-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

On the implementation of recursion in call-by-value
functional languages
Tom Hirschowitz, Xavier Leroy, J. B. Wells

» To cite this version:

Tom Hirschowitz, Xavier Leroy, J. B. Wells. On the implementation of recursion in call-by-value
functional languages. [Research Report] RR-4728, INRIA. 2003. inria-00071858

HAL Id: inria-00071858
https://hal.inria.fr /inria-00071858
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50452904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00071858
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4728--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the implementation of recursion
In call-by-value functional languages

Tom Hirschowitz — Xavier Leroy — J. B. Wells

N° 4728
Février 2003

THEME 2

apport
derecherche







VAV 1 IN IN I A

ROCQUENCOURT

On the implementation of recursion
in call-by-value functional languages

Tom Hirschowitz * , Xavier Leroy * , J. B. Wells !

Théme 2 — Génie logiciel
et calcul symbolique
Projet CRISTAL

Rapport de recherche n’° 4728 — Février 2003 — 38 pages

Abstract: Functional languages encourage the extensive use of recursive fonctions and data structures. It is
therefore important that they efficiently implement recursion. In this paper, we formalize and improve a known
implementation technique for recursion. The original technique was introduced by Cousineau and Mauny as the
“in-place updating trick”. Consider a list of mutually recursive definitions. The technique consists in allocating a
dummy, uninitialized heap block for each recursive definition. The size of these blocks is guessed from the shape
of each definition. Then, the right-hand sides of the definitions are computed. Recursively-defined identifiers
thus refer to the corresponding dummy blocks. This leads, for each definition, to a block of the expected size.
Eventually, the contents of the obtained blocks are copied to the dummy blocks, updating them in place. The
only change we propose to this scheme is to update the dummy blocks as soon as possible, immediately after each
definition is computed, thus making it available for further use. At the source language level, the improvement
allows to extend the class of expressions allowed as right-hand sides of recursive definitions, usually restricted to
syntactic functions. We formalize our technique as a translation scheme to a lambda-calculus featuring in-place
updating of memory blocks, and prove the translation to be faithful.

Key-words: recursion, compilation, semantics.

* INrI1A Rocquencourt, projet CRISTAL
 Heriot-Watt University, Edinburgh, UK

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30



Implémentation de la récursion
dans les langages fonctionnels en appel par valeur

Résumé : Les langages fonctionnels encouragent l'utilisation extensive des fonctions et structures de données
récursives. Ils doivent donc implanter efficacement la récursion. Dans ce papier, nous en formalisons et amé-
liorons une technique connue d’implantation. Cette technique a été introduite par Cousineau et Mauny sous le
nom de “in-place updating trick”, soit “l’astuce de la modification en place”. Considérons une liste de définitions
récursives. La technique consiste & allouer sur le tas des blocs non initialisés, dont les tailles sont devinées &
partir de la forme syntaxique des définitions. Les définitions sont ensuite calculées. Les variables récursives
font alors référence aux blocs non initialisés. On obtient, pour chaque définition, un bloc de la taille attendue.
Enfin, ces blocs obtenus sont copiés sur les blocs non initialisés, ce qui les modifie en place. Le seul changement
que nous proposons est de modifier les blocs en place plus tot, précisément dés qu’il est possible de le faire.
Ainsi, dés qu’une définition est calculée, on copie le résultat sur le bloc non initialisé correspondant, ce qui
rend la définition disponible lors du calcul des définitions suivantes. L’amélioration apportée permet, au niveau
du langage source, d’élargir la classe d’expressions acceptées comme membres droits des définitions récursives,
habituellement limitée aux seules fonctions syntaxiques. Nous formalisons notre technique comme un encodage
vers un lambda-calcul doté d’opérations pour la modification en place, et nous prouvons que ’encodage est
correct.

Mots-clés : récursion, compilation, sémantique.



On the implementation of recursion n call-by-value functional languages 3

1 Introduction

Functional languages usually feature mutually recursive definition of values. In ML, this is supported by the
let rec construct. Languages differ, however, in the kind of expressions they allow as right-hand sides of
mutually recursive definitions. For instance, Haskell [7] allows arbitrary expressions as right-hand sides of
recursive definitions, while Standard ML [12] only allows syntactic A-abstractions, and OCaml [11, 10] allows
both A-abstractions and limited forms of constructor applications.

Several criterion come into play when determining this range. First, languages have to give a status to
ill-founded definitions, such as x = x + 1. In a lazy language, this definition can be represented by a recursive
block of code. When its evaluation is requested by the system, this code is executed, but it begins by requesting
its own execution. So, depending on the compiler, it will either loop indefinitely or result in a run-time error.
For call-by-value languages, ill-founded definitions are more problematic: during the evaluation of x = x + 1,
the right-hand side x + 1 must be evaluated while the value of x is still unknown. There is no strict call-
by-value strategy that allows this. Thus, such ill-founded definitions must be rejected. Moreover, the burden
recursive definitions impose to the rest of the compiler must be taken into account. For example, one could
systematically implement recursive definitions through reference cells, but this would force the compiler to
maintain information about whether values are recursive or not. Finally, the efficiency of the generated code
is important. All these criterions interact tightly, yielding a tension between expressiveness, efficiency, and
simplicity.

Recent work by Boudol [4] introduces a call-by-value let rec construct that is more expressive than that of
ML or OCaml. In [4], right-hand sides of recursive definitions are not syntactically restricted, but ill-founded
definitions are ruled out by a type system. More recent work by Hirschowitz and Leroy [8] led to a very
similar extension. Boudol and Zimmer [5] propose an implementation technique for this extended let rec,
where recursive definitions of syntactic functions are implemented in a standard way, while reference cells are
introduced to deal with more complex recursive definitions.

The present paper develops and proves correct a compilation scheme and call-by-value evaluation strategy
for an extended let rec construct. This let rec construct supports both A-abstractions and record constructions
as right-hand sides of recursive definitions. Moreover, it allows non-recursive definitions to be interleaved with
recursive definitions within a single let rec binding. Finally, the compilation scheme we propose for this flavor
of let rec is simpler and more efficient than that of [5], since it does not require additional reference cells.

Our main motivation in studying this extended let rec construct is that it plays a crucial role in the
language of call-by-value mixin modules investigated by the authors in [9]. Moreover, the present paper proves
the correctness of the folklore “in-place updating trick” [6] used in the OCaml compiler.

The remainder of this paper is organized as follows. In section 2, we first review informally the “in-place
updating trick” described in [6], and show that it extends to combinations of recursive and non-recursive bindings
within the same let rec. In section 3, we formalize the corresponding source language A,. Section 4 defines a
target language g0, featuring in-place updating of memory blocks. We define the compilation scheme from
Ao 1O Agiroc in section 5, and prove its correctness in section 6.

2 Overview

The “in-place updating trick” The “in-place updating trick” outlined in [6] and refined in the OCaml
compiler [10], implements let rec definitions that satisfy the following two conditions. Consider the mutually
recursive definition z; = ey ...z, = e,. First, the value of each definition should be represented at run-time
by a heap allocated block of statically predictable size. Second, for each i, the computation of e; should not
need the value of any of the definitions e;, but only their names z;. As an example of the second condition, a
recursive definition like £ = A x. (... £ ...) is accepted, since no computation will try to use the value of
f. Contrarily, a recursive definition like £ = (£ 0) is refused.

Evaluation of a let rec definition with in-place updating consists of three steps. First, for each definition,
allocate an uninitialized block of the expected size, and bind it to the recursively-defined identifier. Those
blocks are called dummy blocks. Second, compute the right-hand sides of the definitions. Recursively-defined
identifiers thus refer to the corresponding dummy blocks. Owing to the second condition, no attempt is made
to access the contents of the dummy blocks. This step leads, for each definition, to a block of the expected size.
Third, the contents of the obtained blocks are copied to the dummy blocks, updating them in place.

For example, consider, in a given language L, a mutually recursive definition z; = e;,z5 = ey, where it
is statically predictable that the values of the expressions e; and e; will be represented at runtime by heap

RR n° 4728



4 Tom Hirschowitz , Xawier Leroy , J. B. Wells

e Pre-allocation:

e Computation:

€1 €2

L

e In-place updating:

€1

3

Figure 1: The “in-place updating trick”

allocated blocks of sizes n; and ns, respectively. Here is what the compiled code does, as depicted in figure
1. First, it allocates two uninitialized heap blocks, at adresses I3 and [o, of sizes n1 and ns, respectively. This
is called the pre-allocation step. As a second step, it computes ey, where z; and zs are bound to /1 and I,
respectively. The result is a heap allocated block of size m;, with possible references to the two uninitialized
blocks. The same process is carried on for e, resulting in a heap allocated block of size ns. The third and final
step consists in copying the contents of the two obtained blocks to the two uninitialized blocks. The result is
that the two initially dummy blocks now contain the proper cyclic data structure.

Simple generalization The scheme described above computes all definitions one after another, and only
then updates the dummy blocks in place. From the example above, it seems quite clear that in-place updating
for a definition could be done as soon as its value is available.

As long as mutual references do not really use the referenced values, as happens for recursive functions for
instance, both schemes behave identically. Nevertheless, in the case where e really uses the value v; computed
for ey, for example if es = (1 1), the original scheme can go wrong. Indeed, the dummy block pre-allocated
for z is still empty at the time where e is computed. Instead, with immediate in-place updating, the value vy
is already available when computing e2. This trivial modification to the scheme thus corresponds to increasing
the expressive power of let rec. It allows definitions to really use previous definitions. Furthermore, it allows
to transparently introduce definitions with unknown sizes in let rec, as shown by the following example.

An example of execution is presented in figure 2. The executed definition is 21 = e1,z2 = e, 23 = €3, where
e; and e3 are expected to evaluate to blocks of sizes n; and ng, respectively, but where the representation for
the value of es is not statically predictable. The pre-allocation step only allocates dummy blocks for z; and z3.
The value vy of e; is then computed. It can make references to z; and x3, which correspond to pointers to the
dummy blocks, but not to z2, which would not make any sense here. This value is copied to the corresponding
dummy block. Then, the value vy of es is computed. It can refer to both dummy blocks, but it can also really
use the value v;. Finally, the value vs of e3 is computed and copied to the corresponding dummy block.

This modified scheme implements more mutually recursive definitions than the initial one. The next section
formalizes its semantics.

INRIA



On the implementation of recursion n call-by-value functional languages

1. Pre-allocation:

2. Computing e;:

U1

3. Updating with v;:

C

4. Computing es:

V1 ]
{)
V1 [
() U3

U1 U3

C

5. Computing es:

C

6. Updating with vs:

C

Figure 2: The refined “in-place updating trick”

RR n° 4728



6 Tom Hirschowitz , Xawier Leroy , J. B. Wells

z € Vars Variable
X € Names Name
Expression: e € expr :=z | Az.e | eres
[{Xi=e€1...X, =¢€,}|eX

|let rec 21 =€;...2, =€, in e

Figure 3: Syntax of A,

e More meta-variables:

su=X1=e1...X, =e, Record
bu=xz1=e1...2, =€, Binding

e Notations:

For a finite map f, and a set of variables P,
dom(f) is its domain, cod(f) is its codomain
fi p is its restriction to P, and f\p is its restriction to Vars\P.

e Expressions of predictable shape:
e, € Predictable ::= {0} | (¢ | 0) | let rec b in e

Figure 4: Meta-variables and notations

3 The source language ),

3.1 Syntax

The syntax of A, is defined in figure 3. The meta-variables X and x range over names and variables, respectively.
Variables are used as binders, as usual. Names are used for accessing record fields, as an external interface to
other parts of the expression. Figure 4 recapitulates the meta-variables and notations we introduce in the
remainder of this section. The syntax includes the A-calculus constructs; variables z, abstraction Az.e, and
application ejes. The language also includes records {X; = e; ... X,, = e, }, record selection e.X and a let rec
construct. A mutually recursive definition has the shape let rec z; = e;...2, = e, In e, where arbitrary
expressions are syntactically allowed as the right-hand side of a definition.

Syntactic correctness Records s = (X; = e;...X,, = €,) and bindings b = (z; = e;...1, = e,) are
required to be finite maps: a record is a finite map from names to expressions, and a binding is a finite map
from variables to expressions. Requiring them to be finite maps means that they should not bind the same
variable or name twice.

Consider the let rec binding b = (z1 = €1 ...z, = e,). We say that there is a forward reference from z; to
z; if i < j, and z; occurs free in e;.

Forward references in bindings are allowed only when they point to a certain class of expressions, the
expressions of predictable shape. As a first approximation, we say that the shape of an expression is predictable
if it is a structure, a record, or a binding followed by an expression of predictable shape. Formally e, €
Predictable ::= {0} | (¢ | 0) | let rec b in e,.

Sequences Records and bindings are often considered as finite maps in the sequel. We refer to them collec-
tively as sequences, and use the usual notions on finite maps, such as the domain dom, the codomain cod, the
restriction - p to a set P, or the co-restriction -\ p outside of a set P.

3.2 Structural equivalence

We consider the expressions equivalent up to alpha-conversion of binding variables in structures and let rec
expressions. For this, we define the structural contraction relation, in figure 8, relying on notions defined just
below.

INRIA



On the implementation of recursion n call-by-value functional languages 7

UnsafeNewNames(z, \z.e) = Capt,(e) UFV(e)
UnsafeNewNames(z,let rec b in ¢) = ( FV(let rec b in e)
U Capt,(e)
u {J {yrucapt,(s))
(yof)eb

\ {z}

Figure 5: Unsafe new names in A,

U ({y}ucCapt,(b(y))) UCapt,(e)

. — yEdomy(b)
Capt,(let rec b in e) if x € FV(let rec b in e)
0 otherwise
Capt,(z) = Capt,(c) = 0
{y} U Capt, (e)
Capt,(Ay.e) = ifz € FV(\y.e)
0 otherwise
Other cases easy.
Figure 6: Capture in A,
Let o = {z — y}.
z{o} =y
z{o} = zifz#zx
{Xlzel...Xn:en}{U} = {Xl 261{0}...Xn:€n{0}}
_ [ deelod) it ¢ o)
(Aze)fo} = Az.€ otherwise
. _ let rec b{o} in e{o} if {z,y} Ndom(b) =0
(let rec b in e){o} = { let rec b in e otherwise
(z1=e1...xp =ex){o} = (v1=e{o}...z, =en{0o})
Other cases easy.

Figure 7: Variable renaming in A,

A binder z, in a let rec or in a function, may be renamed into a new variable y, provided y meets some
freshness conditions. Variable renaming is formally defined in figure 7, using notions defined in figures 5 and 6.
Variable renaming is a total function, from pairs of an expression and a variable renaming z — y (z is replaced
with y), to expressions. In case renaming crosses a node binding one of the two variables z and y, it stops.
Otherwise, it is propagated as usual. Therefore, variable renaming sometimes does not preserve meaning. For
instance, renaming = with y in Ay.x yields the same expression, since renaming does not cross the node binding
y. This is why we introduce the notion of unsafe new names. It is defined in figure 5. A new name can be
unsafe for a binder if it is captured by binders inside the sub-expression, as y is in the above example. The
notion of capture is formalized by the Capt function in figure 6. Basically, Capt,(e) denotes the set of binding
variables located above occurrences of z in e. For instance Capt,(Ay.z) is the set {y}. A new name can also
be unsafe for a binder when it is free in the considered sub-expression. For example, renaming z to y in Az.(zy)
does not preserve meaning. The structural contraction relation, ~», defined in figure 8, allows to rename a
binder, provided the corresponding variable renaming is correct on the considered expression. The structural
reduction relation --+; is the contextual closure of the structural contraction relation. These two relations are
symmetric, and therefore the transitive closure --+;* of --+ is a congruence, called the structural equivalence
relation, and also written =;.

In the following, all expressions are considered up to structural equivalence =.

RR n° 4728




8 Tom Hirschowitz , Xawier Leroy , J. B. Wells

y ¢ UnsafeNewNames(z,let rec b,z =e,by in f) oc=x—y
let rec b,z =e€,by in f~v;let rec bi{o},y =e{c}, b2{c} in f{o}

y ¢ UnsafeNewNames(z, Az.e)
Az.e ~ g Ay.(e{z — y})

Figure 8: Structural contraction relation of A,

Configuration: cu=ble
Value: v € values =2 | Az.e | {sy}
Answer: a € answers ::= b, F v

More meta-variables:

8y ui= X1 =wv1...X, = v, Value record
by :==mz1 =v1...2, =v, Value binding

Figure 9: Configurations and results in A,

3.3 Semantics

The semantics of A, is quite standard, except for what concerns let rec bindings.

As shown in figure 9, values include functions Az.e and records of values {s,}, where s, denotes an evaluated
record X1 = vy ... X, = v,.

The semantics of record selection and of function application are defined in figure 10, by computational
contraction rules, defining the local computational contraction relation ~».. Record projection selects the ap-
propriate field in the record ; and the application of a function Az.e to a value v reduces to the body of the
function, where the argument has been bound to z.

Five operations are necessary for handling bindings properly, all defined Ariola et al. [2].

1. A first operation is let rec lifting. It consists in lifting a let rec node up one level in an expression. For
example, an expression of the shape e; + (let rec b in e;) becomes let rec b in e; + es.

2. A second operation is internal merging. During the evaluation of a binding, a definition may return a
let rec as an answer, where a value is expected. Internal merging merges this binding into the current
one. An expression of the shape let rec b;,x = (let rec b2 in €),b; in f becomes let rec by,bs,z =
e,bs in f, provided no variable capture occurs.

3. A third operation is external merging. The shape of results in A, allows only one binding to wrap
values. Therefore, if evaluation results in two nested bindings, they must be merged into a single one. An
expression of the shape let rec b; in let rec bs in e becomes let rec by,by in e, provided no variable
capture occurs.

4. A fourth operation, external substitution, allows to access bound variables when defined by a surrounding
binding. An expression of the shape let rec b in C[z] becomes let recbinC[e], if z = e appears in b
and z is not captured by C, and no variable capture occurs.

5. A last operation, internal substitution, allows to access identifiers bound earlier in the same bind-
ing. (Assuming left-to-right evaluation, “earlier” means “to the left of”.) An expression of the shape
let rec by,y = C[z],b2 in e becomes let recby,y = C[f],baine if = is defined as f in b1, and not
captured by C, and no variable capture occurs.

The question is how to arrange these operations to make the evaluation deterministic and to ensure that it
reaches the result when it exists. Our choice can be summed up as follows. There is a topmost binding. When
this topmost binding is already evaluated, evaluation can proceed under this binding. Otherwise, evaluation is

INRIA



On the implementation of recursion n call-by-value functional languages 9

e Contraction rules
z ¢ FV(v) (BeTa)
ETA
{X1=v1...Xp =v,}.X; ~cv; (PROJECT) (Az.e)v~.letrec z=v in e
dom(b) LFV(L)
. " (L1FT)
L[let rec b in e]~.let rec b in L]e]
e Computational reduction rules
e~.e' © ) E[N](z) = v (SussT)
S — ONTEXT UBST
Ele] -+ E[e] E[N[z]] -+ E[N[v]]
dom(b) L (doTn(bv) UFV (b)) (EM)
(byFlet rec b in e) —+.b,, bt e
dom(b;) L {z} Udom(b,,b2) UFV(b,,b2) UFV({) (M)
(by,z = (let rec by in €),by F f) ==+, (by,b1,2 = €,bs F f)
e Evaluation contexts
Lift context: Record contexts:
L == CelvO|D0.X|{S} S u= s, X =05
Multiple lift context: Sequence contexts:
F == oO|L[F] B == b,,z=00b
Evaluation context: Strict contexts:
E o= (b,FF)|(B[F]Fe) N = owv|oX
e Access in evaluation contexts
(bv F ]F)(.QJ) = bv(x) (EA) (bvay =F,b+ 6)(;(:) = bv(x) (IA)

Figure 10: Reduction semantics for A,

allowed inside this binding. If evaluation meets another binding inside the expression, this binding is lifted to be
immediately under the topmost binding. Then, it is merged with the latter, internally or externally according
to the context. External and internal substitutions are allowed only from the evaluated part of the topmost
binding. In order to simplify the presentation of the translation and the correctness proof, we distinguish
this topmost binding syntactically : the global computational reduction relation --+. is a binary relation on
configurations ¢, which are pairs of a binding, the topmost binding, and an expression, written b |- e (see figure
9). Here, the topmost binding is close to the usual notion of runtime environment, with the additional feature
that bound values can be mutually recursive.

More formally, let rec handling is done through one additional computational contraction rule LIFT per-
forming the lifting operation, and a computational reduction relation, defined in figure 10.

The contraction rule LIFT lifts a let rec binding up a lift context. As defined in figure 10, a lift context is
any non-let rec expression, where the special context hole variable O appears immediately under the first node,
in position of the next sub-expression evaluated.

The second contraction rule IM corresponds to internal merging. If, during the evaluation of the topmost
binding, one definition evaluates to a binding, then this binding is merged with the topmost one. The evaluation
can then continue.

The computational reduction relation extends the computational contraction relation to any evaluation
context, as defined in figure 10. We call a multiple lift context a series of nested lift contexts, and an evaluation
context is a multiple lift context, possibly inside a partially evaluated binding, or under a fully evaluated binding.

The EM reduction rule corresponds to external merging. It is only possible at toplevel, provided no variable
capture occurs.

RR n° 4728



10 Tom Hirschowitz , Xawier Leroy , J. B. Wells

x € Vars
X € Names
Expression:
E € Expr:=z|\z.E|EE A-calculus
|let ©; = E; ...z, = E, in E Non-recursive let binding
|{X1=E ... X,=E,}| EX Records
| | alloc | update Locations, allocation, mutation
Figure 11: Syntax of Agj0c
Configuration:
C s=0OFE

©® € Heaps = Vars Lin, HeapValues

Answer:
A€ Answers :=0FV
V € Values =z |

More meta-variables:

H, € HeapValues ::= Az.E | alloc n | {S,}
Sy =X =...X,=V,
B :::.’L'lel...l'n:En

Figure 12: Configurations and results in Ag0¢

Finally, the external and internal substitution operations are modeled within a single reduction rule SUBST.
This rule transforms an expression of the shape E[N[z]] into E [N [v]], provided the context E[N] defines z as v
and no variable capture occurs. The meta-variable N ranges over strict contexts. A strict context is a context
that requires a non-variable node to evaluate. An example of strict context is Ov, that is, the function part of
a function application. An example of a non-strict context is (Az.e)O, that is, the argument part of a function
application, where a variable would allow the evaluation to continue. Strict contexts are formally defined in
figure 10. The SUBST rule replaces a variable in a strict context with its value, according to the context. As
indicated in figure 10, evaluation contexts define the variable they bind, in two possible ways. First, a topmost,
semantically correct, fully evaluated let rec binding defines the variables it binds for the nodes under it. Second,
if (by,x ©TF,b) is the topmost, partially evaluated binding, then b, defines the variables it binds, inside F, and
later inside b. The two rules defining access in evaluation contexts in figure 10 show how these definitions
may be used. The two different ways of access correspond to the external and internal substitution operations,
respectively.

The computational reduction relation on expressions is compatible with structural equivalence =;. Hence
we can define computational reduction over equivalence classes of expressions, obtaining the reduction relation
—.

4 The target language A,

The syntax of the target language Ao is presented in figure 11. It distinguishes variables z from names
X. It includes the constructs of the A-calculus (function abstraction and application) and a non recursive let
binding. Additionally, there are constructs for record operations (construction and selection), and constructs
for modeling the heap: an allocation operator alloc, an update operator update, and locations [.

The semantics of Agy0c is defined as a structural reduction relation on configurations. As defined in figure
12, a configuration is a pair of a heap and an expression. A heap is a finite map from locations I to evaluated

INRIA



On the implementation of recursion n call-by-value functional languages

e Substitutions Let 0 € Subst = Vars Fin, Values.

z{o} = o(2)
(Az.E){o} Az-(E{0\{z)uo1 ({z1) })
(let B in F){O’} let B{O’} in F{U\dom(B)UU_l(dOm(B))}
(z = E,B){o} (z = E{o}, B{o\{s}us-1({z}) })
OF E{oc} = 000F E{s}
Other cases easy.

e Capture
Capt,(let y=FE,B in F) = Capt,(\y.let B in F)U Capt, (E)
Capt,(z) = 0
{y} U Capt,(E)
Capt,(\y.E) = ifx € FV(\y.E)
0 otherwise

Other cases easy.

¢ Unsafe new names

UnsafeNewNames(z, \2z.E) = Capt,(E)UFV(E)
UnsafeNewNames(z,let z = E,B in F) = UnsafeNewNames(z,z.(let B in F))

e Structural reduction

y ¢ UnsafeNewNames(z, \z.E) y ¢ UnsafeNewNames(z,let z = E,B in F)
Az.E ~5 Ay (E{z — y}) let t=FE,B in F~wlet y=FE,(B{z — y}) in F{z — y}

Figure 13: Structural equivalence in Agoc

heap blocks. An evaluated heap block H, € HeapValues is either a function Az.E, or an evaluated record {S,}
(where Sv ::= X3 =V; ... X, =V,), or an application of the shape allocn, for n € N. Such applications model
dummy heap blocks, containing unspecified data. A well-formed configuration is such that all the locations
mentioned are bound in its heap.

Evaluated heap blocks are not values. Only variables and locations are values. In this calculus, function
abstractions are not values, since their evaluation allocates the function in the heap, and returns its location:
the result of the evaluation of Az.E is a configuration © | I, where the location [ is bound to Az.[e] in the heap
0.

The related operators in the language are alloc, which creates a new empty block of size given by its
argument, and update, which copies its second argument in place of its first one, provided they have the same
size. For this, we assume given a function Size from A,y heap value blocks to N.

Notation We write O(l — H,) for the map equal to © anywhere but on | where it returns H,. We write
01 + O3 for the union of two heaps ©1 and ©5 whose domains are disjoint. In particular, when the heap © is
undefined on I, we write © + {l — H,} to denote the union of © and {I — H,}.

4.1 Structural equivalence

In Agiioc, a notion of structural equivalence identifies expressions modulo variable and location renaming. Loca-
tions are bound only by heaps, at toplevel in configurations. We consider configurations equal modulo renaming
of bound locations. This relation is easy to define since the location renaming never cross any location binder,
so we do not formalize it here. However, we have to define the structural equivalence modulo variable renaming.
A binder z, in a let or in a function, may be renamed into a new variable y, provided y meets some freshness
conditions. Structural equivalence is formally defined in figure 13.

Substitutions First, variable renaming is defined. It is a total function, from pairs of an expression and a
variable renaming x — y (z is replaced with y), to expressions. Nevertheless, we will see that the computational

RR n° 4728



12 Tom Hirschowitz , Xawier Leroy , J. B. Wells

O()=Az.E B I ¢ dom(©) A
OrIV—6F Bz vy BF) OF Hy = O (I Hyp 1] (AHocAte)
o) =1{S,} Size(0O(l1)) = Size(0(l2))
(PROJECT) (UPDATE)
OFILX ~,0FS5,(X) O - updatel; Iy ~. O{; — (L)) F {}
dom(B) 1L A

L
O Aflet Bin B, 0F let B in A[E] 7"

Figure 14: Computational contraction rules for Agjo¢

reduction relation uses a more complex notion of substitution than just variable renaming: it must also replace

variables with locations in some cases. Therefore, substitutions are elements of Subst = Vars Fin, Values.
We interpret them as total functions from variables to values, extending them with the identity function on
variables, outside of their syntactic domain. The domain dom(o) of a substitution o is the set of variables
2 such that o(z) # . We sometimes consider substitutions as sets, taking the union of two of them when it
makes sense, and sometimes we compose them, in the reverse notation, since they come from the right. The
composition of o1 and o3 is defined by z{o1 002} = z{o1}{02}: it acts as o7, then g2. Moreover, we call variable
renamings, or simply renamings, the injective substitutions whose codomains contain only variables, and we
denote them by (. Symmetrically, we call variable allocations the injective substitutions mapping variables to
locations, and denote them by 7).

We extend substitutions to Ay expressions and configurations, as described in figure 13 (where we take
the usual notation for substitution F{c}, meaning o(E)). In case the substitution crosses a binder z, then it
forgets any information about z. Thus, under this binder the substitution becomes o\ {;1us-1({z})- Otherwise,
it is propagated as usual. Therefore, substitution sometimes does not preserve meaning. For instance, renaming
z with y in Ay.z yields the same expression, since substitution does not cross the node binding y.

Structural equivalence This is why we introduce the notion of unsafe new names. It is defined in figure 5.
A new name can be unsafe for a binder if it is captured by binders inside the sub-expression, as y is in the above
example. The notion of capture is formalized by the Capt function in figure 13. Basically, Capt,(e) denotes
the set of binding variables located above occurrences of z in e. For instance Capt, (Ay.z) is the set {y}. A new
name can also be unsafe for a binder when it is free in the considered sub-expression. As an example, renaming
x to y in Az.(zy) does not preserve meaning.

The structural contraction relation, ~,, defined in figure 13, allows to rename a binder, provided the
corresponding variable renaming is correct on the considered expression. The structural reduction relation --»
is the contextual closure of the structural contraction relation. These two relations are symmetric, and therefore
the transitive closure —-»;* of --+ is a congruence, called the structural equivalence relation, and also written

=s-

4.2 Semantics

The semantics of Agy,c, like the one of )., is given in terms of a computational contraction relation that handles
rules for the basic constructors and a computational reduction relation that handles global rules. As in A,
evaluation results are values surrounded by a heap binding:

A€ Answers :=0O V.

Computational contraction relation The computational contraction relation is defined by the rules in
figure 14, using the notion of lift contexts in figure 15.

The BETA rule is a bit unusual, in that it applies a heap allocated function to an argument V. The function
must be a heap binding | — Az.E, and the result is E{z — V}.

INRIA



On the implementation of recursion n call-by-value functional languages

Lift context: Record context:
A = DE|VD|OoOX|{Z} Y = S,X=0,9
| let z=0,Bine Multiple lift context:
® == O] A9

Figure 15: Evaluation contexts of Ag0¢

OFE~.0'FFE

or a[B] —, 0 r3E] N gilet 5=V,B in E-+,0F (let B in E){z— V} (L)
l §§ (FV(@\{l}) U dom(G\{l}) UFV(E)) (GO)
OFlet € in E-—-».0FE (EMPTYLET) OFE-—». 0O\ FE

OFlet B; in let By in E--».0F let B;,B; in E (EM)

Figure 16: Computational reduction in Agjjpc

The PROJECT rule works similarly: it projects a name X out of a heap allocated record [ — {S,}, where S,
is a finite set of evaluated record field definitions of the shape X; = V... X,, = V,,. The result is S,(X) (i-e.
Viis X = X;).

The ALLOCATE rule is one of the key points of Agy0c. It states that a value block H, evaluates into a fresh
heap location containing H,, and a pointer to it: © + {l — H,} -1 (I fresh). If H, is a dummy block allocn,
the result is a dummy block on the heap.

The UPDATE rule copies the contents of a heap block on to another one. If the locations l; and Iy are
respectively bound to blocks H,; and H,, in the heap ©, then © - updatel; I, will evaluate to ©(l; — H,,) F
I

Finally, as in A., the evaluation of bindings is confined to the toplevel of terms, whence the LIFT rule, which
lifts a binding outside of a lift context. In Agec, lift contexts are of the shape

A==pE|Vo|o.X|{Z}|let z=0,B in e,

where ¥ ranges over record contexts, of the shape ¥ == 5,, X =0, S.

Computational reduction relation The computational reduction relation is defined in figure 16.

The CONTEXT rule shifts the contraction relation to a multiple lift context. Lift contexts have been defined
in the last paragraph, and multiple lift contexts are simply series of nested lift contexts.

The LET rule describes the toplevel evaluation of bindings. Once the first definition is evaluated, the binding
variable is replaced with the obtained value in the rest of the expression. Eventually, when the binding is empty,
it can be removed with rule EMPTYLET.

By rule GC, when a heap binding is not used by any other binding than itself, and not used either by the
expression, it may be removed.

Finally, the EM rule states that it is equivalent to evaluate two bindings in succession, or to evaluate their
union.

4.3 The )\, calculus and its confluence

The set of terms of the Ayy.c calculus is the set of equivalence classes for =;. The computational reduction
relation on expressions is compatible with =;, so we may extend it to terms, to obtain the reduction relation
—.

Definition 1 The Ayyoc calculus is the set of terms, equipped with the relation —».

RR n° 4728



14 Tom Hirschowitz , Xawier Leroy , J. B. Wells

Unlike in A,, the reduction of Ay, is not deterministic because of rules GC and EM. Rule GC can apply
at any time, and rule EM gives a choice between two outcomes when two successive bindings are encountered.

It is therefore important to make sure that Agy.c is confluent. Let 4 be the relation defined by the rules
CONTEXT, LET, and EMPTYLET. It is syntax directed, and therefore deterministic.

We first prove the following proposition, which is also described by the following diagram, where the plain
arrows are universally quantified, and the dotted ones are existentially quantified.

C

Cr Cy

Proposition 1 For all configurations C, C1, and Cy such that C < Ci and C Ll C>, there exists a config-
* *
uration C' such that C EM o and Cy LEMT o

Proof
If ¢ BrEDET C1, the two obtained configurations are identical. If C < C} by rule LET, then the two

reductions simply commute. If C' Conrpxr C1, then we have to examine the underlying contraction step C~».C}.

In all cases but one, the two reduction steps simply commute. The only problematic case is when the applied
rule is LIFT. We have C = O - ®[E], with E = A[let B in E;], and C; = O | ®[let B in A[E4]].

e If A u=0OF | VO | {¥} | 0.X, as rule EM applies on C, we must have & of the shape let = =
®,,B; in let B, in F'. Therefore

Ci=0+t1let x =®[let B in A[E;]],B; in let By in F',
and
CQ = @ Flet z = (I>1[A[let B in El]],Bl,BQ in FI.

Let
C'=0Flet =& let B in A[E;]],B1, B, in F'.

We obtain easily that C; and Cs both reduce to C’, in one step of EM and Li?, respectively, which is as
expected.

e If A =let x = 0O,B; in F, then & might still be of the shape letz = &, B} inlet By in F’, in which
case the previous reasoning applies. If it is not of this shape, then the let binding contained in A is part
of the EM redex, so ® = O, and F is of the shape let By in F". So, we have a diagram of the shape:

OF letz=(let B in E;),B; OF letBin
inlet B, L letx = E1, By in
in F" let B, in F"

lEM

EM OF letB,z=E,Bjin
let B, in F"

[EM

OF let z= (et B in E), OF letBin -
BI;BZ LiFT let:E:El,Bl,BQ EM OF !etle,m—EI;B17B2
s A inF
inF inF

INRIA



On the implementation of recursion n call-by-value functional languages

O
This result extends by a simple induction to the following corollary, pictorially described by the following
diagram.

C

Cl. 02

*
Corollary 1 For all configurations C, C1, and Cy such that C < Ci and C Ll Cs, there exists a configu-
* *
ration C' such that Cq B0 and Cy LB o

Then, the relation CEM is defined as i), extended with rule EM. Formally, BN ¢y

Thanks to the previous corollary, we prove that the CEM elation is confluent. This is done by considering

. _CEMEM™* c o . CEM EM*
the relation — — | which is strongly confluent. In other terms for any two reduction steps C — — ()
CEMEM* CEMEM * CEMEM*

and C == — (0, there exist a configuration C' and two reduction steps C; — — (' and Cy, — — (.
A pictorial view of this is given by the following diagram:

*
Proposition 2 The relation CEMEM® s strongly confluent.

Proof To prove this last statement, we proceed by case on the CEM rules applied, from C, to reach C; and Cy,
respectively. If the two rules are EM, then as this relation is deterministic, we conclude easily, and similarly if
the two reductions are ——» steps. The only relevant case is when one reduction is a <, step, say C < C1,
and the other is in —.
. c , EM* . . , CEMEM* ~,
In this case, we have C — C] — C}. By the previous corollary, we obtain a C such that Cy — — (.

* *
Then, by confluence of the deterministic relation —~, we obtain C' such that o EM ¢ and C; EM C'. This

*
configuration is also such that C; and C5 reduce to it by relation (E—I\)Aw) , in at most one step.

This is depicted by the following diagram.

RR n° 4728



16 Tom Hirschowitz , Xawier Leroy , J. B. Wells

C
c
EM
i
EM
*
. EM
C1 . Co
A
BN 4 EM
~. EM e
“EM
ENUYZ
c -

O

Corollary 2 (Confluence of Ayoc) The Aanoe calclulus is confluent.

5 Translation

5.1 Generalized contexts in A,

The purpose of this paper is to prove that A, can be faithfully translated into Agje.- A desired property for
this translation, in order to make the proof of correctness easier, is that a result is translated as a result, not
needing any additional computation. However, a simple abstraction such as Az.z is a value of A,, and could
be translated as such in Ay, but is not a result of Agj0.. The correct translation is rather the configuration
{l = Az.z} I I. The drawback of such a method is that the translation is no longer compositional, at least
in the usual sense. Indeed, the translation of an application such as (Az.z)(Az.z) is not the application of the
translation of the function to the translation of the argument.

5.1.1 Definition

In order to overcome this difficulty, we introduce a non-standard notion of contexts in Agy.c, which take as an
argument configurations, rather than just expressions. Configurations are pairs of a heap and a multiple lift
context, and the application of a context © F ® to a configuration ©' - E is © + 0’ + ®[E].

We are not done yet. We have indeed seen that results in A, can be of the shape b, F v. We imagine that
b, will be translated as the heap, roughly. But heaps of Ay only contain heap blocks, i.e. dummy blocks,
functions or evaluated records. Therefore, in the case where b, contains definitions of the shape z = y for
example (or z = 1 if we had constants), we have to find another solution. Furthermore, this solution has to take
into account the asymmetry of let rec in \,. Indeed, the heap x = y,z = z in fact maps both = and z to the
value y. Our solution is to retain the part of A\, heaps that cannot be included in A,y heaps as substitutions.
For instance, the A, binding © = y,z = z is translated as the substitution {z — z} o {x — y} (recall that
composition of substitution is “left to right”).

But then, contexts again become a bit more complicated, because they must include a substitution part.
Indeed, the A, context © = y,z = x F O does not correspond to any standard evaluation context in Agyoc-

INRIA



On the implementation of recursion n call-by-value functional languages

Instead, we have to define a stronger kind of evaluation contexts, including a heap ©, a standard context @,
and a substitution 0. We write them © F ®[o], and denote them by ¥.

Applying a context to a configuration is valid if the two heaps define disjoint sets of locations, and if the
substitution carried by the context is correct for the configuration, in the following sense.

Definition 2 (Substitution correctness) A substitution o is correct for an expression E iff
Vz € dom(o),o(x) ¢ Capt,(E).

This definition extends straightforwardly to heaps and configurations. Fortunately, when the proposed
substitution is not correct for the considered configuration, structural equivalence allows to rename all the
problematic binders in it, and find an equivalent configuration for which the substitution is correct.

Similarly, the composition ¥; o ¥5 of two contexts ¥; = ©; - ®;[0;] is ©1 + Oz F &1[P2][02 © 01], provided
the substitution o3 00y is correct for the heap ©1 + 03 and the context ®1[®2]. But again, structural equivalence
always allows to find correct equivalent contexts (since binders in contexts are not in position to capture the
placeholder).

5.1.2 Properties

In this section, we prove some properties of stability of the reduction relation inside contexts. Not every
reduction step is valid inside contexts, since for instance the LET and EMPTYLET are only valid at toplevel.
However, we will see that inside contexts of the shape © F O[c], reduction is preserved.

We first prove that contraction is preserved under correct substitution.
Proposition 3 If Cy ~. Cy and o is correct for Cy and Cs, then Ci{c} ~. C2{c}.
Proof By case on the applied contraction rule. Let C; = ©; - E;, for i = 1, 2.

BETA. Then E; = IV, and ©1 = 09, and 0©:(]) = A\z.E. We have E1{c} = [(V{o}), and as o is correct,
(Az.E){o} = Ax.(E{c}). So ©1{c} F I(V{c}) ~. O2{c} F E{c}{z — (V{c})}. As o is correct for
Ci, z is not in the domain or codomain of o, so o o {z — (V{o})} = {# — V} oo, and therefore
01{0'} e @2{0’} - EQ{O'}.

ALLOCATE, UPDATE, PROJECT. Similar.

LirT We again have ©; = 0., with E; = A[let B in E] and E; = let B in A[E]. By the side condition
on the LIFT rule, we also know that dom(B) L FV(A). By hypothesis, we finally have dom(B) disjoint
from the domain and codomain of o.

So, Ci{c} = ©1{c} F A{o}[let B{c} in E{c}], which reduces to
O1{c} F let B{c}in A{c}[E{c}], as expected.

O
This property extends to computational reduction.

Proposition 4 If Cy — Cy and o is correct for C1 and Cs, then Ci{c} — Cs{o}.

Proof By case on the applied rule. Let again C; = ©; F E;, for i = 1,2.

CONTEXT. By application of the previous proposition.

EMPTYLET. Trivial.

LET. Wehave Cy =0, Flet z=V,B in E, and Co =0, Flet B{xz— V} in E{z — V}. So,
Ci{oc} =0:1{c} Flet z = (V{c}),B{o} in (E{c}),

which reduces to

O1{o} Flet B{oH{z = (V{o})} in (E{o}{z = (V{o})}),

but as z is not in the domain or codomain of o, the substitution oo {z — (V{c})} isequal to {z — V}oo,
so Ci{co} reduces to
O1{c}tFlet B{{z— V}oo} in (E{{z— V}oo}),

which is exactly Co{o}.

RR n° 4728



18 Tom Hirschowitz , Xawier Leroy , J. B. Wells

Evaluation context:

U =0+ ?[o]
Restricted evaluation context:
¢ == 0+ O[o]

Figure 17: Evaluation contexts in Agpc

O
Now, we prove that reduction by the CONTEXT rule is preserved inside any evaluation context.

CONTEXT CONTEXT

Proposition 5 If C1 " — Cs, then for any context ¥, [C1] "— P[Ch].

Proof Let C; = ©1 F Ey, Cy = O3+ Es, C] = ¥[C], C) = P[C,], and ¥ = © I ®[5]. Let us assume w.l.o.g.
that o is correct for the considered objects. Then, C] = (01 + ©){c} F ®[E1]{c} and C} = (02 + O){c}
D[E:]{c}.

Let us prove first that C1' “25" € with C = (©1 + ©) F ®[Ey] and C¥ = (03 + ©) - B[E,]. As we
know, C; reduces to Cy by rule CONTEXT, so in fact, By = ®[E]], E; = ®[E}], and the proof of C; — C5 is
of the shape:

01 E| ~. 0, E}
Cl—)Cz

But it is trivial that contraction rules are not affected by additional bindings in the heap, so we obtain easily
that

O+0,FFE ~.0+0,+FE}

Then, by rule CONTEXT, we have
Ccy — Cy.

Finally, by proposition 4, we deduce that
Ci{o} — C3{o},

which is the expected result.

O

Now, we would like a similar property to be true with any reduction, but we have seen that it does not hold
because of the toplevel nature of the LETREC rule. However, we have a slightly property, with contexts of the
shape © F O[o], which we denote by the meta-variable ¢, and call weak evaluation contexts. (The two notions
of contexts introduced in this section are recalled in figure 17.) A toplevel reduction remains toplevel inside a
weak evaluation context.

Proposition 6 If Cy — Cy, then ¢[C1] — ¢[C2].

5.2 Definition of the two translations

This section describes the translation. It consists in fact in two translations. The first one, called the standard
translation, is very intuitive, but not easily proved correct. The second one is much less intuitive, but is easier
to prove correct. The key technical point is that the standard translation reduces to the second translation,
without using the BETA or PROJECT rules, and therefore without performing any real computation.

Both translations rely on a function Size from to A, expressions to N U {[?]}. This function is supposed
to guess the size of the result of the translation of its argument. We assume that the size of any expression
of predictable shape is known, and moreover that the size of variables is undefined. In other words, for any
ey € Predictable, Size(e)) # [?], and for any variable z, Size(z) = [7].

INRIA



On the implementation of recursion n call-by-value functional languages

Translation of expressions:

[] ==
[Az.€] = Az.[e€]
[ere:] = [e]le:]
[e-X] = [e].X

[let rec b in €] let Dummy(b), Update(b) in [e]

Dummy pre-allocation of bindings:

Dummy (e) = €
Dummy(z =e,b) = (z=allocn, Dummy(b)) if Size(e) =n
Dummy(z =e,b) = Dummy(b) if Size(e) = [7]
Computation of bindings:
Update(e) = €
Update(z = e,b) = (y = (updatez[e]), Update(b)) if Size(e) = n, with y fresh
Update(z =e,b) = (z = [e], Update(b)) if Size(e) = [7]

Figure 18: Translation (standard translation)

The standard translation The standard translation is defined in figure 18. It is almost direct for variables,
functions, applications, and record operations, but the translation of bindings is more intricate. The translation
of a binding b is the concatenation of two bindings in Agjc. The first of them is called the pre-allocation binding,
and gives instructions to allocate dummy blocks on the heap for definitions of known size. The second binding
is called the update binding. It computes definitions, and alternatively updates the previously pre-allocated
dummy blocks for definitions of known sizes, or simply binds the result for definitions of unknown sizes. As
announced, this translation does not map results to results. A simple example is Az.z, which is translated as
Az.xz. To reach a result, this translation still has to reduce to the configuration {l — (Az.z)} - I.

The second translation, named the TOP translation, performs all this kind of reductions at the meta-level,
in order to associate results to results. As a consequence, it associates Agyoc configurations to A, expressions,
and g0 configurations to A, configurations. It is defined in figures 19 and 20.

The TOP translation The idea is that the TOP translation is used until the current point of evaluation in
the expression, and beyond that point, the standard translation is used.

Variables are still translated as variables. A function Az.e is translated as with the standard translation, i.e.
Az.[e], but the result is allocated on the heap, at a fresh location I: {I — Az.[e]} I L.

An evaluated record takes the translations of its fields and puts them in a record allocated on the heap at
a fresh location I: © + {l — {S,}} F I. Here, © - S, is the translation of the record s,, defined in figure 19. If
sy = (X1 =1 ... X, =v,), and for each 4, [v;]T°F = ©; - V;, then® - S, = L—H O, F (X1 =WV... X, =Vp).

1<i<n

When the record is not fully evaluated, it is not yet allocated on the heap. It is divided into its evaluated
part s,, and the rest X = e, s. s, is translated as for evaluated records, into ©; F S,,. The field e is translated
with the TOP translation, into ©, + E, and s is translated with the standard translation. We denote by [s]
the record s, translated with the standard translation.

Function application works like records: if the function part is not a value, then it is translated with the
TOP translation, while the argument is translated with the standard translation. If the function is a value,
then both parts are translated with the TOP translation.

The translation of a record selection e.X consists in translating e with the TOP translation, and then
selecting the field X.

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

Translation of expressions as configurations:

|[.’1I:[| TOP

[Mz.e]TOF

[{s, 3"

|[{3v7 X =e, S}HTOP

|['U€]]TOP

[ere2] TOP
[e.X]TOP

[let rec b in e]TOF

Translation of configurations:

OF

{l=Xx.[e]} F1

O+{l—{S,}}HI for [5,]TF =0+ S,
e ¢ values

01+ 0y F{S,, X =E,[s]} for { [s,]*°F* =01 F 5,
[e]T°F =02+ E

v]TOP =0, +V
O, +0,FVE for { %e]]]]TOPZ(-);l—E
e values
O + Efes] for ﬂélgf"rop —OFE
OFEX for [e]TP = O+ E

[B]TOF[ F [e]] if b is not evaluated
[B]TCF [[e] T°F] otherwise

[b+ e]T°F =[let rec b in e]TOF

Translation of bindings and evaluated records:

|[bv7 b]]TOP

|[X1 =v1.. Xn = 'l)n]]TOP

= TDum(b) o TOP(b,) o TUp(b) where b # (z =v,b')
W i (Xi=W.. X, =V,)

1<i<n

with Vi, [0;]T°F = ©; F V;

Figure 19: The TOP translation (first part)

INRIA



On the implementation of recursion n call-by-value functional languages

Translation of evaluated bindings: Ev. binding — (heap x substitution x variable allocation)

TOP(¢)

0+ (id,id)
Size(v) = [7]

TOP(z =v,b,) = OF (co{z—V}in) if { []™FP =0+V
TOP(b,) = O F (o,7m)
Size(v) =n

TOP(z =v,b,) = OF (o,nU{z1}) if { ]TP =0FI
TOP(b,) =0 F (o,m)

Actual dummy pre-allocation: Binding — (heap x variable allocation)

TDum(e) = PFid
TDum(z =e,b) = TDum(b) if Size(v) = [7]

. Size(v) =n
TDum(z =e,b) = O+ {l— allocn}tngU{z—I} if { TDu(rr)l(b):Ql—n

Actual computation of bindings: Binding — (heap x binding of Au0c)

TUp(e) = 0ke
Size(v) = [7]
TUp(zr =e,b) = 0, +0,+z=E,B if { [e]™°*=0,FE
TUp(b) = O, + B
Size(v) =n
TOP _
TUp(z =e,b) = 0O;+ 0, +F y=(updatezE),B if []" =0, F E

y fresh

Figure 20: The TOP translation (continued): bindings

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

TOP translation of bindings The translation of bindings is more complicated. As for records, the binding
is divided into its evaluated part b, and the rest b, which can be empty, but does not begin with a value.

The rest of the binding b, is translated as follows. The pre-allocation pass, in the standard translation,
consists in giving instructions for allocating dummy blocks. Here, these blocks are directly allocated by the
function TDum, which returns the heap of dummy blocks, and the substitution replacing variables with the
corresponding locations. The update pass, in the standard translation, consists in either updating a dummy
block with the translation of the definition, or simply binding it. Here, it is almost the same, except that the
first definition is translated with the TOP translation, while the remaining ones are translated with the standard
translation. The TUp is in charge of these operations.

Roughly, the binding b, is translated as a heap and a substitution, by the TOP function. Definitions of
unknown size £ = v yield a translation of the shape §) F V', and are included in the translation as a substitution
x — V. Definitions of known size z = v are translated as a heap and a variable allocation: v has a translation
of the shape © [, and it is included in the translation of b, as ©, and the allocation = — [.

In practice, it is useful to distinguish substitutions coming from definitions of unknown size, which can be of
any shape, from substitutions coming from definitions of known size, which are allocations, and therefore have
the shape z — [. Indeed, when putting the results together, it is important to take the order into account, for
definitions of unknown size. For instance, a binding such as y = 2,z = y generates two substitutions y — z
and x — y, but the first one must be performed last. This is why, according to the definition of TOP, the
result would be {z — y} o {y — 2}. This works because syntactically, definitions of unknown size can only be
mentioned by subsequent definitions in the binding. However, definitions of known size can be mentioned by
previous definitions. The key is that the substitutions they generate are allocations, so they are not modified
by other substitutions, and can be performed right in the end. Formally, the translation of b, is a heap 0,
a substitution o, corresponding to the definitions of unknown size, and an allocation 7, giving the locations
allocated in © for the definitions of known size. Semantically, it corresponds to a heap © and the substitution
o on, and will be used as such.

The three functions for translating bindings, TDum, TUp, and TOP, can be viewed as contexts. The
TDum returns a heap © and an allocation 7, and it forms a context © F O[n]. The TUp function returns a
heap © and a binding B, which form a context © - let B in O[id]. The TOP function returns a heap 0, a
substitution o, and an allocation 7, and it forms a context © F O[o on]. Notice that the context corresponding to
TUp is not an evaluation context. In case the whole binding b,, b is evaluated (i.e. b is empty), then the contexts
for pre-allocation and update, TDum(b) and TUp(b) are empty, and the translation of let rec b,,b in e is
the TOP translation of e, [e]T°F, put in the context TOP (b,). Otherwise, the translation of let rec b,,b in e
is the standard translation of e, put in the context TDum(b) o TOP(b,) o TUp(b).

5.3 Relating the two translations

An interesting fact is that the standard translation of any expression reduces to its TOP translation, in any
context. The proof of this property is in three steps. First, we prove it for values. Then, we prove that the
standard translation of a binding reduces to its TOP translation. Finally, we prove the expected result.

In fact, for values, we prove a more powerful result, namely that the standard translation reduces to the
TOP translation, but only by rule CONTEXT, with a premise using ALLOCATE, which we write CONTEXT
(ALLOCATE).

We make some additional hypotheses related to the correctness of the Size function.

Hypothesis 1 For all expressions e, f, €', for all value v, for all bindings b,V', for all substitution o, for all
context C :

e If Size(e) =n and bt e — V' F €, then Size(e') =n ;

e If Size(v) = n, then there exist © and | such that [v]T°F = © -1 and Size(0(1)) =n ;
e If Size(e) = Size(f) = n, then Size(C[e]) = Size(C[f]).

e Size(e{o}) = Size(e) ;

o Size(let rec b in e) = Size(e).

Proposition 7 (Translation of values reduces to TOP) For all context ¥ and for all value v, U[) +
[v]] —* ©[[v]TOF], only by rule CONTEXT (ALLOCATE).

INRIA



On the implementation of recursion n call-by-value functional languages

Proof By induction on v.
e v =z, trivial.

e v = Az.e. Then [v] = Az.[e], so in any context @ F [v] reduces in one CONTEXT (ALLOCATE) step to
{l = Az.[e]} F I, which is the TOP translation of v.

e v={X; =wv;...X, =v,}. By induction hypothesis, for any context ¥;, for each ¢, we have

[0 F [vid] — Tilloi] 7).

]]TOP

Let for each i, Jv; = 0; F V;. By a trivial induction on n, we prove that for any context ¥,

VO F[{Xi=vi... Xo =0} =" [ [ O;F{X1 =Vi... X, =V,.}],

only by rule CONTEXT (ALLOCATE). By proposition 5, this configuration in turn reduces by rule CONTEXT
(ALLOCATE) to
U 0i+{lm {Xi=V...X, =V, }} 1,
1<i<n
which is exactly [v]TOF.

O

Corollary 3 For all weak evaluation context ¢, expression E, and binding b of the shape b = (x = v,b'),
¢ o Update(b)[) - E] —* ¢ o TUp(b)[) F E]

Proof We know that ¢ o Update(b)[) F E] = ¢[let y = ®[[v]], Update(d') in E],
z,0) if Size(v) = [7

where (y, @) = { Ez,u;))datem f:; ot}[le]rwise (z fresh).

This expression can be seen as ¥[() - v] for some ¥. By proposition 7, it reduces to ¥[[v
polet y= & Update(t') in E[[v]TOF], which is exactly ¢ o TUp(b)[} - E]. O

Now, let us have a look at the translation of bindings. The TOP translation splits the bindings in two,
according to the first non-value definition. But of course, one could split at another point, provided the first
part contains only values. Indeed, the first part is given as an argument to the TOP function, which is defined
only on evaluated bindings, whereas the second part is given as an argument to the TDum and TUp functions,
which work as well on value and non-value definitions. We call a partial translation of a binding b = b,,, b,’, b’ its
TOP translation, computed as if b,’ was not evaluated, i.e. TDum(b,’,b') o TOP(b,) o TUp(d,’,b'). We prove
that any partial translation reduces to the TOP translation. We proceed in three main steps: first, we prove
that the pre-allocation pass is performed at the object level by the code generated by the Dummy function,
and at the meta level by the TDum function, in the same way ; then we prove a similar property for the
functions Update and TUp ; and we eventually connect the two to prove the whole desired property.

JF©F], so we obtain

Proposition 8 (Dummy) For all binding B, for all weak evaluation context ¢,
¢[0 F let Dummy(b),B in E] —" (¢ o TDum(b))[d let B in E].

Proof By induction on b. If b is empty, then there is nothing to prove. Otherwise, we are in one of the following
cases.

e b= (z =e,b), with Size(e) = [?]. Then Dummy(b) = Dummy(b') and TDum(b) = TDum(b'), so by
induction hypothesis, we obtain the expected result.

e b= (x =e,b'), with Size(e) = n. Then Dummy(b) = (z = allocn, Dummy(}')). Let TDum(b’') = 0 F
7, we have TDum(b) = ©+{l — allocn} F nU{z — [}, for a fresh I. Let ¢ be a weak evaluation context,
and Ey = ¢[let Dummy(b),B in E]. We have Ey = ¢[0 F let z = allocn, Dummy(b'),B in E]. By
rule CONTEXT (ALLOCATE), we have Ey — ¢[{l — allocn} F let z = [,Dummy(}'),B in E]. By
proposition 6, this last expression reduces to ¢[{l — allocn} F (let Dummy(b'),B in E){z — [}]. Let
¢o = TDum(z = e) = {{ — allocn} F O[{z — [}] and ¢; = ¢ o ¢; we can view the expression as ¢ [ F
let Dummy(b'), B in E], which by induction hypothesis reduces to ¢1[TDum(b')[} I let B in E]|.
In other words, we obtain g[TDum(z = e¢) o TDum(¥')[@ + let B in FE]], which is the expected result,
since obviously TDum(z = €) o TDum(d') = TDum(b).

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

O

Proposition 9 (Update) Letb = (z = v,b'). For all weak evaluation context ¢, for all expression E, we have
¢ o TDum(b) o TUp(b)[) F E] —* ¢ o TDum(d') o TOP(z = v) o Update(d')[) I E].
Proof
e If Size(v) = n, then [v]T°F = ©, I I, and we have
TUp(b) = O, + y = updatez [, Update(b'),

with a fresh y. Alternatively, we can choose another fresh location I’ for the result, and have [v]TOF =
0, F ', with ©, = O,\; + {I' = 0,()}.

Let Eg = ¢ o TDum(b) o TUp(b)[D + E].

We have Ey = ¢ o TDum(b)[0) + let y = updatez I', Update(d') in E], and also Size(v) = n and
TDum(b) = TDum(¥') o ({{ = allocn} F {z — I}). So

Ey = ¢ o TDum(b')[(©!, + {l — allocn} I let y = updatez ', Update(b') in E){z — [}].

But by hypothesis 1, Size(0/,(I')) = n, so rule UPDATE applies, and Ey reduces to

¢ o TDum(b')[(©), + {l —» 0. (I')} Flet y = {}, Update(t') in E){z — [}],
and then, as y is fresh, by rule LET to

¢ o TDum(V')[(® + {I = O, (I')} - let Update(d') in E){z — [}].
But the location I’ is not used anymore, so by rule GC, the obtained expression reduces to
¢o TDum(b')[(@L\l, +{l— 0,(")} Flet Update(d') in E){z — [}].

And finally, we notice that 0}, + {l = ©,(I')} = ©y, so Eo reduces to

¢ o TDum(b')[(0, F let Update(d’) in E){z — [}]
= ¢ o TDum(b') o TOP(z = v)[@ - let Update(d’) in E)
= ¢ o TDum(b') o TOP(z = v) o Update(V')[} F E].

o If Size(v) = [?], then there exists a y such that [v]T°F =0 F y, so
TUp(b) = 0 + = = y, Update(d').

Let Ey = ¢ o TDum(b) o TUp(b)[d F E].
We have Ey = ¢ o TDum(b)[@ - let z =y, Update(d') in E],
and by rule LET, by proposition 6, Eg — ¢ o TDum(b)[0 - (let Update(d’) in E){z — y}].

But TOP(z = v) = TOP(z = y) = 0 F (z — y,id), so Ey — ¢ o TDum(b) o TOP(z = v)[0 +
let Update(d’) in E], which is the expected result.

O

Proposition 10 (Pre-allocated locations are definitive) If TDum(b,) = O F 7y, then
there exist ©y,09,m2 such that TOP (b,) = Oa t (02,12) and m1 = 2.

In the following proposition, we consider a substitution ¢ as a context @ - Ofo].

Proposition 11 (Decomposition of the translation of evaluated bindings) Let b, = (z = v,b,') and
TDum(b,’) = @y, F n,. We have

TOP (b,) = m, o TOP(z = v) o TOP(b,').

INRIA



On the implementation of recursion n call-by-value functional languages

Proof Let TOP(z = v) = O, F (0,,7,), and TOP(b,') = © + (o,n7). We have TOP(b,) = O, + O F
(0 00y,nUny). By proposition 10, we can choose 0,0, and 7 such that n = .. Then,

M, © TOP(z = v) o TOP(b,')
=0+0,Fconog,on, 0,
=0+0,Fogon, 0o,0m, 0mn,;

But 7, and n;,r have disjoint domains and codomains, so they commute and we obtain

b, © TOP(z = v) o TOP(b,")
=®+®v |_O'0’I7bv/ 00Ty O Mg, ©MNy

Furthermore, n, and o, also have disjoint domains and codomains, so they commute. Finally, n;, / is idempo-
tent, so

np,’ © TOP(z = v) o TOP(b,")

=0+4+0,Fcog,0m,r 01,

=0+06,F (anv)o(nbu' U ny)

=TOP(b,)

O

Proposition 12 (Commuting contexts) Let ¢; = ©1 F Ofo1] and ¢2 = O2 F Ofoz]. If dom(o2) L o1 and
0’% =01, then ¢1 0¢2 =01 0¢2 0¢1.

Proof This property is simple, provided oy 0 67 = 07 0 02 0 7. Recall that dom(oy) L o;. We prove that the
two total functions ¢ = g9 0o 01 and ¢’ = o1 0 g3 0 1 from variables to values are pointwise equal.

e On z € dom(oy,), by hypothesis z ¢ dom(os1), so we have ¢'(z) = z{o1 }{o2}{o1} = z{o2}{o1} = o(2).
e On z ¢ dom(oy), distinguish the two cases.

— If € dom(oy), then o(z) = z{o2}{o1} = z{o1}. But by hypothesis o1(z) € cod(o1) L dom(os),
so o'(z) = #{o1 H{o2 o1} = o1(2){o2Ho1} = o1(2){01} = 2{0?} = a{o1} = 0 ().

— If ¢ dom(oy), then o(z) =z = o'(z).
O

Corollary 4 Let b, = (by1,byy) be a syntactically correct binding. Let TDum(b,y) = Oy F 1y. We have
12 © TOP(by;) 012 = 2 o TOP (byy).

Proof Let TOP(b,,) = ©1 - (01,m). By proposition 12, it is enough to prove dom(o;0om1) L 12 and 03 = 7.
But we have dom(b,;) L dom(b,s), so dom(oy o7;) L dom(n;). Moreover, cod(n;) contains only locations,

whereas dom(o; o 7;) contains only variables, so cod(o2) L dom(o; o ;). Finally, as all variable allocations,
72 is idempotent. O

Corollary 5 Let by, = (by1,bys) and TDum(b,y) = O2 - 3. We have
TOP (b,) = 12 o TOP (by;) 0 TOP (by5).

Proof By induction on b,;.

e b,; =€, because 7, is idempotent.

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

e b,y = (z = v,b,1). Let b,/ = b,],bys, TDum(b,’) = ;)U, F my,7, and TDum(b,;) = @;)U,l F m,,. By
definition of TDum, we have n,,» = n;,; Un2. Then, we can calculate

TOP(b,) =, o TOP(z =v) o TOP(b,)

(by lemma 11)

=y, o TOP(z = v) om3 0o TOP(b,7) o TOP (b,)
(by induction hypothesis)
= np,;, Unz o TOP(z = v) 012 o TOP(b,}) 0o TOP (b,»)
= 1)p,1 O] © TOP(z = v) oz o TOP(b,}) o TOP (b,,)

=1, © 12 o TOP(z = v) o TOP(by,;) o TOP (by»)
(by proposition 4)

— 1 0., o TOP(z = v) o TOP(b,}) 0 TOP(bys)

=12 0 TOP(by,) o TOP(b,»)

(by proposition 11)
O

Proposition 13 (TOP Update pass) For all weak evaluation context ¢, and configuration C,
¢ o TDum(b,, b) o TUp(b,,b)[C] —* ¢ o TDum(b) o TOP(b,) o Update(b)[C].

Proof By induction on b,. If b, = ¢, there is nothing to prove. Otherwise, let b, = (z = v,b,’). By proposition
9,
¢ o TDum(b,, b) o TUp(by,b)[C] —* ¢ o TDum(b,’, b) o TOP(z = v) o Update(b,’, b)[C].

But by corollary 4, this is equal to
$ onoTOP(z =v) o TDum(b,’,b) o Update(b,’, b)[C],

where TDum(b,’,b) = © F 1.
By induction hypothesis, we know that the obtained expression reduces to

# ono TOP(z = v) o TDum(b) o TOP(b,') o Update(b)[C].
But if we let TDum(b,’) = ©; 7, and TDum(b) = ©, F 72, we have n = 1, U 12, so

¢ onoTOP(z = v) o TDum(b) o TOP(b,') o Update(b)[C]
= ¢omn ons o TOP(z = v) o TDum(b) o TOP(b,') o Update(b)[C]
= ¢ om o TDum(b) o TOP(z = v) o TOP(b,’) o Update(b)[C]
( by corollary 4 )
= ¢ o TDum(b) o7y o TOP(z = v) o TOP(b,") o Update(b)[C]
( because TDum(b) is not modified by any substitution )
¢ o TDum(b) o TOP(b,) o Update(b)[C]

( by proposition 11 )

O

Proposition 14 (Update pass) For all weak evaluation context ¢, and configuration C,
¢ o TDum(b,, b) o Update(b,, b)[C] —* ¢ o TDum(b) o TOP(b,) o Update(b)[C].
Proof By corollary 3, we have

¢ o TDum(b,, b) o Update(b,, b)[C]
—* ¢ o TDum(b,,b) o TUp(by, b)[C].

By proposition 13, it further reduces to ¢ o TDum(b) o TOP(b,) o Update(d)[C]. O

Proposition 15 (Partial translation of bindings) For all evaluation context ¥,

T F [let rec by,b in e]] —* ¥ o TDum(b) o TOP(b,) o Update(b)[d F ¢].

INRIA



On the implementation of recursion n call-by-value functional languages

Proof Let ¥ = O F ®[o], and ¢ = © - O[o]. Let
Ey =T} F [e]] = [0+ let Dummy(b,,b), Update(b,,b) in [e]]
By rule LIFT and modulo variable renaming, we have
Ey —* ¢[0 - let Dummy(b,,b), Update(b,,b) in ®[[e]]].

By proposition 8, this expression reduces to ¢ o TDum(b,, b)[d F let Update(b,,b) in ®[[e]]].
By proposition 14, it in turn reduces to ¢ o TDum(b) o TOP(b,) o Update(b)[®[[e]]], which is equal to
¥ o TDum(b) o TOP(b,) o Update(b)[[e]]. O

Lemma 1 (Standard translation reduces to TOP translation) For all context ¥ and for all expression
el
U0+ [e]] — [[e] "],

Proof By induction on e. If e is a value, we use proposition 7.

Application. Let e = ejez, ¥ be a context, and Ey = U[( F [e]] = C[D  [e1][ez]]- Let also [e;]T°F = ©, +
E,. By induction hypothesis, Ey —* ¥[0; F Ei[es]]. If e; is not a value, this is directly ¥[[e]TOF].
Otherwise, E; is a value, say Vi, and ¥ = ¥[0; F (V1O)[id]] is an evaluation context, so by induction
hypothesis again, if we let [ea]T°F = @2 F E», then o[} - [ea]] —* ¥o[O2 F E»], which is equal to
lI"[@l + @2 F ViEg] = 1Il[[[e]]TOP].

Record field selection. Simple by induction hypothesis.

Record. Let e = {s,, X = f,s}, where f is not a value. Let [s,]T°F = ©; F S,. By a trivial induction on s,,
we prove that U[0 F [{s,, X = f,s}]] —* ®[0; F {S,, X = [f],[s]}]- This expression can be viewed as
Uo[0 - [f]], with ¥y = ¥[O; F {S,, X = O, [s]}]- Let [f]T°F = @, F F. By induction hypothesis, the
above expression reduces to ¥y[O2 F F], which is equal to ¥[0; + O3 F {S,, X = F,[s]}], and this is the
expected result.

Binding. Let e =let rec b in f.

1. If b = ¢, then [B]TOF = @ + O[id], so [e]T°F = [f]*°F. So, T[D I [e]] = T[D I let € in [f]]. By
rules LIFT and then EMPTYLET, it reduces to [} F [f]], which by induction hypothesis reduces to
U[[f]TOF], as expected.

2. If b = b,, non empty, then [e]TOF = TOP (b,)[[f]T°F]. We have

[0 [e]]
= V[0 [let rec b, in f]]
—* ¥ o TOP (b,)[0 F [£]]
(by proposition 15)
—* ¥ o TOP (b)) [[f]*°F]
(by induction hypothesis)
= T[[e] 7]

3. If b = b,, V', with b’ non empty, then [e]TOF = TDum(d') o TOP(b,) o TUp()[D F [f]]- We have

T[0+ [e]]
= V[0 + [let rec by,,b" in f]]
—* ¥ o TDum(b') o TOP(b,) o Update(d')[ - [f]]
(by proposition 15)
—* ¥ o TDum(b') o TOP(b,) o TUp(V)[0 F [/]]
(by induction hypothesis)
= U[[e] "]

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

6 Correctness

6.1 Translation of contexts and compositionality

Both the standard and the TOP translations rely on sizes. In a binding, if a definition z = e is of known size,
then it is translated as the binding y = update z [e], whereas otherwise, it is translated as « = [e]. For this
reason, it is not compositional in the usual sense: a straightforward property such as [E [e]] = [E][[e]] does not
hold. Moreover, there is no straightforward translation for contexts: consider let rec z = O in {} for instance;
should it be translated as if the expression filling the hole was of known size or unknown size?

The TOP translation retains a kind of compositionality though. We define complete contextsin A,, as normal
contexts, except that the context hole is now annotated with a size indication ¢ € NU {[?]}. Complete context
application is only valid if the argument as the expected size. Complete contexts are then translated exactly
as expressions. For this, the definition in figure 19 is simply extended with [O0]T°F = [O¢] = O, given that
a context hole O¢ has size ¢, and that it is not a value. Normal contexts are translated, with an additional
argument giving the size of the context hole. For instance, we write [E]J/°F for [E[O¢]]"°". The standard
translation is compositional for this notion of contexts.

Proposition 16 (Compositionality of the standard translation) For all context E and expression e,

[E [e]] = [E [size(e) [[e]]-

The translation is compositional with respect to this notion of contexts, provided the right size indication is
chosen, and that the expression filling the hole is not a value. Indeed, in the translation of bindings, a distinction
is made between evaluated and unevaluated definitions, which breaks compositionality in this case, because the
context hole is not considered a value. Fortunately, for values, a weaker property of compositionality modulo
reduction holds, which allows to prove that the translation is faithfull.

Proposition 17 (Compositionality for lift contexts) If e ¢ Values, then
[L[e]*" = [L Isiae(e el *71.

Proof By case analysis on .. We treat one example case, application: L. = 0Of. We have [L[e]]*°F =
[ef]"°F = © F E[f], where [e]"*" = © F E. But [L]§2,) = @ - O[], which is the expected result. O

Proposition 18 (Compositionality for multiple lift contexts) If e ¢ Values, then

[F [e]]"°7 = [F Isize(e) el "]

Proof By induction on F. If F = 0O, there is nothing to prove. Otherwise, let F = L[F'] and ¢ = Size(e).
By induction hypothesis, [[]F'[e]]]TOP [FIECF [[e] M7 ).
As the Size function is compos1t1ona1 ¢' = Size(F'[e]) = Size(F'[0¢]).
By proposition 18, [L [F'[e]]] "7 = [LIGO[[F ' [e]] 7] = [LIGOIF T¢ O [[e] 7).
By proposition 18, [L [F']J7°F = [L[F’ [Dd]]]TOP [LIECP [IF [ O%] = [L1EOPIIF TEO7)-
So, [L{F'[e]]]*°F = [L[F ]]]TOPH[G]]TOP]- O

Lemma 2 (Compositionality for evaluation contexts) If e ¢ Values, then

[Ee]]™F = [E]gie(e [[e] 7]
Proof By case on E. Let ¢ = Size(e).
o If E =T, use proposition 18.

o IfE =b, FF, then
[E[e]]T°F=TOP (b, )[[F [e]] "°F]
=TOP (b,)[[F [ IO [[e] "]
=(TOP(b,) o [[F]]TOP)[I[e]]TOP]
IUE]]TOP[[[e]]TOP]

INRIA



On the implementation of recursion n call-by-value functional languages

e IfE = (by,z = F,bF f), then let by = (z = Fle],b). We have [E[e]]T°F = TDum(by) o TOP(b,) o
TUp(bo)[ + [f]], since F [e] cannot be a value.

Let ©' + E' = [F[e]]"°F = [F]F°F[[e]™°] (by proposition 18).
Let ©, - B = TUp(b), and ¢’ = Size(F [e]) = Size(F [O¢]).

3= { =

(z,updatez E') otherwise
We have TUp(by) = 0, +O' F ' = ®'[E'],B. Let ¥y =0, Flet 2’ = &', B in [f]. We have

[E [e]] ™" =TDum(by) o TOP(b,) o To o [F [T [[e] ")
=[E1ZO"[[] ™)

O
When the expression filling the context hole is a value, we have seen that this compositionality property is
false. We nevertheless prove a weaker one.

Proposition 19 (Semi-compositionality for lift contexts) For all evaluation context U,
U[[L [§ize(o) (0] O] —* T[IL[0]]"7].

Proof By case on L. Let ( = Size(v) and ©, F V = [v]TOF.
o If L is of the shape v'0 or 0.X, then Y[[L]EOF ) [[0]"°F]] = P[[L [v]]T°F].

o L =0e. Let [e]™° = © F E. We have [e]f°F = 0  Ofe] and ¥ o [L]FCP[[v]T°F] = ¥[0, F V[e]],
which by lemma 1 reduces to ¥[0, + O + VE] = ¥[[L [v]]T°F].

o L ={s,,X =0,s}. Let [5,]T°F =0/ - S,”, [s] =S, and [s]*°F = 0" S".
We have ¥ o [L]OF[[0]"°F] = ®[0©, + O}, F {S,’, X = V,S}], which by lemma 1 reduces to ¥[C] =
T[O, + 0, +0'+{S,, X =V,5'}]. If s is not evaluated, then C is exactly [L [v]]TF. Otherwise, ¥[C]

reduces by rule CONTEXT (ALLOCATE) to ¥[0, + O, + ©' + {l = {S,/, X =V, S'}} - I], which is exactly
UL ]I TO7].

O

Proposition 20 (Semi-compositionality for multiple lift contexts) For all evaluation context ¥,
U[[F Istae(u ] TO7 1) —* T[[F []]TO7].

Proof By induction on F. If F = 0O, there is nothing to prove. Otherwise, F = L[F']. Let ¢ = Size(v) and
¢' = Size(F'[0¢]) = Size(F '[v]) (by hypothesis 1).
By proposition 19, as neither F'[0¢] nor F'[v] are values, we have [F]F°" = [L]Z°F[[F']FOF] and
[F[u]]*°Y = [L]ECP[IF o] ")
By induction hypothesis,
To [F]FOP[[0] "]
—To H_]L]]%OP o [F']TOP [[u] TOP]
= To [L]°F[[F I [[o] *7]]
—* o L]0P [[F'[v]] "]
= Q[L]EOP[IF )] TOP]]
= T[[F [o]] "]
O
Proposition 21 (Semi-compositionality for evaluation contexts) For all evaluation
context U,

U[[E ISize (o) [[v] ™71 —* R{IE [0]] 7]

Proof By case analysis on E.

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

o E = (b, - F). Let ( = Size(v) and ¢’ = Size(F [O.]) = Size(F[v]) (by hypothesis 1). We have

(T o [E]FO)[]TO7]
— ¥ 0 TOP(b,) o [F[FOP[[v]*°"]
—* ¥ o TOP(b,)[[F [v]]T°F]

(by proposition 20)
= [[b, F F [v]] 7]
= T[[E [v]]T°"].

e E = (B[F] F e), with B = (by,z = 0,b). Let { = Size(v) and (' = Size(F[O¢]) = Size(F [v]) (by
hypothesis 1). Let also by = (z = O¢,b). We have
To [E]FOP[[v] 7]
= ¥ o TDum(bg) o TOP(b,) o (TUp(bo)[0 + [e]]) o [F]]gop[ﬂv]]TOP]
—* ¥ o TDum(by) o TOP(b,) o (TUp(bo)[d F [e]])[[F [v]]TOF]
( by proposition 20)

If F [v] is not a value, the obtained expression is exactly ¥[[E [v]]TOF]. Otherwise, the obtained expression

is a partial translation of E [v], so by proposition 15, it reduces to ¥[[E [v]]TOF], as expected.

O

6.2 Translation of access

In A, the topmost binding is used as a heap, to store the values of variables. These values may then be copied
when the corresponding bound variable is used in a strict context. In Agj0c, heaps can only contain blocks, i.e.
records and functions. Variables (or constants if the calculus featured them) cannot be stored in them. Instead,
we have seen that they are substituted on the fly during the translation. This distinction makes the translation
of access a bit weird.

Proposition 22 If TOP(b,) = 0, F (0,7), by(z) = v, and [v]*°F =0, F V, then ©, C O, and (0 on)(z) =
V{o on}.

Proof By induction on b,.
e b, = e. Contradicts b,(z) = v.

e b, = (x =v,b,’") and Size(v) = n. We have

[o] TOF = 0O,FI
TOP(b,) = O, Fo'y
TOP(b,) = Th,+0,F(c/,(n +{z—1})=0,F (0,n)

Obviously, we have ©, C ©,. Furthermore, by syntactic correctness of b,, x ¢ dom(o), so (o on)(z) =
n(z) =1=V =V{oon}.

e b, = (z = v,b,’"), with Size(v) = [?]. We have

[v] TP = fFy=0,+FV
TOP(,') = O+ (d',7)
TOP(,) = O,k (¢ o{z—y},n),

and therefore (o o n)(z) = y{n'} = V{n}.
e b, = (y =',b,’) and Size(v') = n. We have

5 = e,k
TOP(b,) = Ok (o',7)
TOP(b,) = ©,+06,F (0,0 +{y—1}) =04t (0,7).

By induction hypothesis, ©, C ©!, so ©, C ©/. By induction hypothesis, (¢’ o 5')(z) = V{5'}, so

a’

(@on)(z) = (o' on)(@){y = 1} =V{d' on o {y = I}} = V{gon}.

INRIA



On the implementation of recursion n call-by-value functional languages

e b, = (y =v',b,’) and Size(v') = undefined. We have

HU’]]TOP — (D [
TOP(b,") oLk (d',n)
TOP(,) = OLF (c'o{y— z},7") =0,F (0,n).

By induction hypothesis, ©, C ©/, so ©, C ©/. By induction hypothesis, (¢’ on')(z) = V{n'}. But by
syntactic correctness of b,, we know that y is not free in b,’, so y ¢ cod(n'), and as we additionally have
y ¢ dom(n'), we can deduce that {y — 2z} on’ =n' o {y — 2{n'}}. So, we have

(o on)(z)

=z{o'o{y 2z}on'}
=z{o'on' o{y— 2{n'}}}
= ((0' o) (@) {y = z{n'}}
=V{o' on'Hy~ z{n'}}
=V{o'on'o{y = 2{n'}}}
=V{o'o{y 2}on'}
=V{oon}.

O

Proposition 23 (Access) Let ¥ = [E]I°" = O  ®[0]. IfE(z) = v and [v]"°F = O, F V, then o(z) =
V{o} and ©, C ©.

Proof By case analysis on the proof of E (z) = v.
EA. E =b, - F, and b,(z) = v. We have
[E]F°F = TOP(b,) o [F]OF.

Let TOP(b,) = O, + (04,7,) and [[IF]]CTOP = @'  ®'[id]. We can deduce o0 = g, on,. By proposition
22, we have 0, C O, C © and (04 07,)(x) = V{04 014}, or in other words o(x) = V{o}, which is the
expected result.

IA. E = (by,z =F,bt e). Then, [E]I°" = TDum(z = F[Oc],b) o TOP(b,) o TUp(z = F[Oc], b)[? + [e]].

Let TDum(z =F[O¢],b) = Ogkmng
TOP (b,) = 04k (04,7M)
TUp(z =F[Oc],b)[0 F [e]] = ©'F .

We have o = 0,07, 014. By proposition 22, ©, C 0,, so ©, C ©. Furthermore, (c401,)(z) = V{o401,.},
so 0(z) = 2{0a 0 1q ©Ma} = 2{0q © Na}{na} = V{oa 0 na{na} = V{o}, as expected.

O

6.3 Translation of internal merging
Proposition 24 (Internal merging) Ifbt e My r e, then [bF e]TOF —* [ I- €']TOF.

Proof Let b+ e = (by,z = (let rec by in e1),by F f), and ' F €& = (by,b1,z = e1,ba F f). Let by = (x =
(let rec by in e1),b2) and by = (z = ey, ba).
We have [bF e]T°F = TDum(by) o TOP (b,) o TUp(bo)[d - [f]]-
. (z, D) if Size(e;) = Size(let rec b; in e;) = [?] (cf hypothesis 1)
Let now (a', &) = { (y,update z O) with y fresh otherwise. .
Let also ©; - E; be defined as follows. If b; is evaluated, let ©; - E; = [e;]T°F, and otherwise ©; - E; =
0 + [e1]- This way, we always have [let rec b in e;]T°F = [b;]T°F[©; F E;].
Finally, let ®; = 0 F let 2’ = ®',Update(bz) in [f], and by = b,1,b}, where b does not begin with a
value. We have
TUp(bo)[0 - f]
= &, [[0:]7OF[0: F Ei]]
= &; o TDum(b}) o TOP(b,,) o TUp(b})[O1 F E1].

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

But the context TDum(b]) o TOP(b,,) is a weak evaluation context, and the domain of its substitution only
concerns variables in the domain of b, which are disjoint from free variables in bs, f, z by the side condition to
the rule IM. Therefore, this context commutes with ®;, and

TUp(bo)[0 F f]
= TDum(b}) o TOP(b,,) o &1 o TUp(b})[O1 F E1].

Now, if by is not fully evaluated, the two translation are semantically identical. But if b; is fully evaluated,
i.e. b =¢, then [b' - €']TOF translates with the TOP translation until e;, and possibly further, if e; is a value
too. We distinguish the two cases.

1. by is not fully evaluated. Let TUp(b)) = O} + Bj. We have ©; - E; = 0 + [e;] and with ¢ =
TDum(bg) o TOP(b,) o TDum(b}) o TOP(b,1),

[b+ e]TOP

= @[O] I let z' =let Bi in [ei][,] Update(b2) in [f]]
L $[0! + let B! in let ' = [e;]],] Update(b,) in [f]]
= ¢[O] F let Bj,z' = [ei][,] Update(bs) in [f]]

= ¢[O] I let Bi,z' = [e1][,] Update(b2) in [f]]

= ¢ o TUp(b},b)[0 - [fT-

But let us now examine ¢ a bit TDum(by) o TOP(b,) o TDum(b]) o TOP(b,,). First, notice that
TDum(by) = TDum(by), by hypothesis 1.

Then, TOP(b,) and TDum(b)) are two weak evaluation contexts, and the domain of the substitution
of TDum(b}) is included in dom(d]), which is disjoint from the free variables of b,, so if TDum(b}) =
0!, + n};, then TOP(b,) o TDum(b}) = 1}, 0o TOP(b,) o TDum(b}). Moreover, 7/ is a variable allocation,
and is therefore idempotent, so we can apply proposition 12 to obtain

¢ = TDum(by) o TDum(b}) o TOP(b,) o TOP(b,,)
TDum(bg, b)) o TOP(b,) o TOP(by;)
= TDum(b},by) o TOP(b,) o TOP(by,).

Furthermore, TOP(b,1) = ©s,, + (0b,,:M5,,). As ms,, is idempotent, we have TOP(by1) = ms,, ©
TOP(b,;). But we know that the domain of 7,,, is disjoint from the free variables of TOP(b,), so
TOP(b,) o np,, = M, © TOP(b,), and therefore ¢ = TDum(b}, by) o ns,, o TOP(b,) o TOP(b,,). But
by corollary 4, n;,, © TOP(b,) o TOP(by;) = TOP(by, by1), so ¢ = TDum(b!, bj) o TOP (b, by1).
Finally, we obtain that

[bFe]™F = TDum(bi, b)) o TOP(b,,b,1) o TUp(b;,b0)[0 F [£]]
[, bors Uy, B TP [0

= [bo, b1,z = e, 0] TP [0+ [f]]
_ [[bl - e/]]TOP‘

2. by is fully evaluated. We have [b+ e]T°F = TDum(bg) o TOP(b,) o TOP (b,,) 0 $1[0; - E4].

Let TOP(b,1) = Oy, F (0b,,,M,,)- We know that 7, , is idempotent, so TOP(by1) = 1;,, © TOP (by1).
As above, dom(ns,,) L FV(TOP(b,)), so TOP(b,) o TOP (by;) = n,, o TOP(b,) o TOP(b,;), in which
by corollary 4 we recognize TOP (by, by1).

Therefore, [b - ] T°F = TDum/(by) 0o TOP (by, by1) 0 1[0 F E4].

But we notice that ®1[01 F Ei] = TUp(by)[0 F [f]]- And by hypothesis 1, TDum(by) = TDum(by).
Let TDum(bg) = Oy, F m5,. By proposition 12, we have TDum(bg) o TOP (by, by1) = 15, ©TOP (b, by1) 0
TDum(b}), so b+ e]T°F = n;, 0o TOP (by, byy) o TDum(by) o TUp(b))[0 + [£]]-

Let b) = (byg,bl)), with bJ not beginning with a value. By proposition 13, [b F €]TOF —* n, o
TOP (b,,b,1) o TDum(bjj) o TOP(b,q) o Update(by)[d + [f]]-

But if TDum(b,g) = ©p,, = m,, and TDum(by) = Oy = mp , then my, = mp,, + My, so by
proposition 12, the obtained expression is equal to 7s,, © TDum(by) o TOP(b,,b,;) 0 TOP(by) o
Update(by)[0 - [f]]. But ns,, commutes with TDum(b), so we obtain TDum(by) onp, , o TOP(by, by )0
TOP (byo) o Update(by)[0 - [f]], which by corollary 4 is equal to TDum(by) o1, 0 TOP (by, byy, byg) ©
Update(by)[0 F [f]], which is exactly [b' I e']TOF.

INRIA



On the implementation of recursion n call-by-value functional languages

e Evaluated binding contexts
B, :=by1,x = 0O,bys with Depth(by1,z = 0, by) defined as 1+ | b,y |
e Depth of an evaluation context

Depth(O)
Depth(L [F])
Depth(b, - TF)
Depth(B, [F] I e)

0

1 + Depth(F)

1+ | by | + Depth(F)
Depth(B, ) + Depth(F)

e Measuring the number of let rec nodes
wy(€) is the number of let rec nodes not under a A in e (same for configurations).
e Measuring the depth of the let rec to lift (same for configurations)

pq(F[L[let rec b, in €]]) = 1+ Depth(F)
ptq(e) = 0 otherwise

well defined since the sum of the depths of let rec nodes strictly decreases.
e Measuring the binding level of the hot variable
up(e) is the depth of the binder of the hot variable, if any:

po(Bo [0,y =F[a],bFe) = Depth(B,) if (B, [v])(z) = v
pp(By [] FF[z]) = Depth(B,) if (B, [v])(z)=v
up(e) = 0 otherwise
e Measure pug.(e) = (y(e),uq(e)) (lexicographically ordered).
pe) = (m(e), palc), m(c))

Figure 21: Measure

6.4 Simulation

Due to their different ways of handling bindings, the two calculus A, and Ay, do not yield a step by step
simulation. Indeed, a redex and its reduct in A, may have the same translation. As an example, consider any
expressions of the shape L [let rec b, in e] and let rec b, in L[e]. The binding b, is translated as a heap
O and a substitution o, in both cases, and the fact that it is under or above the I context is not visible in
the translation. The only problem with this is that in some cases an infinite reduction sequence in A, could be
translated as an empty one in Ay, thus possibly changing the infinite looping observable behaviour. In order
to ensure that this doesn’t happen, we prove that such silent reduction steps cannot happen indefinitely. For
this, we introduce a measure on expressions and configurations that strictly decreases during silent reductions
steps. Its definition is given in figure 21.

It first defines two functions from expressions to N. The first, yy, is the number of let rec nodes not under a
lambda in the given expression. The second, uy4 is the depth of the let rec node to lift in the given expression,
if any. Formally, if e is of the shape F[L[let rec b in f]], then the let rec node can be lifted by rule LIFT, so
the result is the depth of the context F[L], or 1 plus the depth of F.

The functions y; and pg form a measure p, on expressions, defined by p, = (1, ftgq), ordered lexicographi-
cally.

Moreover, these two functions are straightforwardly extended to configurations, replacing F with E for the
second definition.

A third function p,, is defined, but only on configurations, giving the depth of the binder for the hot variable,
if any. We say that z is the hot variable in ¢ if ¢ is of the shape E [N[z]]. Then u,(e) is the depth at which z
is bound in E. Formally, we define evaluated binding contexts as binding contexts of the shape b,;,x = O, by,
and their depth as 1 plus the cardinal of b,;. Then the depth of multiple lift contexts is defined as the number
of nested lift contexts, and the depth of evaluation contexts is defined accordingly.

A property of this measure is that it is monotone through contextual closure.

Proposition 25 If u.(e) > p.(e'), then for any evaluation context E, u(E[e]) > u(E[e']).

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

Proof The property clearly holds for both measures y; and py, thus for their lexicographic product as well. O

Lemma 3 (Contraction simulated) If e~ ¢, then [e]TOF —7 [e/]TOF or [e]TOF = [¢/]TOF and for any
E, u(E[e]) > p(E[e]).

Proof By case analysis on the applied rule.

BETA. ¢ = ((Az.f)v), and €' = letrecint = vf. Let [v]T°F = ©, F V. We have [¢]T°F = 0, + {l —
(Az.[f1)} F IV, which reduces by rule BETA to ©, + {l = (Az.[f])} F f{z —» V}.

Let us now calculate TOP(z = v).

o If Size(v) = [?], then ©, F V =0 F V, and TOP(z = v) = 0 - (2 — V,id); so [z = v]T°P =0 F
Oz — V]=0,+F 0z~ V]

e Otherwise, ©, F V = 0, F [, and TOP(z = v) = O, F (id,z ~ ); so [z = v]*°F = 0, F Oz —
=0, Fgz—V].

So, in both cases, we have [z = v]T°F = @, F Oz — V]. Therefore, [z = v]TF reduces to [z =
v]TOF[[f]], which by lemma 1 reduces to [z = v] TP [[f]TOF], which is exactly [e']TOF.

PROJECT. e = {s,}.X and €' = 5,(X). Let 5, = (X1 = v;... X, = v,), X = X;,, and for each i, [v;]TF =
0; F V;. We have [s,]T°F = H-J ;i F (X1 =Vi...X, =V,), and [e]TOF = t"J O +{l—{X1 =
1<i<n 1<i<n
Vi...X, =V,}} F1.X. By rule PROJECT, it reduces to ti-J O, +{l—~{X1=WV...Xp, =V,}} FV,,
1<i<n
which by rule GC reduces to ©;, - V;,, which is exactly [e/]T°F.

LiFT. e =L[let rec b in f] and ¢’ =let rec b in L][f].

e If b is evaluated, then [e]TOF = [L]T9F o TOP(b)[[f]TCF]. Let TOP(b) = © F (O,0). In the
context [L]TOF o TOP(b), the only substitution is o, whose domain is dom(b), which by the side
condition to the LIFT rule is disjoint from the free variables of I, so the contexts commute, and
[e]TF = TOP(b) o [L ™7 [[/]TOF] = [¢/]T°".

o If b is not evaluated, then b = b,,b’, with b’ non empty and not beginning with a value. We have
[e]T°F = [L]T°F o TDum(b') o TOP(b,) o TUp(V')[0  [f]]- But as above, the context [L]TOF
has not substitution and is not affected by the ones of TDum(d'), TOP(b,), and TUp(d'). So
[e]"F = TDum(¥) o TOP(b,) o TUP(K) o [LITOF 0 + [£]] = ['] O

This is the only case where the two translations are directly equal. We thus have to show that ug(e) >
pg(e’). And indeed pg(e) = pg(L[let rec b in f]) = 2+ 0, whereas py(e') = ug(let rec b in L[f]) = 0.
Conclude by proposition 25.

O

There is a last difficulty lying in the way to the theorem of simulation, due to different sharing properties
of the two calculi. Consider the configuration ¢ = (z = {X = Ay.y} F (z.X)z). It reduces by rule SUBST to
d=(x={X =My} F ({X = Ay.y}.X)z). By the TOP translation, ¢ is translated to a configuration

_ ) e Ay,
C= { b s (X = I} } F (1. X)ls.

By the same translation, ¢’ is translated to a configuration

Iy = Ay,
lo — {X = ll},
l3 = )‘y'ya
ly — {X = lg}

c' = F (1. X)ls.

The heap ©' of C' contains an additional copy of the record and the function. This phenomenon happens at
each application of the SUBST rule. But except in case of a faulty configuration (see below), such a reduction
step is necessarily followed by a BETA or a PROJECT step. In our example, a PROJECT step occurs, that destroys
the copied record: ¢’ reduces to ¢ = (z = {X = Ay.y} F (Ay.y)z). This reduction step destroys the copied

INRIA



On the implementation of recursion n call-by-value functional languages

record immediately after it has been copied. Similarly, when a function is copied, it is immediately destroyed
by a BETA reduction step. In both cases, the translated configuration reduces in one step, by the same rule
(PROJECT or BETA). As a consequence, our simulation theorem takes this possibility into account, and allows
a couple of successive reductions steps to be simulated by a single one.

But this is not yet sufficient. Indeed, in the case of the PROJECT rule, not only the record is duplicated, but
also the values it contains. In our example, the function Ay.y is copied. And even after applying the PROJECT
rule, it remains, as shown by the translation of ¢”:

I = \y.y,
C”: lgi—){X:ll}, I—lglg.
I3 = \y.y

Our solution to this problem consists in only considering expressions where all the record fields are variables,
which we call R-normal expressions. Any expression can be transformed into an R-normal one, by applying
the following NAMEFIELDS rule, in any context.

Ji,e; ¢ Vars Vi, j,x; ¢ FV(ej)

{Xlzel...Xn:en}iletrec 1 =e€1...Tp =€, in {X; =21...X,, =z,}

(NAMEFIELDS)

This process necessarily terminates since the number of records not containing only variables stricly decreases.
The reduction rules of A\, obviously preserve the R-normality. This way, after a sequence of a SUBST step followed
by a PROJECT step, no duplication has been made: an expression of the shape z.X has been replaced with
another variable.

We can now state our final theorem. A A, configuration is said stuck on a free variable when it is of the
shape E[N[z]] and E (z) is undefined. This definition is extended to Agu.c configurations (replace E with ¥).
We say that a configuration is faulty if it is in normal form and is not a valid answer and is not stuck on a free
variable. Roughly, the theorem states that if a configuration ¢ reduces to another one ¢, then

e cither ¢ is faulty and so is the translation of ¢,

e or the translation of ¢ reduces to the one of ¢,

e or ¢ itself reduces to ¢, such that the translation of ¢ reduces to the one of ¢”,
e or c and ¢’ are translated to the same configuration, but u(c) > u(c').

This complicated result is due to the fact that A\, first needs to duplicate a function before to apply it, and
to duplicate a record before to select a component from it, and to the fact that the TOP translation identifies
some configurations, by performing some lifting and merging steps by itself.

Theorem 1 (Small steps encoding) For all R-normal configuration c, if c— ¢’ and [¢]TOF = C, then one
of the four situations below holds:

1. FEither ' is faulty, and then C is faulty c——>¢ —/—>
too ;
[[]]l
C—/—
2. or there exists C' such that [e'] = C’ c——¢
and C —TC' ;
I 1
c—¢
3. or there exists ', C' such that [c"] = ¢c—— ¢ — ¢!
C' and C —* C';
I I
C o

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

4. or[c] = C directly, and p(c) > p(c)

Proof By case analysis on the applied rule.

CONTEXT. By lemma 3.
IM. By proposition 24, noting that the number of let rec nodes decreases by one when applying the rule.

EM. c=1b, I letrec b in e and ¢ = b,,b+ e. Let us now define C; by @ F [e] if b is not evaluated, and
[e]TCF otherwise. Then [c]TF = TOP(b,) o [B]TOF[C1]. Let b = b,’,b’, where b' does not begin with
a value. We have [¢]T°F = TOP(b,) o TDum(b') o TOP(b,') o TUp(d')[C1]. But the substitution of
the context TDum(b') does not affect TOP(b,) and conversely the substitution of TOP(b,) does not
affect TDum(b'), so the two contexts commute. But then TOP(b,) is next to TOP(b,'). Let n be
the substitution of TDum(b,’). It does not affect TOP(b,), by the side condition to the EM rule, so
TOP(b,)oTOP(b,') = 7o TOP(b,)oTOP(b,"), which by corollary 4 is equal to TOP (b, b,'). Therefore,
[c]T°F = TDum(b') o TOP(b,,b,') o TUp(V')[C1] = [by, b]TOF[C1]. The number of let rec nodes again
decreases by one.

SuBsT. ¢ = E[N[z]], ¢ = E[N[v]], and E (z) = v. Let ¥ = [E]T°F = © I ®[0].
e If v is a variable y, then [v]T°F = @ I y, and by proposition 23, o(z) = y{o}, so [¢]TOF = [¢']TCF.

But, the depth of the binder of the hot variable, from the depth of x = y in E | becomes either an
upper y = v' definition, or the depth 0, if y is not defined by E, so u(c) > p(c').

o If ¢ is faulty, i.e. either N = O0v’ and v is a record, or N = 0.X and v is a function or a record with
no X field, then C is faulty too.

o If v=MAy.eand N = Ov', then ¢ — ¢’ = E[let rec y =v' in e].
Let [o']T°F = @) F V'. Let ¢ = ©! - O[id]. We have C = ¥ o ¢[IV].
But by proposition 23, the location [ = o(x) is such that ©(l) = Ay.[e]. Therefore, C reduces by
rule CONTEXT (BETA) to ¥ o ¢[[e]{y — V'}]. By lemma 1, this reduces to ¥ o ¢[[e]T°F {y — V'}].
Let now ¢' = ¢ o {y = V'}. The obtained configuration can be written ¥ o ¢'[[e]T°F].
But TOP(y = ') = O, F Oy = V'] = ¢, so [let rec y = v' in €]TOF = ¢/[[e]T°F], and the
obtained term can also be written [E]T°F[[let rec y = v’ in €]T°F], which by proposition 21,
reduces to [E[let rec y = v' in €]]T°F, which is exactly [¢"]TCF.

o If v={s,}, N=0.X, with X € dom(s,), then ¢’ — ¢" = E[s,(X)].
By hypothesis, ¢ is in R-normal form, so there exist names Xj ... X, and variables z; ...z, such
that s, = (X; = x1 ... X,, = ). Then, s, can be viewed as a record of \,ec, and [v]TOF = {l —

{sv}} F L

By proposition 23, we have o(z) = [ and O(l) = {s,}. We have [¢]T°F = ¥[2.X] = ¥[.X]. Asc
reduces to ¢, there exists an index 4o such that X = X;,. So, [¢]T°F reduces in one PROJECT step
to ¥[z;,], which is [E ]TOF [z, ]T°F], so by lemma 1, it reduces to [E [z;,]]TCF, which is exactly the
translation of ¢”.

O
Eventually, we state a less precise theorem, more like what we would obtain with big step semantics.

Theorem 2 (Big steps encoding)
1. For all expression e, if ) - e —* a, then O + [e] —* [a]™°F.
2. For all expression e, if e goes wrong, i.e. ) e reduces to a faulty configuration, then [e] also goes wrong.

3. For all expression e, if € loops, i.e. there exists an infinite reduction sequence starting from (0 - e, then
[e] also loops.

4. For all expression e, if e gets stuck on o free variable, then so does [€].

INRIA



On the implementation of recursion n call-by-value functional languages

Proof For items 1 and 2, notice that () - [e] reduces to [e]T°F, and then reason by induction on the length
of the reduction sequence. For item 3, by contrapositive: we know that there is a reduction sequence in g
simulating the one in A,, but it could be of phantom steps, i.e. the same configuration could be a translation
for all steps. However this would contradict the strict decreasing of the measure, which is of course bounded by
0. For item 4, the reduction leading to the configuration stuck on a free variable is simulated, and the reached
configuration being the translation of a stuck configuration is also stuck. O

The initial goal here was to prove the correctness of our compilation scheme, but in fact we have a com-
pleteness result for free.

Theorem 3 (Big steps completeness)
1. If O+ [e] —* A, then there exists a such that ) - e —* a and [a]T°F = A.
2. If [e] goes wrong, then e also goes wrong.
3. If [e] loops, then e also loops.
4. If [e] gets stuck on a free variable, then so does e.

Proof There are four possible final states for a configuration: it can reduce to a value, or it can get stuck on
a free variable, or it can go wrong, or it can loop. We know that if a configuration () - e reaches a final state,
then so does [ F €] T°F. But the four possible final states are mutually exclusive. Therefore, if the translation
of an expression reaches a final state, then the original configuration necessarily reaches the same one. O

Remark 1 (Free variables) Free variables do not appear during reduction, and the cases where the evaluation
gets stuck on a free variable do not occur if the initial expression is closed.

7 Related work and conclusion

Cyclic explicit substitutions In [13], Rose defines a calculus with mutually recursive definitions, where the
dedicated construct for recursion is presented as ezplicit cyclic substitution, referring to the explicit substitutions
of Lévy et al. [1]. Instead of lifting recursive bindings to the top of terms as we do, the calculus pushes them
inside terms, as usual with explicit substitutions. This results in the loss of sharing information. Any term is
allowed in recursive bindings, but inside a recursive binding, when computing a definition, it is not possible to
use the value of any definition from the same binding. In A, the rule for substitution SUBST allows this, in
conjunction with the internal access rule IA. In Rose’s calculus, correct call by value reduction requires that
in any binding, recursive definitions reduce to values, without really using each other. In this respect, it is less
powerful than A\,. Besides, it does not impose size constraints on definitions, but is also not concerned with
data representation.

Lescanne et al. [3] study sharing and different evaluation strategies, with a slightly different notion of cyclic
explicit substitution. Any term is accepted in a recursive definition, but instead of going wrong when the
recursive value is really needed, as in our system, the system of [3] loops. The focus of the paper is on the
comparison between A-graph reduction and environment based evaluation, and different evaluation strategies.
No emphasis is put on data representation either.

Equational theories of the A\-calculus with explicit recursion Ariola et al. [2] study a A-calculus with
explicit recursion. Its semantics is given by source-to-source rewrite rules, where let rec is lifted to the top
of terms, and definitions in a binding may use each other, as in A,. The semantics of our source language
Ao is largely inspired by their call-by-value calculus, as a quite straightforward specialization of it. Thus, our
work can be seen as importing the internal substitution rule IA from equational theory to language design.
Nevertheless, the concerns are different: we deal with implementation and data representation, while Ariola et
al. rather examine confluence, sharing and different evaluation strategies, including strong reduction (reduction
under A-abstraction).

RR n° 4728



Tom Hirschowitz , Xawier Leroy , J. B. Wells

let rec for objects and mixin modules Boudol’s construct [4], or Hirschowitz and Leroy’s [8], are different
from the one of A, in several aspects. First, they accept strictly more expressions as recursive definitions. For
instance, Boudol’s semantics of objects makes an extensive use of recursive definitions such as let rec o =
generator(o) in e. Such definitions are impossible in A,. However, )\, allows to define in the same binding
some recursive values, followed by computations using these values. The semantics of mixin modules [9] requires
complex sequences of alternate recursive and non-recursive bindings, which are trivial to write in A,. On the
whole, the loss of flexibility for valid recursive definitions allows to improve efficiency, thanks to the loss of
additional indirections.

We believe that it is possible to combine the ideas of [4] and [9]. Consider a language where a recursive
definition can be of any shape, and can now be syntactically annotated with integers representing its expected
size. This language can be compiled exactly as Ao, but it features a more powerful let rec construct. The idea
should be seen as a compilation technique for Boudol’s objects and Hirschowitz and Leroy’s mixin modules,
where the necessary size informations are statically available.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. J. Func. Progr., 1(4):375-416,
1991.

[2] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec. Annals of pure and applied
logic, 117(1-3):95-178, 2002.

[3] Z-E.-A. Benaissa, P. Lescanne, and K. H. Rose. Modeling sharing and recursion for weak reduction
strategies using explicit substitution. In Prog. Lang., Impl., Logics, and Programs 1996, 1996.

[4] G.Boudol. The recursive record semantics of objects revisited. In D. Sands, editor, Europ. Symp. on Progr.
2001, volume 2028 of LNCS, pages 269-283. Springer-Verlag, 2001.

[5] G. Boudol and P. Zimmer. Recursion in the call-by-value lambda-calculus. Fixed Points in Comp. Sc. 2002.

[6] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine. Science of Computer
Programming, 8(2):173-202, 1987.

[7] The Haskell language. http://www.haskell.org.

[8] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In D. Le Métayer, editor, Europ.
Symp. on Progr. 2002, volume 2305 of LNCS, pages 6—20, 2002.

[9] T. Hirschowitz, X. Leroy, and J. B. Wells. A reduction semantics for call-by-value mixin modules. Technical
report, INRIA, 2003.

[10] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml 3.06 reference manual, 2002.
Available at http://caml.inria.fr/.

[11] X. Leroy, D. Doligez, J. Garrigue, and J. Vouillon. The Objective Caml system. Logiciel et documentation
disponibles sur le Web, http://caml.inria.fr/, 1996-2003.

[12] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (revised). The MIT
Press, 1997.

[13] K. H. Rose. Explicit cyclic substitution. Unpublished, Mar. 1993.

INRIA



/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



