 (Determinism) ¢ wsd A c—gd = d=d

4 Parallel calculus

We introduce here a parallel calculus which is based on activities. Activities execute instruc-
tions concurrently, and interact only through asynchronous method calls. Synchronization
is due to wait-by-necessity on the result of an asynchronous method call. Each activity
contains a unique active object.

RR n° 4753



10 Caromel, Henrio, Serpette

L & dom(o)
(Rlo],0) —s (R[t],{t — o} :: o)

o) =l = ;-]

(STOREALLOC)

(FIELD)
(R[e-li],0) =5 (R[], 0)
o(t) = [smy =<(xj,y5)a;....]
(INVOKE)
(Rle.m; ()], 0) —s (Rlaj{z; — v,y; — '}, 0)
o(t) = [l = ;... (uPDATE)

(R[e.l; :=1],0) =s (R[], {t = [...;Li =15 ]} +0)

/' & dom(o)
(Rlclone(r)],0) =5 (R[], {¢' — a(1)} :: o)

(CLONE)

Table 1: sequential reduction

4.1 New syntax

We extend the sequential calculus by adding the possibility to create an active object and
to serve a request:
a,be L:=..
|Active(a, m;) activates object: deep copy + activity creation
m; is the activity method or @ for FIFO service
|Serve(M) Specifies request to serve,
laq f,b a with continuation b (not in source terms)

Where M is a list of method labels used to specify which request has to be served.

M=mq,...,m,

4.2 Principles

An activity is composed of a set of objects put in a store. Among them one is active and
every request (method call) sent to the activity is actually sent to this object. An activity
also contains the pending requests (requests that have been received and should be served
later) and the responses to the finished requests (values of the results).

Passive (non active) objects are only referenced by objects belonging to the same activity
but any object can reference active objects. The activation of an object (Active(a, m))
creates a new activity whom active object is a copy of a.

INRIA



ASP 11

eference to an

active object

Future to a

-
pending requesf -

< v - GO
N N _ -
Future ~ S ~ _Euture corresponding _ - - = 7 N~

S~ to the current term _ - L\) &RA
____________ Current equest queue

Future values” request

Figure 1: Example of a parallel configuration

For example, with the point object defined in 3.1, Point.getColor() will perform a clas-
sical method call with synchronous semantics. In the term
let p = Active(Point, () in let col = p.getColor() in p.setX(2); col.print()
every method call will be asynchronous. p.setX (2) executes the method in the activity of
p and continues the local evaluation in parallel. Execution will be blocked when we try to
perform a strict operation on the result of an asynchronous method before the end of its
execution. Such blocking states are called wait-by-necessity.

4.3 Informal semantics

Figure 1 gives a representation of a configuration consisting of two activities. In every
activity «, a current term a, represents the current computation. Every activity has its
own store 0, which contains one active and many passive objects. It contains also a request
queue which stores the pending method calls and a future list which stores the result of
finished requests. A future represents the result of a method call to an active object that
has not yet been returned.

Figure 1 contains three references to futures (one calculated, one current and one pend-
ing). The active objects are bold ellipses; futures references are diamonds; futures values,
current future and request queue are merged in the bottom rectangles : calculated futures
values are on the left, current future is represented by a bold rectangle and pending requests
are on the right. Continuation will not appear in our representation.

The Active operator (Active(a,m;)) creates a new activity o with the object a at his
root. The object a is copied as well as all its dependencies' (deep copy) in a new activity.
All subsequent calls to methods of the object activated are considered as remote request

1to prevent distant references to passive objects

RR n°® 4753



12 Caromel, Henrio, Serpette

sending. AO(«) acts as a proxy for the active object of activity a. The second argument
to the Active operator is the name of a method which will be called as soon as the object
is activated. This method is called the service method as it should specify the order of
requests that the activity should serve. If no service method is specified, a FIFO service
will be performed. That is to say the requests will be served in the order they arrived in the
activity. Note that in Figure 1, in case of a FIFO service, the current request (bold square)
progresses from left to right in the queue. When the service method terminates, no more
request is treated (end of activity).

Communications between activities are due to method calls on active objects and returns
of corresponding results. A method call on an active object (Active(o).foo()) consists in
atomically adding an entry to the request queue of callee, and associating a future to the
response. From a practical point of view, this atomicity is guaranteed by a rendez-vous
mechanism (the request sender waits for an acknowledgment before continuing its execution).
In Figure 1, futures f» and f3 denote pointers to not yet computed requests while f is a
future pointing to a value computed by a request sent to 8. Futures are generalized references
that can be manipulated classically while we do not perform strict operations on the object
they represent. Arguments of requests and value of futures are deeply copied when they are
transmitted between activities!. Active objects are transmitted with a reference semantics.

The primitive Serve can appear at any point in source code. Its execution stops the
activity until a request matching its arguments is found in the requests queue (a request on
one of the method specified as parameter of the Serve primitive). For semantics specification
reasons, we introduced the operator 1} which allows us to save the continuation of the request
we are currently serving while we serve another one. Note that with such a mechanism
there are several requests being served at the same time except if Serve operations are only
performed by top level activity (no Serve while a request is being served).

When the execution of a request is finished, the corresponding future is associated with
the calculated value (future value). Then, the execution continues by restoring the contin-
uation of the term that has served the finished request (right part of {}). The future list
associates futures with their values within the activities that computed them. A future value
is called partial if its dependencies contain futures references.

A wait-by-necessity occurs when we try to perform a strict operation (e.g. a method
call) on a future. This wait-by-necessity can only be removed by updating the future i.e.
replacing the reference to the future by a copy® of the future value (partial or complete).

Note that a field access on an active object is forbidden (it would nearly always be non
deterministic) and an activity trying to access a field of an active object is irreversibly stuck
(like an access to a non-existing field).

4.4 Strategies

Different strategies can be implemented for returning the value of a future. In our semantics,
every reference to a future can be replaced by the future value (partial or complete) at any
time. Thus, we capture all the possible strategies. Specifying a strategy would restrict the
possible reductions but could simplify and accelerate the reduction. For example, an eager

INRIA



ASP 13

strategy would send a result as soon as its value has been calculated. The future list would
become useless but this would necessitate to contact every activity containing a reference to
the future at once and could, in case of partial results, create a great number of references
to the future. At the opposite, a strategy could consist in returning only complete results
and forbidding the usage of futures as parameter of method call. Such a strategy leads to
many stuck and even deadlock configurations. These two strategies have been implemented
in ProActive.

5 Examples

5.1 Binary tree

Figure 2 shows an example of a simple parallel binary tree with two methods: add and
search. Each node can be turned into an active object. Lambda expressions, integers
and comparisons (Church integers for example), booleans and conditional expressions and
methods with many parameters can be easily expressed in our calculus. The definition of
classes (new method ...) has already been proposed by Abadi and Cardelli in the ¢,p-
calculus([1]).

add stores a new key at the right place and creates two empty nodes. Note that, in the
concurrent case, nodes are activated as soon as they are created.

search searches a key in the tree and returns the value associated with it or an empty
object if the key is not found.

new is the method invoked to create a new node.

We parameterize our example by a factory able to create a sequential (sequential binary
tree) or an active (parallel binary tree) node.

BT £ [new = ¢(c)[empty = true, left =[], right = [], key = [], value = [],
search = ¢(s,k)(c.search sk),add = s(s, k,v)(c.add skv)],
search = ¢(c)Ask.if (s.empty) then [|
else if (s.key == k) then s.value
else if (s.key > k) then s.left.search(k)
else s.right.search(k),
add = ¢(e)Askv.if (s.empty) then(s.right := Factory(s);
s.left := Factory(s); s.value := v;
s.key := k; s.empty := false; s)
else if (s.key > k) then s.left.add(k,v)
else if (s.key < k) then s.right.add(k,v)
else s.value :=v; s ]

where: Factory(s) £ s.new in the sequential case and
Factory(s) 2 Active(s.new) for the concurrent binary tree.

Figure 2: Example: a binary tree

RR n°® 4753



14 Caromel, Henrio, Serpette

In the case of the parallel factory, the following term creates a binary tree, puts in parallel
four values in it and searches two in parallel. Then it searches another value and modifies
the field b. It always reduces to: [a = 6,b = 8].

let tree = (BT.new).add(3,4).add(2, 3).add(5,6).add(7,8)in
[a = tree.search(5),b = tree.search(3)].b := tree.search(7)

Note that, as soon as a request is delegated to another node, a new one can be handled.
Moreover, when the root of the tree is the only node reachable by only one activity, the result
of concurrent calls is deterministic. This important determinism property will be detailed
in section 7.

5.2 Distributed sieve of Eratosthenes

Let us translate the distributed sieve of Eratosthenes described in [20] in ASP. In [20],
the sieve was performed by several processes linked by channels, a process for each prime
number, we tried to apply the same methodology and create one activity by prime number.
We first considered that the communications comes from the process that performs a get on a
channel to the one that performs a put on the same channel and replace such communication
by a call to a request get (see Figure 3). Repeat performs an infinite loop and will be defined
later on:
let Integer = Active([n = 1;get = <(s, _).(s.n:= s.n+1;5.n)],0) in
let Sieve = [parent = [|, prime = 0;init = <(s, par).s.parent := par,
get = ¢(s, _).let n = parent.get() in
1f(n Mop s.prime # 0) n else s.get()] in
let Sift = [source = Integer;
act=¢(s, ).Repeat(let n = source.get() in
print(n); Sieve.prime := n;
s.source :=Active(clone(Sieve.init(s.source))))] in
Active(Sift,act)

The Integer object generates all integers. There is one Sieve object for each prime
number. It returns the next integer given by its parent that is not divisible by the prime
number n. The Sift object represents the main object (we noted print(n) the output of
integer n). When a new prime is found, a new Sieve in inserted between the Sift and the
former last Sieve.

Another formulation In the preceding example, every object always replies to a get
request. Thus, the program will be evaluated sequentially and the pipelining that could
be performed on the example of Kahn and MacQueen can not occur here. The following
implementation of the sieve allows such pipelining (see Figure 4).
let Sieve = [N = 0, prime = 0; next = [|; put = ¢(s,n).s.N := n,
act = ¢(s, ).Serve(put); Display.put(s.N);
s.prime = s.N; s.next := Active(s,act);
Repeat(Serve(put);if (s.N mop s.prime # 0) s.next.put(s.N))] in

INRIA



ASP 15

T~
source | { Sieve !

P next /

(sift ) puty _ /

Figure 3: Sieve of Eratosthenes (pull) Figure 4: Sieve of Eratosthenes (push)

let Integer = [n = 1; first = Active(Sieve, act);
act = ¢(s, ).Repeat(s.n:= s.n+ 1; s. first.put(s.n))] in
Active(Integer,act)
where Display is an object collecting and printing the prime numbers.

The problem with this example is that every Sieve object keeps a reference on the
Display object. Some conflicts could occur between sending of results to the display. Here,
we can consider that determinism is ensured by the fact that as soon as a new Sieve is
created, the preceding one promise not to use its reference to Display any more.

5.3 A bank account server

Let us imagine a bank application with the following characteristics :

e A client activity sends a request to a unique Central Service to get a statement of his
account.

e The Central Service dispatches the request to the appropriate activity corresponding
to the regional database of the client.

e Further, based on the client device type (browser, PDA, ...) the Central Service
requests the formatting of the data (the statement) to the appropriate presentation
server. Some advertising could be added.

e The final result has to be sent to the client.

We define here the Central Service object (methods with more than one parameter can be
easily defined and will be used in this example) :

let CentralService = [...;
regionalDatabase = s(s,ID)....,
presentationServer = ¢(s, device). ...,
act = ¢(s, _).Repeat(Serve(getStatement)),
getStatement = s(self, ID,device).
let state = (self.regionalDatabase(ID))
.getStatement(ID)
in  (self.presentationServer(device))

.get Presentation(state) |

RR n°® 4753



16 Caromel, Henrio, Serpette

Regional
Databases

Presentation *
Servers .7

Figure 5: Example : a bank application

The client calls the getStatement request on the Central Service, which receives the account
number and device type of the client. The Central Service asks for the statement to the
appropriate Regional Database and send it to the right Presentation Server before returning
the result to the client as a reply to its initial request.

The Regional Databases have to be able to serve the request getStatement(account Number).
The Presentation
Servers will serve getPresentation(statement) requests. The client will obtain the state-
ment of his account by calling
CentralServer.get Account(ID, device) where ID is its account number and device the kind
of device it is using.

Note that at the end of the getStatement evaluation, the result to be sent to the client
might contain several futures coming from Regional Database and Presentation Server.

6 Parallel semantics

6.1 Structure of parallel activities

We assume that we have three distinct name spaces: activities(a, 8 € Act), locations(t)
and futures(f). Note that locations and future identifiers f are local to an activity and a
future will be characterized by its identifier f, the source activity a and the destination
activity § of the corresponding request ( ffHﬁ ). A parallel configuration is a set of activities

P,Q = Q[aa; 0u; ta; Fo; Ra; follBl- - ]Il - - - characterized by:

e current term a, to be reduced (the activity). a, contains the terms corresponding to
the treated requests separated by 1. The left part is the current term, the right one is
the continuation: future and term corresponding to a request that has been stopped
before the end of its execution (because of a Serve primitive);

e active object location 1, is the location of the active object of activity «, thus o4 (ta)
is the active object of «;

e store o, contains all objects of the activity «;

o future values, a list associating, for each served request, a location ¢ to its future f:
Fo={fr—1}

INRIA



ASP 17

o request queue Ry = {[mj;¢; 2P}, alist of pending requests;
e current future f,, the future associated with the request currently served.

Empty parts of activities will be denoted by @. @ designates an empty list (futures or
requests) or an empty current term (no more activity) and an empty current future (when
no request is currently treated). Note that locations are local to an activity.

A request can be seen as the “reification” of a method call ([30]). Each request R :=
[mj; i; 7P consists of

e the name of the target method (I;),

e the location of the argument passed to the request (1),

e the future identifier which will be associated to the result (f*7).

We will denote by R :: r for adding a request r at the end of the queue (R) and r :: R
for taking the first request (r) at the beginning of the queue. Similarly, F :: {f; — ¢} adds
a new future association to the future values.

In the store, we have: o::=[l; = 1;;m; = ¢(x;,y;).a;] reduced object

|AO(a) active object reference
|fut(f27) future reference

fut(feP) references the future f*~* corresponding to a request from activity a to activity
B. AO(a) references the active object in activity a. AO(a) and fut(f*~°) act as “proxy”
to a remote activity or to a future object. As they are valid across activities, references to
active objects and futures are called generalized references. Note that, when a reference to a
future appears in an activity, the activity that may know the corresponding value can easily
be contacted because it is encoded in the future reference (8 in f*~°). A future f* 77 is
characterized by f; a fresh future identifier (which is local to an activity), a the activity
that sends the request and (3 the activity that receives and handles the request.

6.2 Parallel reduction

We define the infinite loop Repeat and the FIFO service that will be used when no service
method is specified and serves the requests in the order they arrived:

Repeat(a) £ [repeat = ¢(2).a; x.repeat()].repeat()
FifoService £ Repeat(Serve(M))
where M is the set of all method labels. Note that in the following M could be any set
containing all the method labels of the concerned (active) object.
Object activation and terms containing a continuation are added to reduction contexts

as follows: _
R == ...| Active(R)| R 1t f,a

RR n° 4753



18 Caromel, Henrio, Serpette

6.2.1 Deep copy

The operator copy(t,o) creates a store containing the deep copy of o(¢). The deep copy is
the smallest store satisfying the rules of Table 2. The deep copy stops when a generalized
reference is encountered. In that case, the new store contains the generalized reference. In
Table 2, the first two rules specify which locations should be present in the created store,
and the last one means that the codomain is similar in the copied and the original store.

¢t € dom(copy(t, o)) /' € dom(copy(t,0)) = locs(a

V")) € Dom(copy(v, o))
' € dom(copy(L,a)) = copy(t,0)(V') =a(d

V)

Table 2: Deep copy

The following operator adds the part of ¢ starting at location ¢ at the location ¢/ of ¢’
avoiding collision of locations:

Copy&Merge(a,i ; o' ,1') 2 Merge(!, o', copy(t,0){t — '})
6.2.2 Reduction rules

Table 3 describes the reduction rules corresponding to the small step semantics of the parallel
calculus. Grayed values are unchanged and unused by reduction rules. We give here a short
description of these rules:

LocaL inside each activity, a local reduction can occur following the rules of Table 1. Note
that sequential rules FIELD, INVOKE, UPDATE, CLONE? are stuck (wait-by-necessity) when
the target location is a generalized reference. Only rEQUEST allows to invoke an active
object method, and rREPLY may transform a future reference into a reachable object (ending
a wait-by-necessity).

NEWACT activates an object. A new activity 7 is created containing the deep copy of the
object o,(t) and empty request queue and future values. A generalized reference to the
created activity AO(vy) is stored in the source activity a. Other references to ¢ in « are
unchanged (still pointing to a passive object).

m; specifies the activity (first method executed) and should perform Serve instructions.
If no method mj; is specified, a FIFO service is performed.

Note that in Active(Active(t,m;),0), the first target activity is reduced to
{t = AO(v)} and acts as a forwarder.

REQUEST sends a new request from activity « to activity 3 (Figure 6). A new future ff_’ﬂ
is created to represent the result of the request, a reference to this future is stored in a. A
request containing the name of the method, the location of a deep copy of the argument
stored in o, and the associated future ([m;;¢"; f*°]) is added to the request queue Rp.

2cloning future is considered as a strict operation for determinism.

INRIA



ASP 19

(a,0) —s (a',0")

- - (LocaL)
ala;o;06 F5 B f] || P— alaso's 05 F5 7 f] ]| P

~ fresh activity /' & dom(a) o ={'+— AO(y)}: 0o
oy = copy(e,0) Service = if m; = then FifoService else v.m;()
a[R[Active(t,m;j)]; 050 F3 R f] || P
— a[R[/];0';1; F; B; ] || v[Service; o515 0;0;0] || P

(NEWACT)

ao(t) = AO(B) V" & dom(og) 127P new future vy & dom(oq)

K2

a’ﬁ = Copy&Merge(oa,t' ; aa,t") o, ={r— fut(ffﬂﬂ)} 5Oy

7 7 (REQUEST)
a[Rlem; ()] 0as ta; Foi Ras fo] || Blag; 0p; 155 Fiss Ras fo] || P —
a[R[ts]; 0 to; Fus R fu] | Blag; oty ess Fias Rp it [mys o5 £ ] | P

R=R':[mj;t; f] =R’ m; €M Vme M, m¢R
(SERVE)

a[R[Serve(M)];o;¢; F5 Ry f] || P — afel(e,) ft fyR[[); 054 F5 R = R"; f'] || P

V' & dom(o) F'=F:{f—/} o' = Copy&Merge(a,t ; o,t')

alet f'ya;0505 F; 7 f] || P— afa;a’s i F' B f'] || P

(ENDSERVICE)

0a(t) = fut(f7™7)  Fa(f]7%)=1;  ob = CopysMerge(op,is ; 0ast)

aloo; 0 ta; Fos Ra; o] | Blassops s Fs Rps f6] || P — (REPLY)
afaa; ol ta; Fos R o] || Blagsopsiss Fa; Re; fa] || P

Table 3: Parallel reduction (used or modified values are non-gray)

SERVE serves a new request (Figure 7). The current reduction is stopped and stored as a
continuation (future f, expression R[[]]) and the oldest request concerning one of the labels
specified in M is treated. The activity is stuck until a matching request is found in the
pending request.

ENDSERVICE applies when the current request is finished (current term is a location). It
associates, the location of the result to the future f,. The response is (deep) copied to
prevent post-service modification of the value and the current term and current future are
obtained from the continuation (Figure 8).

repLy updates a (total or partial) future value (Figure 9). It replaces a reference to a future
by its value. Deliberately, we do not specify when this rule should be applied. It is only
required that an activity contains a reference to a future, and another one has calculated the
corresponding result. Moreover some operations (e.g. INVOKE) need the real object value of

RR n°® 4753



20 Caromel, Henrio, Serpette

First request to treat

Figure 7: SErvE

Continuation= - = = = - =

Figure 8: ENDSERVICE

Figure 9: rEPLY

some of their operands. Such operations may lead to wait-by-necessity, which can only be
resolved by the update of the future value. Note that a future f' ~F can be updated in an
activity different from the origin of the request (o # ) because of the capability to transmit
futures (e.g. as method call parameters). After an update, a future cannot be removed from
the future values because the future might have proliferated in other activities; reference
counting could be used to perform garbage collection of futures ([22], [8]).

An initial configuration consists of a single activity, called main activity, containing
only a current term p[a; 0; 0; @;0; 0]. This activity will never receive a request, it can only
communicate by sending requests or receiving replies.

6.3 Well-formedness

Let ActiveRefs(a) be the set of active objects referenced in « and FutureRefs(a) the set
of futures referenced in a:

ActiveRefs(a) = {8|3t € dom(0y), 04(t) = AO(B)},

INRIA



ASP 21

FutureRefs(a) = {f°77 |3 € dom(os), 0a(t) = fut(f7~7)}

Definition 2 (Futures list) Let FL(vy) be the list of futures that have been calculated, the
current futures and futures corresponding to pending requests. It is depicted by the rectangles
of Figure 1.

FL(y) = {]f(ﬂ?b{{;ﬂ? LJ}T(eb)FV} =Sy} = Flay) = {7 my, 0, fP77] € R}
a ,0)=J =
where { Fla) =10 ifaZad 1 f,b

A parallel configuration is well formed if all local configurations are well formed (in the
sense of definition 1), every referenced activity exists, and every future reference points to
a future that has been or will be calculated (in the absence of dead or live locks):

Definition 3 (Well-formedness)

F (aq,0q) OK

F (ta,0q) OK

B € ActiveRefs(a) = S € P

fP77 € FutureRefs(a) = 777 € FL(v)

F POK< VYaeP

It is easy to show that parallel reduction preserves well-formedness:

Property 2 (Well-formed parallel reduction)

FPok AP— P =FP ok

7 Properties and confluence

In this Section, we start with a property on topology inside an activity, then we introduce a
notion of compatibility between configuration and an equivalence relation. We conclude with
different confluence and determinism properties. In the following, ap denotes the activity
a of configuration P.

7.1 Futures and parameters isolation

The following property states that the value of a future and request parameters are situated
in isolated parts of the store.

This invariant is proved by checking it on each reduction rule. The part of o, that does
not belong to the preceding partition may be freely garbage collected. The only modifications
allowed on the futures and parameters partitions is the update of a calculated future value.

RR n°® 4753



22 Caromel, Henrio, Serpette

Property 3 (Store partitioning) Let

ActiveStore(a) = copy(ta,0a) U copy(t,0q),
L€locs(aq)
(D is the disjoint union):

oo 2 ActiveStore(a) @ copy(ty,oa) @ copy(tr,0a)
{frreba [mjser; f1€ERa

7.2 Compatibility

In this section, we introduce notations that will be useful for establishing confluence of terms
in 7.4. The compatibility property is due to the fact that the order of evaluation is entirely
defined by the order of request sending. More precisely, we prove that the order of activities
sending requests to a given one is sufficient. Note that this means that futures updates and
imperative aspects of our calculus do not act upon confluence.

First, let us precise the choice of fresh futures f;" ~P_ We consider now that the future
identifier f; is the name of the invoked method indexed by the number of requests that have
already been received by 3. Thus if the 4*" request received by 3 comes from v and concerns
method foo, its future identifier will be foo] . In the following f will denote a method
label. We denote by (RSL,),, the n*® element of the Request Sender List of activity a.

Definition 4 (Request Sender List) The request sender list is the list of request senders
in the order the requests have been received and indexed by the invoked method (FL(a) has
been defined in 6.3):

(RSLa)n = B if f77* € FL()

Note that this list is obtained from futures associated to served requests, current requests
and pending requests. Moreover for each ¢ between 0 and n (if n 4+ 1 requests have been
received by a) (RSL,)is well defined (corresponds to a unique future).

For a FIFO service then the order of requests can not be changed when they are served.
Thus the RSL is directly obtained from the concatenation of the Future Values (in the order
they have been calculated), the unique current future, and the pending requests (in the

order they arrived). Indeed if f7~% is the current future then fé—<... f17* correspond to
calculated futures and ,‘E_T_’f‘ ... correspond to pending requests.

Definition 5 (RSL comparison <) RSLs are ordered by the prefix order on activities:

f1 fn g ' f1 ' fl n<m
a’t oot Doyt Lo, & Vi€ [ln],a; = o

Definition 6 (RSL compatibility: RSL, X RSLg) Two RSLs are compatible if they have
a least upper bound or equivalently if one is prefix of the other

RSL, X RSLg < RSLy URSLg exists < (RSLy < RSLgV RSLg < RSL,)

INRIA



ASP 23

Let RSLq|,, represent the restriction of the RSL list on the set of labels M ((afo :: g1 ::
f7f2)|f0’f2 = qfo - ,yfz).

Let M,, be a static approximation of the set of M that can appear in the Serve(M)
instructions of ap?.

Two configurations are said to be compatible if all the restriction of their RSL that can
be served are compatible (have a least upper bound):

Definition 7 (configuration compatibility: P X Q)

PXQ&VaePNQ,VYM e My, UM,,,RSLy, |, URSL exists

ag: [ a0

If Serve operations are only performed by top level activity (no Serve while a request
is being served, all the “usable” restriction of the RSL are unchanged during service and it
is sufficient to consider the the future values in the order they have been calculated.

7.3 Equivalence modulo replies

P and @ are said to be equivalent modulo future replies (P =r Q) if they are identical
modulo renaming of activity, locations and futures already computed, and the update of some
futures. The last point is equivalent to considering references to futures already calculated
as equivalent to local reference to the part of store which is the (deep copy of the) future
value. Or, a future is equivalent to the future after update or more formally, a future is
equivalent to a part of store if this part of store is equivalent to the store which is the (deep
copy of the) future value (provided the updated part does not overlap with the remaining
of the store).

This equivalence is also useful in case of cycle of futures because we can obtain configu-
rations that will never converge but behave identically (Figure 10).

Note that this equivalence is decidable and that all definitions given (informally) here
are equivalent (for example P =% P’ = P =p P').

Let T € {LOCAL, NEWACT, REQUEST, SERVE, ENDSERVICE, REPLY } be any parallel reduction.

Property 4 (Equivalence and reduction)

if T = rEPLY then Q =p P’

F)i>Q/\JDEFF)Ii f ' ,REPLY*QT F, '

else 3Q", PP — — Q'ANQ' =r Q
This important property states that if one can apply a reduction rule on a configuration
then, after several reEPLY, a reduction using the same rule can be applied on any equiva-
lent configuration. The proof consists in verifying that the application of a given rule on
equivalent terms preserves equivalence (cf. 8.1 for details).

3it can be specfied by a type system. Thus we have P = Q= Map = Mag

4Note that the equivalence of request must be adequate to the RSL compatibility. Indeed, the equivalence
on pending request must allow them to be reordered provided the compatibility of RSLs is maintained :
requests that can not interfere (because they can not be served by the same Serve primitive) can be safely
exchanged. Modulo this permutation, equivalent configurations must be composed of equivalent pending
requests in the same order

RR n® 4753



24 Caromel, Henrio, Serpette

Figure 10: Updates in a cycle of futures

This property suggests to define the reduction =» which is — preceded by some
applications of the repLY rule.

Definition 8 (Generalized Parallel Reduction)

T REPLY* T . REPLY* .
= = — — ifT#rery and — if T = REPLY

Then property 4 can be rewritten in the following way:

Property 5 (Equivalence and generalized parallel reduction)
T T
P—=>QAP=rP =3Q",P = Q' ANQ =F

In the following, we present sufficient conditions for confluence of ASP configurations.
We suppose now that equivalent activities, futures and locations have the same identifier in
equivalent configurations (i.e. if P =g @, the activity corresponding to ap in the configu-
ration @ is ag). In practice this could be solved by applying the appropriate renaming on
activities before manipulating them.

7.4 Confluence

Two configurations are said to be confluent if they can be reduced to equivalent configura-
tions.

Definition 9 (Confluent Configurations: P; Y P, )
PSR

PiY P, < 3R1, R, P, - Ry
R1 =F R2

The principles of confluence property can be summarized by the fact that the only source

of non-determinism is the application of two REQUEST rules on the same destination activity;
the order of updates of futures does not have any influence on the reduction of a term. The

INRIA



ASP 25

only constrain to the moment where REPLY must occur is a wait-by-necessity on a future.
Note that even if this property is natural it allows a lot of asynchronism and proves that the
mechanism of futures is adequate and powerful. Moreover, in the following we will generalize
this property as for non-FIFO service, the order of requests does not matter if they can not
be involved in the same Serve primitive

The next property states that if, from a given term, we obtain two compatible configu-
rations, then these configurations are confluent. Thus there are two sequences that reduce
the two configurations to a common one (modulo equivalence)

Property 6 (Confluence)

P Q
P-5Qy, = Q1YQ:
Q1 X Qs

The proof of this property is rather long but the key idea is that if two configurations are
compatible then there is a way to perform missing sending of requests in the right order
(see 8.2 for more details). Thus the configurations can be reduced to a common one (modulo
future replies equivalence). Note that, if we consider two requests Ry and R» on the same
method of a given destination activity; if in 1, R; is before Ry and in @2, R» is before
Ry; then the configurations obtained from @; and @2 will never be equivalent. In other
words @)1 X @2 is a necessary condition for ¢); and @2 to be confluent. Of course, another
equivalence relation could be found for which compatibility between terms would not be
necessary for confluence.

Note that, if we replaced the primitive Serve(M) by a primitive allowing to serve a
request coming from a given activity Serve(a) then our calculus would be deterministic.
This aspect is not developed in this paper but could be very interesting if the order of
activities sending a request to a given one was known. Note that such a calculus would be
more similar to process networks where get are performed on a given channel and a channel
only have one source process.

Note also that, even if the moment when future values are updated is not specified in
the semantics, this does not act upon determinacy. This characteristic prooves the interest
of our calculus and its properties.

The next section identifies a set of terms that behave deterministically.

7.5 Deterministic Objects Networks

Serve are blocking primitives and if at any time, two activities cannot send concurrently a
request on a given method (or set of method labels M that appears in a Serve(M)) of the
same activity then there is not any conflict between .

We introduce here a definition of Deterministic Objects Networks (DON).

RR n° 4753



26 Caromel, Henrio, Serpette

Definition 10 (DON) A term P is in a Deterministic Objects Networks form (DON(P))
if : for all Q such that P —— Q, Q verifies:

Va€Q, VM € M,,,3'B€Q,Im e M, ag = R[tm(...)] At AO(a) € 05
where 31 means “there is at most one”

A term is a deterministic objects network if at any time, for each set of label M on which
«a can perform a Serve primitive, only one activity can send a request on methods of M.

The preceding DON definition is dynamic but could easily be approximated by statically
determining the set of active objects that can send a request on method m of activity a.
Note that this means that we first have to statically decide whether an object is active
or not (by static analysis). Note also that, we need a static approximation of reachable
configurations Q.

For example the Sieve of Eratosthenes examples verify DON(P). But if the first one is
easy to verify statically (this can be seen on the Figure 3) the second example seems much
more difficult (in Figure 3 many objects have a reference to Display). This comes from the
fact that, all sieve objects keep a reference to the Display object. Dynamically, at each time
a single one will be able to send a request on Display object.

From the definition of DON we can conclude easily that DON terms always reduces to
compatible configurations :

Property 7 (DON and compatibility)
DON(PYAP 5 Q1 AP 5 Qy= QL XQ,

Indeed, RSL compatibility comes from the fact that DON(P) implies that two activities
can not be able to send requests that can interfere to the same third activity (unicity of
B for all terms obtained from «). Moreover, we can easily prove that reduction of DON
terms always leads to the same RSLs, for all orders of request sending, we always serve the
requests in the same order.

Thus the set of DON terms is a deterministic sub-calculus of ASP:

Property 8 (DON determinism)

DON(P)

P>Qi= Q1YQ
P Q,

As explained before, the examples of sieve of Eratosthenes are DON and thus their
execution is deterministic.

We shown here that we can easily identify a sub-calculus (DON terms) of ASP that is
deterministic. Some terms can be identified as DON statically. This is a generalization of
Process Networks because we can wait on several requests at the same time.

INRIA



ASP 27

7.6 Case of FIFO service

Let us now consider the case where each activity performs a FIFO service. The request flow
graph is the graph where nodes are activities and there is an edge between two activities if
one activity sends requests to another one (o —g f if a sends a request to 3).

It is easy to prove that if the request flow graph is a tree then for each o, RSL, contains
occurrences of at most one activity. Then for all Q and R such that P — Q A P —— R,
@ X R so we can conclude:

Property 9 (Tree request flow graph)

If the request flow graph forms a set of trees then the reduction is deterministic.

This property proves the determinism of the binary tree of Figure 2. What is important
here, is to see that the parts of reduction where request flow graph forms a tree are determin-
istic. In order to prove that a term is confluent, we only have study determinism on moments
where request flow graph is not a tree. For example, consider a program that first, creates
and communicates over a set of activities forming a tree, performs a global synchronization
step and finally communicates over another tree. Such a program is confluent.

8 Proofs

RR n° 4753



28 Caromel, Henrio, Serpette

8.1 Equivalence modulo futures
Let Act(P) be the set of activities defined in P.

8.1.1 Renaming

We introduce a set © of renaming of activities and futures from configuration P to configu-
ration Q:

0= (aachafut)
Ouct :i=fa1 — af ... };
efut n= {{ff‘}a - leﬁ - v }7

where a € P and o € Q and 0, is a bijection from Act(P) to Act(Q), 05us is a bijection
from Fy, to Fy, for any o — o' € fac:-

If the activity names are chosen in a deterministic manner, we have 6,.. = Id

We must ensure the following additional constraints :

a—a €0,

’ ﬂ_)ﬂleeact

A =N TIPS {

8.1.2 Reordering requests

The equivalence relation must be defined modulo the reordering of some requests. Indeed
two requests can be exchanged if they concern different methods which can not interfere.
That is to say if there is no service concerning both method labels.

Let ¢4, be a permutation on the request queue of o) compatible with the RSL equiva-
lence:

VM e My,p, Rozp|M =F RO‘Q|M

Where Ra| 1 18 the restriction of the request queue of a to the list of requests for which
method labels belong to M.

In other words (., only permutes requests on methods that cannot be selected concur-
rently by the same Serve(M).

8.1.3 Future updates

The equivalence modulo futures consists in considering the reference to calculated futures
like local reference to deep copy of the value of the future. In other words, future references
can be followed as if they were local references, with a deep copy when two futures references
concerns the same future.

The following example (Figure 11) illustrates a simple update of future value. Of course
the two configuration are equivalent.

INRIA



ASP 29

Figure 11: Simple example of future Equivalence

We say that two configurations are equivalent modulo future updates if they are the
same modulo renaming of activity, locations and futures, and the update of some already
calculated futures.

The condition to update some futures can be summarized simply by considering refer-
ences to futures as identical to local reference to the part of store which is the (deep copy
of the) future value. Or a future is equivalent to the future after update or more formally, a
future is equivalent to a part of store if this part of store is equivalent to the store which is
the (deep copy of the) future value (provided the updated part of the store does not overlap
with the remaining of the store).

Following references and sub-terms Let us formalize the idea that “we follow the
references”. We want to follow future references as local ones. We introduce .

First, L represents the list of references or part of expression that must be followed.
Table 4 describes some of these rules We denote by iy L,.L, the concatenation Y Lllﬁ Lo-

a

LS o() [oli=a.. )5 a [oomy=¢(s,z)a.. ] lﬁm]. a® al;:=b &Updatel(li) a

a.li == b > ypdatea() b

“It is easy to add renaming of bounded variables here

Table 4: Paths definition

Let #51, be the preceding relation where we can follow futures if necessary (we can have
n =0):

a0, b asp, uhoe(n) = fUt(f?q'Gl)/\Fﬁ(f?_)ﬂl) = Ay &Ll uA. Al 'ﬂ—"*Ln b
This definition consist in, first, following a path inside an activity «, then, follow a future
reference from « to 51 and continuing the path in 3, etc. .. note that when we follow a future
reference, two local (ref) and a future reference are in fact considered as identical to a single
local reference.

RR n° 4753



30 Caromel, Henrio, Serpette

For example, in figure 11 the three arrows of the left configurations that are around the
future reference (dashed arrow) are considered as equivalent with a single arrow on the right

configuration.
Note that:
Lemma 1
(07 Qk
a—rb=>a—pb
Lemma 2

aBpbAaB LW = b= Vb= fut(ff7P) v = fut(f7 )

Here , the two particular cases (b = fut(f7 %) v ¥ = fut(f7 ")) are due to the fact that
when we arrive at a future reference we do not necessarily follow this reference.

Equivalence definition

Definition 11 (Equivalence P =r Q) Let R = p(Q©)>. Then

Qo ok
P=rQ <& Va,da,ap+—ras 3d,ar—rd
*
L=Ly Iy AL = Ly.Ly Nag &1, c
i I} v !
c—=rL,a ANecpa
ok
L:Lg.LlALI:Lo.Lll/\aP =1y €
Y v
c—r, a ANewpral

o o
Aapr—raAap = a= 3¢ ly,a {
(o3 (e}
Aarr—rpaAag—p a= 3dcly,ad {

The first condition expresses both the equivalence inside an activity and by following futures
and the two last conditions® express the correctness of aliasing (alias must be the same in
both configurations). Note that, in the two last conditions the existence of a' such that
ok s "
ap —1 a' is ensured by the first condition.
Note that the above equivalence is not precise in the sense that if P and @ contain
non equivalent garbage collectable terms then P and @) may be considered as equivalent by
definition 11. But this will have no consequence on the subsequent reductions.

Property 10 (equivalence relation) =r is an equivalence relation

We will need to have equivalence of sub-terms. For the first definition this equivalence
can be defined straightforwardly (even if it involves a notion of renaming of activity which
is global). In fact in both cases sub-terms are equivalent if they are part of equivalent
expressions. Which will be expressed by the fact that P = Q A a = a or equivalently:

5remind this means renaming each activity, each future and generalized reference and permuting in each

activity o; by using @a;
Snamed alias conditions in the following

INRIA



ASP 31

Definition 12 (Equivalence of sub-terms)
a=pd Sa€aphad €EagAP=p QA (ap B a,eap S, a')

This implies that:

Lemma 3 (sub-term equivalence)

sk (%]
a=pa = a—pbsdd,de—pl

L=Ly I AL =Ly.I) Ad' &, ¢
cr, b’/\crl>L:1 b’

L=LyIy AL = Lo.Li ha &, c
cn1>L1 b’/\cn1>L,1 v

/\aniLb/\a.iL,b:>{
/\a’liLb/\a’liL/ b?{

In the following proofs, we will not detail in general the arguments related to renamings.
That is to say, we will always suppose that, when P = @, P and @ use the same locations
futures and activity names (or more precisely, renaming of futures activities and locations
have already been applied). We will focus on parts of proof related to updates of futures.
In other words, the alpha conversion part of proofs is considered as straightforward. For
example, we will always consider that when we choose a fresh location in () we can choose
the location that we want (for example the same as in P) which is always possible modulo
alpha conversion in P and Q.

8.1.4 properties of =p

Consider the case where we add a new entry in the store and reference it from the same
places (L; is any set of paths inside ). Adding equivalent sub-terms at the same place in
two equivalent configurations produce equivalent configurations:

Lemma 4 (=r and store append)

P=rQ
— !
a=ra , , - ,
P' = P except 0a,, = 0ap 2 {t = a} and ap: oLl > P SrQA=pe
Q' = Q except Oagr = Oag {/ —d'} and ag ol
Note that ¢ and ¢/ are fresh locations.
Proof : For parts of activities inside a, (R’ = ¢(Q'0uctbfut)) apr KLl # 1 b, we have

ar *51, o' by hypothesis and ¢/ &1, b’ by definition of @ =5 o’ (lemma 3). This proves
Vo, da, ap Sp a=3d, ap S d

The opposite implication is similar (symmetric).
For alias conditions, note that for all L;, ap N L; LA ap ey L; ¢ but by hypothesis,

ag =1, U Aag +>1, . The bijectivity inside a and o' is also ensured by lemma 3. O
In the same way we have (when we update an entry instead of creating a new one):

RR n°® 4753



32 Caromel, Henrio, Serpette

Lemma 5 (= and store update)

P=rQ

a=rpa AN 1=p!

P' = P except 0o, = {t — a} + 0ap
Q' = P except Tap, = { = d'} 4+ 044

?PIEFQI

Note that + = ¢/ is important because ¢ and +/ are already in P and Q.
Proof : Similar to the preceding one. Note that: : =p 1/ = (ap B e ag S, Ll).
O

Lemma 6 (=r and substitution)

{PEFQ

P afr — 1} =p afz '}
The proof is straightforward.

Recall that:
Copy&Merge(a,i ; o',1') 2 Merge(/, o', copy(1, )t —'})

Lemma 7 (Another definition of deep copy)

a € copy(t,08) < 3L, ¢ A
As a direct consequence:
L=p 1 =Y € copy(t,o8,),31) € copy(t',0p,), 11 =F 1]

and
The following property states that adding equivalent stores to equivalent configurations
produces equivalent configurations.

Lemma 8 (=r and store merge)

P=rQALt€apAhiy€Pp

a=fpa AN L=EpUAN wErpl

P' = P except Ooty = Copy&Merge(0p,,L0 5 Tap,t)
Q' = P except Oat, = Copy&Merge(ap,, Ly 5 Tag,t')

:>PIEFQI

Proof :

Copy&Merge(osp,to ; Oap,t)= Merge(t,oq,, copy(to,op,){to — ¢})
= copy(to, 08, )00 + Tap

INRIA



ASP 33

From lemma 7, we have:

a € copy(lo, 08, ) < 3L, u £>L a
and moreover

Lemma 9 (Copy and Merge) If P' = P except 0,1, = Copy&Merge(0p,,10 ; Tap,t)
Lo l’g—P>La<:>L(|1—P>'L a
Thus for all a € copy(io, 05,)
Lo |ﬁ—P>L as LB aby
From this lemma and the same for configuration @, the proof is straightforward.
Informally, if a location is in the merged sub-store of ap: then it comes from the sub-

store copy(to,0p,) of P and it is equivalent to a location inside copy(iy,op,) (because
to =r ty) which produces a location in the merged sub-store of ag. We conclude by

L=rt = (L Brasl Y La ) and finally P’ and Q' are equivalent. The proof of alias

conditions follow the same kind of reasoning,.
O

8.1.5 REPLY and =p

The following properties relates the formal definition of = with the intuitive one saying that
two configurations are equivalent modulo future update if they differs only by the update of
some calculated futures.

Property 11 (REPLY and =r)

REPLY

P— P =P=pPF

Proof : We only have to prove that the updated store is equivalent with the old one. The
remaining of the activities are unchanged.

aa(L) = fUt(fz’Y_)ﬂ) Fﬁ(f;’_'ﬁ) =Llf 0{1 = Copy&MeTge(O’g, Lf 5 Oa, [’)

P = afaa;0a;ta; Fus Ras fo)llBlags ops e Fay Ra; [5]1Q — (rePLY)
alaa; ol Fos Ras fo]|Blag; o; 05 Fgs Res [5]11Q = P

We have
ol, = Merge(t,04, copy(ts,op)fey — 1}) = copy(es,08){ts — t}0+0a = copy(ty,08)80+0q

Let ¢/ be in the updated part of the store of a: ¢ +>p /. Then ¢/ = 1p8y where 1y €
copy(iy,op) and tf £>L to (lemma 9).

RR n° 4753



34 Caromel, Henrio, Serpette

Let Lo such that ap riLO t. Thus we have ap noﬁ;Lo,L to (or more precisely ap ’E’Lo
LA o (1) = fut(f17P) A Fﬁ(fi'y_'ﬁ) =15 Aif A 1o) if and only if apr ¥, 1 ¢/

For the alias conditions , note that:

If apr 'E’LO-L 1o and apr +51r o then L' = Ly.L" by definition of the Merge operator
(the only common location between original and merged store is ¢) and thus, because the
deep copy creates a part of store similar to the original one (lemma 9),

5
R R L L
ap B, 1 Aoa(t) = fut(f]77) A Fs(f] ﬂ)=bf/\{f Pl
Lf}—)Ll/ LO

O
Note that this proof justifies the definition of & ro.r and of the equivalence modulo
futures.

8.1.6 Equivalence modulo futures and reduction

The objective here is to prove that if a reduction can be made on a configuration then the
same one can be made on an equivalent configuration. This is a very important property.
The proof is decomposed in two parts. First, we may need to apply several repLy rules to
be able to perform the same reduction on the two terms. Indeed one of the configurations
can be waiting the value of the future by necessity because the future updated or not in
the two configurations are not the same (definition of equivalence). The second part consist
in verifying that the application of the same reduction rule on equivalent terms leads to
equivalent terms. Note the similarity with properties of bisimulation.
In the following, let T be any parallel reduction rule: T' range over

{LOCAL, NEWACT, REQUEST, SERVE, ENDSERVICE, REPLY }. T, denotes the application of a par-
allel rule named T (cf Table 3).
= verifies the important following property:

Property 12 (=r and reduction(1))

; J— — !
peerapmgn 1T S1m dng =
else 3Q', P! "— — Q'ANQ' =F
This property suggests to define the new reduction =»:
Let =» be the reduction — preceded by some applications of the repLy rule if the rule
of — is not reEPLY and any (possibly 0) number of application of the repLy if the rule is
rREPLY. More precisely:

T REPLY* T .
== = —5 — if T' # rEPLY
REPLY™ .
— if T'= REPLY

INRIA



ASP 35

Note that if the applied rule is rEPLY, :T> may do nothing. That is necessary for example
to simulate the update of a future on an (equivalent) configuration where this future has
already been updated.

=y verifies the important following property:

Property 13 (=r and reduction(2))
— / T r pr L / r—

The properties 12 and 13 are equivalent. The following proof is valid for both.
Proof : If we cannot apply the same reduction than P — () (same rule on the

same activities ...) on P’, we apply —5 enough times to be able to apply the reduc-
tion P’ "=5 P”. Tt is straightforward to check that if two configurations are equivalent,

the same reduction can be applied on the two configuration except if one of them is stuck.
Stuck configurations can occur in two situations:

e In the case of a forbidden access to an object (e.g. field access on an active object
or non-existing field or method) by the definition of equivalence, the reduction on the
two equivalent terms leads to an error.

o Access to a future: if in an activity of P’ wehavea = .../ ... and o/, (/') = fut(f]~7)
thenin P,a=...¢... wheret =10, and o,(¢) is not a future. The future equivalence
ensures that f € Fjg. Then P’ "2 P" where P =p P (property 11) and in P”
ol (¢') is not a future reference. Then the same reduction can be applies on P"” and
P. Actually the repLy rule needs to be applied:

— 0 time if the object to be accessed is not a future,

— 1 time if it is actually a future whose value is not a future

— n times if it is a future whose future value is n times itself a future reference.

Note that the reduction that occur in P cannot access an object inside a future that has not
been updated in P’ because P =p P’ = a4, =a aor, = VL E Gap,tls € Ao,

Now, we have to verify that if P =r P and we apply the same reduction rule on P and
P’ on equivalent activity(ies) we obtain equivalent configurations:

PLq
L Q’?Q'EFQ
"—_p

=F

This is obtained by a (long) case study. The different cases depend of the reduction applied
and the rule applied to prove the equivalence. In the following we will only focus on the
cases where one of the location concerned by the reduction points to a future in P and is an
object in P”. Other cases (several futures or no future) can be trivially obtained. Of course,
we will (implicitly) use the fact that if two terms are equivalent, they have the same form.

RR n°® 4753



36 Caromel, Henrio, Serpette

LOCAL

STOREALLOC Direct from lemma 4.

FIELD a(t) = [l = i ...

(Rle.ly],0) =5 (Rlei], o)

(FIELD)

If 1.l; =4 1o.l; then ¢« =, 15 and ;1 =4 tio. Thus P = Q

INVOKE Straightforward: Note that the two method bodies must be equivalent and
the two arguments too. The final equivalence comes from lemma 6.

UPDATE Direct from lemma 5.

CLONE Note that you cannot clone a future. Other cases are trivial.

NEwWACT The only interesting case is the presence of futures in the newly created activity.
Lemma 8 is sufficient to conclude. Indeed in NEwAcT, 0., = copy(t, 04) could be written
Oy = Copy&Merge(aa,t ; 0,1)

REQUEST By hypothesis (modulo renaming), we can choose the same name for future in P
and @, the same location for the copy of the argument. Lemma 8 can be applied to
manage with futures that can be present in the deep copy of the request parameters.
The rest of the proof is straightforward. For example the equivalence of requests
is established by taking the same location and future names and [mj;¢; f; —p | =p
[m’; 1; £27P] comes from m; = m/; because o =q 0

servVE The equivalence between the two request lists implies that the served requests are
equivalent which is sufficient to conclude. Note that the fact that, in the equivalence
definition, the reordering ¢ of requests must be compatible with the RSL equivalence
is essential here. More precisely:

P” =F Pij c MQP’ RQP|M =F Rapl/

M

And thus the servE will serve equivalent requests.

ENDSERVICE The equivalence between futures lists is straightforward. The proof is based
on the application of the lemma 8.

REPLY In this case we have P’ =r Q (P’ = P’). Note that here, we may be unable to
apply directly the same rule on the two equivalent terms for three reasons:

e either we may need several future updates to have the reference on which we
want to update the concerned future (we need several futures updates to apply
the same rule),

e or the future has already been updated in the equivalent term (no repry rule is
applied),

INRIA



ASP 37

e or there was a cycle of futures references and the order of futures updated was
different (in Figure 10 we have either only references to future f; or to future f2)

Note that most of this proof is simplified by the important lemma 8. O

Corollary 1
T
P=p PAP=»Q=3Q, P => Q AQ =¢ Q

Proof : P :T> @ can be decomposed in P REPLY” P, N Q (or P REPLY” Q if T = rePLY).

O
Corollary 2
P'=p P
P=rPAP- Q=3P Q {p L ¢
Q' =rQ
Proof : Direct from propositions 13 and 11 O

8.1.7 Another formulation

We formalize here another definition of equivalence between terms based on renamings and
prove its equivalence with the preceding one.

Let us extend the preceding renaming (of activities and futures) with a renaming on
locations inside an activity 8,, and between two activities 9ai—>a;,u- Remind that 0,.; is a
bijection from Act(P) to Act(Q), O.: is a bijection from F,, to Fuq, ¢a; is a permutation
on the request queue of o) compatible with the RSL equivalence.

O = Oacts Ofut, Oays - - B oty Pay - )
Ouct =1 — aj ... };
Ofur 2= {{ff_’a — f{ﬂl_'al, ok
Vo, — af € Ouety 0o n={11 — 17 ... }; where ¢; € locs(a;), 1) € locs(al)
o € Paj €Q, e Gl 11, .-} where 11 € locs(a), ', 1) € locs(a})
a; € P,a); € Q, 0%&&9_% m={fu = 0y, ...} where 1,15 € locs(aw), 1) € locs(a)

The two last renaming of locations allow to express future updates:

In the two last lines + and +/ represent the location of the updated future. To prove that
a future ff “%n P and its update in the location ' of the activity v of Q are equivalent, we
must provide a renaming 0 _.s ..

Of course, each renaming must be bijective and

o for each a} = ;0. the sets codom(0a, ), (codom(0s_.:)secp are disjuncts;

e for each a; the sets dom(a,;), (dom(Bu,—p )peq are disjuncts;

RR n°® 4753



38 Caromel, Henrio, Serpette

We define the following equivalence relation:

Definition 13 (Equivalence modulo futures(2))

Suppose we want to prove P = Q, we must find © = (Gact,Gfut79ar1, ...) such that =F is
the largest equivalence relation closed backward under the rules of table 5 (or more precisely
table 6) (we note &' = abyct). T is either a or o — 3,1 or a — [',1.

= () = (6 ) a is in the location ¢' of the activity v of @
a = Oap\l) =a—p, JﬂQ Wa—p, Fﬂp (fa—>ﬁ) -

— !
L =B—,t! L

a =4 b L =a—p Laa—»,@,b’ fut(fa_'ﬂ) = a
i =z

Table 5: equivalence (short)

and all the trivial induction rules corresponding to operators in the syntax.

=, denotes the equivalence between terms that appear in « and o'. =,_g, denotes
the equivalence between terms contained in a future calculated in the activity a of P and its
updated value in the location ¢/ of the activity 3’ of Q. =, denotes any equivalence relation
(either inside an activity or between activities if x is of the form o — 3',1 or a« — ', /).

0o_.p,» means that the future calculated in the activity o of P has been updated in the
location ¢’ of the activity 8’ of Q. The renaming 6,_.5,» must be applied to locations of «
in order to obtain locations (corresponding to a deep copy) in §'.

Symmetrically 4., is useful when a future in () has been updated in the activity «
of P, at the location ¢.

This definition is coinductive because, we may need to use the fact that « = ¢ to prove
that « = /7. The figure 13 shows an example of configuration where such kind of definition
is necessary

Important remarks:
o Oq_or, is different from 6, and is useful for the update of a future in the same activity.

e “g is in the location ¢’ of the activity v of @” could be (easily) expressed more for-
mally but we would have to use even more complicated rules and notations;

e The equivalence between activities should verify o' = af,.;.(considered as implicit)

e the unaccessible parts of the store are not taken into account and can be garbage
collected in both definition of equivalence.

"note that this is not surprising as if we try to define

INRIA



ASP 39

Oap(l) =a Tal, (¢8a)

fut(f) =o fut(f0r.)  AO(a) =, AO(e!)  0=,0

L =4 0y

_ p b is in the location ¢ of the activity v of P
Tap(11) Sacpuo 98o (10ap,) Fpo (F2F) = o

— !
L =B L

L Zapo Waep, b= fut(f?

() = (6 ) a is in the location ¢/ of the activity v of Q
Tar(t) Zap.iy 7 (Wap v s (8 77) =1

— !
L =B, L

L=aapy Wagy o
Brg e B fut(f; 5)Eza

L =4 LI Rap = Ra’Q vfeFap7Fap(f> =a Fa’Q(fefut)
[mj, ¢, f] 2 Rap =a My, 0, fOrut] 2 Ray, Fap =a Fu,
Aap =« aa’o lap =a La’Q Fap =« Fa’Q
Rap Za ¢(Ray))  for, = fapbru

a[aap§0'ap§Locp§Fozp§Rocp§fap] = O/[a/a'Q;a-a'Q;La'Q;Fa'Q;Ra'Q;fa'Q]
3@:(0act79fut,0a17...) aGP@aGQGaCt VaEP,a[] =a a'[]
P=rQ

Table 6: Equivalence

8.1.8 Equivalence of the two definition

Let us now prove that the two definitions are equivalent. Let =g be the second formulation
of equivalence

Proof :We only give here some details of the proof. The whole proof is longer but based
on the principles given below

=gy =>=p If P=p,Q, then for all @ we have apl...] =, ag[...]. We will not worry
about renaming of activities and futures. By recurrence, we will prove that:

(VL, ap S b=ag SV Ab=, b') = (Ckp Bric=agSridAc=, c')
It is easy to verify that ap[...] =, ar...] and ap &g ap

Most cases are simple case analysis. For example, if [ = m;, then b is an object and o’
too (because b =, b'). We use

RR n® 4753



40 Caromel, Henrio, Serpette

c=,c

b=1[..,mj=¢(s,2)c,...] =5 [...,mj =¢(s,z)c/,...] =V

then we have ap »(E:L,m]. c=aq ra—tL,m]. dnhne=,

Note that the case where we have a future that is only updated in one configuration need
only to be considered in the case I = ref8. In that case a simple store access by an access
to the calculated (but not updated) future.

We detail here the case where | = ref:

e future reference: if:

¢ is in the location ¢ of the activity v of P
o— —
Foo(fi79) =t 1=pequt

€=z fUt(ffHﬂ)

and then ap &1 1 ¥, ¢ and, suppose the considered fut( ff A is in the location ¢

of the activity 7 in Q). We have

ag B3 10 Aoy (o) = Fut(f77) A Fao (£77°) = v/ A B ep o(i') Thus ag F3p ey
03, (1').

We conclude easily because ¢ =g, ¢’ is ensured by proving ¢ = 0 (t) =p—,. 05, (7')

s ifx=a« 3,1

€ = Oap(t1) Sacpu 95 (1bacp,) = ¢

b=1 Eou—ﬂ,bo La(m—ﬁ,l. = bl

This proves that b 23 e fc b B e 5 and ¢ =, ¢’ and concludes for equivalence.

All the cases that are not detailed before involve the same kind of arguments.

The bijectivity of renaming ensures the two last conditions of definition 11. This is
proved by showing that if one condition is not verified then a renaming is not bijective:
Note that we can prove moreover that if ap v a and ap 1/ a then there is ¢ such
that ap 7 ¢ and ap ropr o
Suppose for example:
{ozp L LAQp L s ALF Lo A=
ap > U Aag S th -2

8in fact it could be either considered in I = ref or in all other cases

INRIA



ASP 41

then one would need to have : 8, = {¢ — ¢/,12 — ¢/ ...} which is not injective.
The bijectivity of the renamings for futures (004“_0(9_,) corresponds to the case where

ok
ag —1 V' follows futures references.

=r=> =p, The idea is to start from an activity a and follow arrows to determine
renaming. Recurrence cases are trivial. We detail only store access and futures:

Note that all the non garbage collectable objects in «a are obtained from a by following
+1. Also note that for garbage collectable terms, they are taken into account by non of
both equivalence relations.

Thus we suppose that P and @ are equivalent according to definition 11.

If a location in ap is accessible from ap then there is L such that ap + 1, ¢. Definition 11
ensures ag —, ¢'. We can specify the different renamings from this. Two cases are possible:

e cither ag 1 ' then {t — /} €4,

* . . . . .
o or ap /1 ¢/ and / is in the activity v of R then {v — '} € 64, where 4 is
the location in ap corresponding to the last reference to future. More precisely we
* Y * *
decompose: ag 1, 1y =1, then we have ap 1, 1o (because ar 1, th = ap =,
tp and 19 € ap because Ly is a prefix of L)

{v — '} € 6ap,, is obtained from the cases where ap . o and ag > /. As futures
are not garbage collected, these three cases are sufficient to determine renamings.

From these specifications, it is easy to prove P=p,@ by recurrence.

Note that bijectivity conditions on renamings are ensured by the two last conditions of
definition 11.

For example, if we had 6, non bijective then we would have {¢ — '} € 6, and {2 —
('} € 04 and thus ap L LAap &p o Aag *or U Aag =0 o which is contradictory with
definition 11. In the same way we ensure that above construction never requires{t — '} €
O ANt — 12} €0, if U/ # 1a. O

8.1.9 Decidability of =f
Property 14 =g is decidable.

Proof : To prove that = is decidable, first note that the set of renaming © that could
prove P =p @ is finite. Indeed the set of activities of P and @ is finite and the set of
locations and of futures too. We conclude easily that the set of possibly valid 4ct, 0 fut,
and 6,, is finite. In the same way, the number of HaiHQQ,L/ is bounded by the square of the
number of activities multiplied by the number of location in activity a;. For each Gaiqag,u,
the set of valid such renamings can be bounded too because the set of locations is finite.

Note that here, the set of such apparently valid renamings is really huge but the real
number of renamings that should be considered is much smaller. In practice the renamings
should be created during the equivalence proof.

RR n°® 4753



42 Caromel, Henrio, Serpette

Now, we only have to prove that verifying that whether © allows to prove P =r @ or
not is decidable. This is easy to show if we consider that, starting from the inductive rules
at the activities level, we prove the equivalence by going deeper into the activity store. The
algorithm verifying whether © proves P =p @ or not can be summarized by inductively
verifying that the rules of Table 6 are verified using ©. finiteness of the verification is ensured
by marking the rules already verified or more simply the locations already visited. (Note
that if we mark locations already visited we have to verify, when arriving at two marked
locations that they are equivalent according to ©).

Note that we did not mentioned here the constraints of bijectivity and other constraints
on domain and codomain of renaimings of ® which are still important. O

8.1.10 Examples

We detail below a list of examples of equivalent terms. The verification of equivalence
consist in simply following the arrows on the diagram (trivial). We give some details on the
renaming that have to be used in the case of the second equivalence relation.

In the following case: We must stake

Figure 12: Simple example of future Equivalence

050, = {11 = t,02 > b}

The Figure 14 illustrates the case where there is a cycle of future references. The proof
of equivalence is not detailed here, but is based on the renamings:

00(—>0t,b2 = {L1 — l2,l2 — L3}
Oousans = fu1— 3,00 — 1t}
0a—>a,b4 = {L1 — 4,02 — Ls}

The figure 15 illustrates the importance of the bijectivity properties: in Q' every renaming
is bijective but we would need to have 65—, = {t1 — t,02 — 4} and Opar = {11 —
V', 12 — 5 } which would be contradictory with codom(6s—..,.) and codom(03—.4,.) disjuncts.

INRIA



ASP 43

=r ﬁ

REP LY; ‘

L1 =054, ¢t

L1 =654, ¢

Figure 13: Example of “cyclic” proof

Figure 15: Another example

RR n°® 4753



44 Caromel, Henrio, Serpette

8.2 Proving Confluence: Diamond Property
8.2.1 Context

Two configurations are said to be confluent if they can be reduced to equivalent configura-
tions.

Definition 14 (confluent configurations: P, Y P, )
PSR

PlYP2<:>3R17R27 PQL?RQ
Ry =r Ry

This subsection aims at proving the following confluence property:
Property 15 (Confluence)
Py Q

P-5Q =QYQ
QXQ

Let P, be an initial configuration. Let us consider two configurations obtained from the
same initial one: Py — Q, Py — Q'. Let us suppose that the two configurations are
compatible: @ X Q' that is to say their RSLs have a least upper bound.

We introduce the set of configurations smaller than this upper bound. Q(Q,Q’) be the
set of configurations obtained from P, and compatible with @ and Q':

9(Q,Q") ={R|Py — RARQQUQ'} = {R|Py — RAVa € R, RSLo, ARSLa,URS Ly, }

8.2.2 Local confluence

We prove the following property by a long case study

Property 16 (diamond property) Let P be a configuration obtained from Py: Py — P

PIp i
1

P B, — P, =p P,V3iP,, P}, Pg_—>]1;2’

1=F I3

PP, P, € Q(Q,Q") P[,P} € 9(Q,Q")

Let us introduce the following lemma:

Lemma 10
P =YRAP=E P =P “5"R AR =5 Q

INRIA



ASP 45

Proof : Tt is easy to verify that if a rule (different from rEPLY) can be applied on P then
it can be applied on P’and the reasoning of property 13 suffices to conclude. O

Proof :(of the property)

This proof is a (long) case study on the conflict between rules. We will not detail the
cases where one of the applied rule is repLy. These cases can be verified but are not useful
for the proof of the property 17.

This analysis is only interesting when there is a real conflict between two rules that is to
say at least a component of one activity can be read or modified by two rules. The following
cases are labeled with the two rules in conflict.

e If the concerned rules are different, the activities («, 8) will be indexed by the corre-
sponding rule (e.g. agpquesr 18 the activity a of the rREQUEsTrule : the source activity
of the request)

e if the rules are the same, the activities will be indexed by 1 and 2.

Lemmas
Lemma 11 (Extensibility of local reduction)

"2 a9) where (a",0") =F (d',0")

(a,0) —s (a',0") = (a,0 = 09) =5 (a",0
Lemma 12 (copy and locations)
Refs(copy(s,0)) C Refs(o)
Lemma 13 (Multiple copies)
copy(t,a) + copy(V', ") = copy (', copy(r,0) + o) if L € Refs(copy(i',a"))
Lemma 14 (Copy and store append)
o' + Copy&Merge(oa,t ; gg,t') =p Copy&Merge(ou,t; o' +og,l') if V' ¢ Refs(a')
Lemma 15 (independent stores)
0109 =09 11 01
Refs(o1) NRefs(oa) =0 =< o1+03=02+01
o1+ (02 ::0) =09 :: (01 +0)

In the following, we suppose that we can choose any location, future or activity names
when we need a fresh one. This is justified by the fact that reduction is not sensible (modulo
equivalence) to activity futures and locations names.

local vs. parallel reduction

RR n°® 4753



46 Caromel, Henrio, Serpette

rocaL/LocaL Trivial consequence of the determinism of local reduction.

rocAaL/NEwWAcCT No conflict : apocar = @newacr impossible because R[Active(t)] can-
not be reduced locally. In the following such cases will not be detailed.

LOCAL/REQUEST QpocaL = Qrequest impossible (this would correspond to a method call
which would be both local and distant).

Orocar = Prequest et @ = Qrequest and B = qwocar = Brequest

(ag,08) —s (ap1,0p1)
Blag; 0s; ;3 Fia; Ras [5)|Q — Blagy; op1; s Fas Res [4]|Q = Py

(LocAL)

oa(t) = AO(B) /" & dom(op) f27P new future ty & dom(oy)

op2 = Copy&Merge(ou,t' ; oa,t") a2 = {5 — fut(fio‘q'g)} O
O‘[R[L-mj(l'lﬂ; Oajlas Fy; Ry fﬂ']”ﬁ[”ﬁ a3;5 033 Fﬂ R,@; ff]”Q
— a[R[1f]; 0025 Lo; Fus Ru; fulllBlas; op2; 155 Fios Rg = [my; o5 £27P); £5]11Q

(REQUEST)

We can suppose (up to renaming) that the locations added to os by the two rules are
disjuncts. The deep copy of the argument of the request is added in an independent store
thus og2 = 03 :: 0. And thus lemma 11 allows to perform the local reduction on the
extended store:

(ap,08) —s (ap1,061) = (ap,0 :: 0p) =5 (a3, 05, 2 0)
where (aj,, 0)5) = (ap1,0p1) and Po = a[R[is]; 0a2;tas s o folllBlas; op2; 15 £ s Rpas 15]11Q

— a[R[is]; 0025 ta Fos Lo folllBlajge; 0593 155 F s Rpas 5] = Pal|Q

o1 is obtained by some updates on og: 031 = 0¢ + 03. Lemma 14 is used for adding
the request to the store obtained by local reduction. We can apply the request rule to P,
(let oj, be the new store :
a;ﬂ = Copy&Merge(oa,t ; op1,l") =p 00 + Copy&Merge(oa,t' ; 0s,¢")) and obtain a
configuration equivalent to Py (lemma 15):
(525 055) = (ap1, 061 2 0) = (ap1, (00 + 0p) 2 0) =p (ap1,00 + (0 2 0)) =r (ap1,04;)

LOCAL/ENDSERVICE We have:
in ENDSERVICE, 0/, = 01 :: 0, where Refs(o1) N Refs(o,) =0

And thus lemma 11 is sufficient to conclude.
LOCAL/SERVE 10 conflict.

creating an activity

INRIA



ASP 47

neEwacT/NEwAacT No conflict. We may only need top rename activities.

NEWACT/REQUEST We only have to prove that (if aygwacr = Prequesr) creating a
new activity does not interfere with receiving a request. This is similar to the case Lo-
CAL/REQUEST.

NEWACT/ENDSERVICE No conflict.
NEwACT/SERVE No conflict.

Localized operations (SERVE, ENDSERVICE)
® SERVE!
SsERVE/SErRVE No conflict.

NEWSERVICE/SERVE If Qgppve = Brequesr Informally, if we can perform a serve(M)
on P then there is a request matching the labels of M in the request queue so adding a
new request to the request queue will not change the served because servitakes the first
request matching M. Note that the fact that the first request is taken is essential to ensure
confluence.

® ENDSERVICE:!
ENDSERVICE/ENDSERVICE No conflict.

REQUEST/ENDSERVICE There can only be a conflict when agxpservice = Brequesr = 0

(1) = AO(B) V' & dom(op) 127P new future Ly & dom(ow)

K3

op1 = Copy&Merge(oa,t' ; 05,U") =0+ 03 01 = {t5 — fut(fia_’ﬂ)} 0o,

- : (REQUEST)
a[R[em; (V)]s 0as t; Fos o folllBlag; ogs 155 Fos B [6]]1Q
— a[R[t5]; Tar; ta; Fui R fI1Blas; 013 003 Fos Ra = [mys s £27P1; 16]11Q = P
V' & dom(op) Fy=Fg: ;{fg l—»l !V}
op2 = Copy&Merge(aa,t ; og,t') =o' +0p (ENDSERVICE)

Blett £, 05055 105 Fa; Ri; falllP — Blas op2; 15 Fyi Rs 7P| P = Py

RR n® 4753



48 Caromel, Henrio, Serpette

The conflict only concerns the store. But the the merges that are performed on the store
are independent (v" ¢ dom(og)). We can suppose that these two operations create disjuncts
set of locations. Then we can perform the missing two rules on the configurations P; and
P;. We obtain configurations with stores o, = 0 + 02 0’ + 051 =F 0j;and The crucial
point of the proof uses lemma 15 to prove: 03, =p 0 +0p2 =0 +0' +05=0"+0+05=
o' +o0p =F Jlm

ENDSERVICE/SERVE No conflict.

Concurrent request sending: REQUEST/REQUEST «a; = J2 or /1 = ap same kind of
arguments as in the case LOCAL/REQUEST.
a1 = ayNo conflict.

(1 = B2 Impossible because Py, P, € Q so, if f; = (2 then the two requests come from

the same activity (RSL compatibility) an = a2 and there is no conflict. O

8.2.3 Extension

In this subsection we extend the local diamond property presented before to obtain a real
diamond property which will allow us to conclude about confluence of our calculus.
First, we introduce the following lemma:

Lemma 16

P=pr PPAP€Q(Q,Q)ANP, = P' = P € 0(Q,Q"

Proof : Trivial because for any o € P, P=p P' = RSL,, = RSLQIP. O
Property 17 (diamond property with =r)
T T,
P, =» Q Qi => R,
T T
Py =» Q» — Q1 =r Q2 V3Ri,Rs,{ Q2 => Ry
Q1,Q2 € 9(Q,Q") Ry =F Ry
P =r P Ri, Ry € Q(Q,Q)

Proof : If one of the = applies only repLy rules then we can conclude immediately by
corollary 13.
Else:
P =0

REPLY™

then P, — P{ — @

. REPLY™
in the same way P, — Pj — Q2

where P| =r P;. And by corollary 2:

P P PUAP — QoA Q= Qo

INRIA



ASP 49

,%N?\

Figure 16: The Diamond property proof

Moreover by lemma, 10:
P (0l
Pll — Q]_ Ql =F Ql

Then we use diamond property 16 (we use lemma 16 to prove Q}, Q5 € Q):

P —Q G
Pl —Q, = Q,=rQ,V3IR,Ry{ 2 1
[ /] 1= 2
QL@ e Q B =rk
12 ' Ry€Q

We conclude by using property 13:
QE —RIANQI=r Q1= Q1 =>RIAR =r R,

Q) — By NQy=r Q2= Qs =»Ro ARy =p Ry

RR n® 4753



50 Caromel, Henrio, Serpette

thus proving (remark R; =r Ry and R;, Rs € Q come trivially):

Q1 —=» R,
Q2 —=» Ry
Ri=r R
Ri,Ry € Q

9 Conclusion

In this paper we presented a calculus modeling asynchronous communications in object
systems, and exhibited confluence properties.

The ASP calculus is based on asynchronous activities processing requests and responding
by mean of futures: after sending a request, the execution continues until the result of this
request is needed; the result is represented by a future until its value is calculated and
updated. The semantics captures strategies that range from eager future update (as soon
as the service is over) to on-demand result transmission (only when the value of a future is
needed). In ProActive, a Java API implementing the ASP model, two different strategies
for future update are implemented. But these two strategies do not need to store future and
thus futures do not need to be garbage collected, and network latency can be overlapped
with computation.

The most interesting property we proved is a sufficient condition to ensure confluence of
processes treating requests in FIFO order (Property 15: RSL-based Confluence). We proved
that the execution of a set of activities is only determined by the ordered list of activities
sending requests (Request Senders List), as perceived locally by each activity. For a given
activity, the RSL is the chronological sequence of source activities of received requests; only
activity names are needed, target methods and parameters are unnecessary. If the RSLs of
two configurations have a Least Upper Bound (LUB) then the two configurations can be
reduced to the same third one.

Note that what provides determinism in our calculus is the balancing between asyn-
chronous execution and synchronisations due to rendez-vous mechanism and wait-by neces-
sity (data-flow synchronisation). Of course the topology of objects stating that we can only
access an activity through its active object is important too. Note also that what makes
our properties poweful is that it is insensitive to order of replies : the determinism is only
determined by the RSL in each activity. In other word an execution is uniquely determined
by the order of activities sending request to each active object.

Tt seems possible to generalize (weaker conditions) or to find complementary properties
to ensure confluence. A promising perspective seems to lie in an ASP extension to deal with
non-FIFO activities. More specifically, we plan to extend the current work on configurations
that behave like Process Networks [19)].

INRIA



ASP 51

Comparison with related calculi

In moBA[18] caller always wait for the method result (synchronous method call), which can
be returned before the end of the called method. A simple extension to ASP could provide
a way to assign a value to a future before the end of the execution of a method. In moSA,
this characteristic is the source of parallelism whereas in our case this would simply allow
an earlier future update; in ASP the source of parallelism is the object activation and the
systematic asynchronous method calls between activities. The condition given in [18], stating
that the result of a method is not modified after being returned, is ensured in ASP by a deep
copy of the result (Property 3: Store partitioning). Similarly, the unique reference condition
from the same work is balanced in ASP with the constraints on objects topology.

The preconditions for RSL-based confluence (Property 15) are both simple and dynamic.
In fact, one just has to ensure that, at any time a unique activity can make a request on a
given one. This can be compared to linear (or linearized) channels of w-calculus [21] but we
proved that the concurrency between returns of results does not lead to non-determinism
and 7-calculus linearity conditions are static(typing). Determinism can be proved in config-
urations where a general static property would not be sufficient to conclude. For example,
a synchronization mechanism could dynamically enforce an order of request sending.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, New York, 1996.

[2] Paulo Sergio Almeida. Balloon types: Controlling sharing of state in data types. In
Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP ’97 — Object-Oriented Pro-
gramming 11th European Conference, Jyvdskyld, Finland, volume 1241, pages 32-59.
Springer-Verlag, New York, NY, 1997.

[3] Isabelle Attali, Denis Caromel, and Romain Guider. A step toward automatic distribu-
tion of java programs. In S. F. Smith and C. L. Talcott, editors, 4th IFIP International
Conference on Formal Methods for Open Object-Based Distributed Systems, pages 141—
161. Kluwer Academic Publishers, 2000.

[4] Luca Cardelli. A language with distributed scope. In Conference Record of POPL
’95: 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, Calif., pages 286-297, New York, NY, 1995.

[5] Denis Caromel. Toward a method of object-oriented concurrent programming. Com-
munications of the ACM, 36(9):90-102, September 1993.

[6] Denis Caromel, Wilfried Klauser, and Julien Vayssiére. Towards seamless computing
and metacomputing in Java. Concurrency: Practice and Ezperience, 10(11-13):1043—
1061, 1998. Proactive available at www.inria.fr/oasis/proactive.

RR n° 4753



52

Caromel, Henrio, Serpette

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In
SIGPLAN’9} Conf. on Programming Language Design and Implementation, pages 230—
241, Orlando (Florida, USA), June 1994. ACM. SIGPLAN Notices, 29(6).

Fabrice Le Fessant. Detecting distributed cycles of garbage in large-scale systems. In
Conference on Principles of Distributed Computing(PODC), Rhodes Island, August
2001.

C. Fournet, G. Gonthier, JJ. Levy, L. Maranget, and D. Remy. A Calculus of Mobile
Agents. In U. Montanari and V. Sassone, editors, Proc. 7th Int. Conf. on Concurrency
Theory (CONCUR), volume 1119 of Lecture Notes in Computer Science, pages 406-421,
Pisa, Italy, August 1996. Springer-Verlag, Berlin.

Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In
Proceedings of the 28rd ACM Symposium on Principles of Programming Languages,
pages 372-385. ACM Press, 1996.

Gordon, Hankin, and Lassen. Compilation and equivalence of imperative objects.
FSTTCS: Foundations of Software Technology and Theoretical Computer Science, 17,
1997.

Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus: Reduction and
typing. In Proceedings HLCL’98. Elsevier ENTCS, 1998.

Andrew D. Gordon, Paul D. Hankin, and S. B. Lassen. Compilation and equivalence
of imperative objects. In Proceedings FST+TCS’97, LNCS. Springer-Verlag, December
1997.

Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-order calculus of ob-
jects with subtyping. In Conference Record of POPL ’96: The 23" ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 386-395, St. Pe-
tersburg Beach, Florida, 21-24 January 1996.

Alan Jeffrey. A distributed object calculus. In ACM SIGPLAN Workshop Foundations
of Object Oriented Languages, 2000.

Cliff B. Jones. An object-based design method for concurrent programs. Technical
report, University of Manchester, 1992. UMCS-92-12-1.

Cliff B. Jones. Process-algebraic foundations for an object-based design notation. Tech-
nical report, University of Manchester, 1993. UMCS-93-10-1.

Cliff B. Jones and S.J. Hodges. Non-interference properties of a concurrent object-based
language: Proofs based on an operational semantics. In Burkhard Freitag, Cliff B. Jones,
Christian Lengauer, and Hans-Jorg Schek, editors, Object-Orientation with Parallelism
and Persistence, chapter 1, pages 1-22. Kluwer Academic Publishers, 1996. ISBN 0-
7923-9770-3.

INRIA



ASP 53

[19] G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing *74: Proceedings of the IFIP Congress, pages
471-475. North-Holland, New York, NY, 1974.

[20] G. Kahn and D. MacQueen. Coroutines and Networks of Parallel Processes. In
B. Gilchrist, editor, Information Processing 77: Proc. IFIP Congress, pages 993-998.
North-Holland, 1977.

[21] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-
calculus. In Proceedings of POPL ’96, pages 358-371. ACM, January 1996.

[22] Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting the world. In
Conference Record of the Nineteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, ACM SIGPLAN Notices, pages 39-50. ACM Press, January 1992.

[23] Xinxin Liu and David Walker. Confluence of processes and systems of objects. In
Peter D. Mosses, Mogens Nielsen, and Michael 1. Schwarzbach, editors, TAPSOFT
’95: Theory and Practice of Software Development, 6th International Joint Conference
CAAP/FASE, volume 915 of LNCS, pages 217-231. Springer, 1995.

[24] Robin Milner. The polyadic w-calculus: A tutorial. In Friedrich L. Bauer, Wilfried
Brauer, and Helmut Schwichtenberg, editors, Logic and Algebra of Specification, vol-
ume 94 of Series F. NATO ASI, Springer, 1993. Available as Technical Report ECS-
LFCS-91-180, University of Edinburgh, October 1991.

[25] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part
I/I1. Journal of Information and Computation, 100:1-77, September 1992.

[26] Uwe Nestmann, Hans Hiittel, Josva Kleist, and Massimo Merro. Aliasing models for
mobile objects. Information and Computation, 175(1):3-33, 2002.

[27] Oscar Nierstrasz. Towards an object calculus. In M. Tokoro, O. Nierstrasz, and P. Weg-
ner, editors, Proceedings of the ECOOP’91 Workshop on Object-Based Concurrent Com-
puting, volume 612 of LNCS, pages 1-20. Springer-Verlag, 1992.

[28] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. Lecture Notes in Computer Science, 915:651-77,
1995.

[29] Davide Sangiorgi. The typed m-calculus at work: A proof of Jones’s parallelisation
theorem on concurrent objects. Theory and Practice of Object-Oriented Systems, 5(1),
1999.

[30] Brian Cantwell Smith. Reflection and semantics in lisp. In POPL’8/ : conference record
of the Annual ACM symposium on Principles of Programming Languages, pages 23-35,
1984.

RR n°® 4753



54 Caromel, Henrio, Serpette

[31] Guy L. Steele, Jr. Making asynchronous parallelism safe for the world. In ACM, editor,
POPL ’90. Proceedings of the seventeenth annual ACM symposium on Principles of
programming languages, January 17-19, 1990, San Francisco, CA, pages 218-231, New
York, NY, USA, 1990. ACM Press.

[32] Martin Steffen and Uwe Nestmann. Typing confluence. Interner Bericht IMMD7-xx/95,
Informatik VII, Universitat Erlangen-Niirnberg, 1995.

INRIA



ASP 55
A Notations

Concepts

Active object Root object of an activity 10
Activity A process made of a single active object and a set of passive 10

Wait-by-necessity
Service Method
Request

Future

Future value

Computed future

Not (yet) updated future

Partial future value
Closed term

Source term
Reduced object

objects

Blocking of execution upon a strict operation on a future: 11
A[R[t..],00-.] A oalt) = fut(f7P)

Method started upon activation: m; in Active(a,m;) 12
Asynchronous remote method call 10
Represents the result of a request before the response is sent 12
back

Value associated to a future f*° 12
copy(t, o) where {fi‘"_’ﬁ — 1} € F,

A future which has a value associated: 21
F27P where f777 € dom(Fj)

Reference to a computed future 23
Future value containing references to futures 12
Term without free variable (fv(a) = 0) 8
Closed term without location (fv(a) =0 A locs(a) = 0 8

Object with all fields reduced (to a location): o == [, =8
viym; = s(x5,y5)a;]

Syntax: ASP source terms

[li = bi;mj; =¢(xj,y;)a;] Object definition

a‘li

a‘li =b
a.m;(b)
clone(a)
Active(a,m;)
Serve(M)

M

8
Field access 8
Field update 8
Method call 8
Superficial copy 8
Object activation 10
Request service 10
list of method labels 10

ASP intermediate terms and semantics structures

—~
3

)
i\.
3
o~

RR n® 4753

Location 8
Sequential configuration 9
a with continuation b, f is the future associated with the con- 10
figuration



56 Caromel, Henrio, Serpette

a, B Activity: afaa; 0a;ta; Fu; Ra; fal 10
[current term, store, active object, future values, pending re-
quests, current future]

PQ Configuration 16
AO(«) Generalized reference to the activity a 12
e Future identifier 16
fut(f =P Generalized reference to the future f;” —p 17
r = [my; e [P Request: Remote method call 10
Ro = {[mj; s f27P)} Pending requests: a queue of requests 17
General Notations
{a — b} Association /finite mapping 8
0= {b—c} Substitution 8
5 Transitive closure of any reduction — 23
&b Disjoint union 22
L| Iy Restriction of (RSL) list L on labels belonging to M 23
L, nt" element of the list L 22
(] Least upper bound 22
3t There is at most one 26
Stores
o Store: finite map from locations to objects (reduced or gener- 8
alized reference) o ::= {1; — 0;}
dom(o) set of locations defined by o 8
oo Append of disjoint stores 9
o+o' Updates the values defined in ¢’ by those defined in o 9
(c+0)1)= o) ifeedom(o)
o'(1) otherwise
Merge(t,0, ') Store Merge: mergesindependently o and ¢’ except for « which 9
is taken from ¢’
copy(tL, o) Deep copy of a(¢) 18
Copy&Merge(o,t ; o',1') Appends in ¢'(¢') a deep copy of o (1) 18
Semantics
R Reduction context 9,17
Rla] Substitution inside a reduction context 9
—s Sequential reduction 10

INRIA



ASP 57
— Parallel reduction 19
AN Parallel reduction where T is the applied rule 23
= Parallel Reduction with future updates: Parallel reduction pre- 24
ceded by some reply rules
T
S o Parallel Reduction with future updates where T is the applied 24
rule:
et Iy T # REPLY and REPL™ i T = REPLY
FL(a) Futures list 21
RSL, Request Sender List of a: (RSLy), = 37 if ff~* € FL(a) 22
< RSL comparison (prefix order on activities) 22
Ma, Static approximation of the set of M that can appear in the 23
Serve(M) instructions of ap:
P -5 QAQ=a[R[Serve(M)],...]||... = M € Mg,
ActiveRe fs(a) Set of active objects referenced by a: 20
{83 € dom(0), 7a(t) = AO(B)}
FutureRefs() Set of futures referenced by a: 21
{77713 € dom(0a), 00 (1) = fut(f77)}
Equivalences
= equality modulo renaming (alpha-conversion) of locations 8
=p Equivalence modulo future replies/updates 23
Properties
F P oK Well formed configuration 21
RSL, X RSLg RSL compatibility 22
PXQ Configuration compatibility 23
PYP Configuration confluence: 24
HRl,RQ,Pl = Ri NPy = Ry ANR; =F Ry
DON(P) Deterministic Object Network 25

RR n°® 4753



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



