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Abstract: In this paper, we present a verification approach for a class of param-
eterized systems. These systems are composed of an arbitrary number of similar
processes. As in [4] we represent the states by regular languages and the transitions
by transducers over regular languages. If we can compute a symbolic model by
acceleration of the actions, then we can also verify a refinement relation R between
the symbolic models. We show that, under some conditions, if R is verified between
two symbolic models, then refinement is verified between concrete parameterized
systems. Then, we can take advantage the property (safety and PLT L properties)
preservation by refinement for their verification.
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Accélérer pour calculer un raffinement
de systémes paramétrés

Résumé : Nous présentons une approche de vérification pour une classe de sys-
témes paramétrés : ceux composés d’'un nombre arbitraire de processus similaires.
Pour cela, nous représentons états et transitions de ces systémes respectivement
par des langages réguliers et de transducteurs entre langages réguliers. Si nous
pouvons calculer des modéles symboliques de ces systémes & ’aide d’une technique
d’accélération des transducteurs, alors nous pouvons également vérifier une relation
de raffinement R entre ces modéles symboliques. Nous montrons que, sous certaines
conditions, si R est vérifié entre deux modéles symboliques, alors le raffinement est
vérifié entre les systémes paramétrés dont ils sont les modéles. Ceci nous permet de
repousser les limites de la vérification des systémes paramétrés en nous servant de
la préservation des propriétés (de streté, PLT L) par le raffinement.

Mots-clés : systémes paramétrés, raffinement, accélération, vérification, proprié-
tés de streté



1 INTRODUCTION

1 Introduction

The growing part of computer systems in critical applications points out the im-
portance of developing techniques for verifying these systems. There are two main
techniques of verification: proof techniques, dealing with infinite state systems but
requiring human interaction, and model-checking techniques, completely automatic
but often restricted to finite state systems [7].

Complex systems verification must take into account aspects that are out of
the scope of techniques and tools based on finite state systems analysis (model-
checking). Among these aspects, we can distinguish: manipulation of unbounded
data structures (e.g counters) or variables [11, 15, 6], parametrization (networks
with an arbitrary number of components) [18, 19, 3, 4, 17], mobility, ...

To deal with the problem of infinite systems verification there are several ap-
proaches based on varied techniques such as abstraction [14], symbolic reachability
analysis, ..., and using varied mathematical tools: languages and automata the-
ory [21, 14, 25, 3, 12], logics, rewriting systems, constraints solving [15, 6], ...

In this paper, we are interested in the verification of parameterized systems. A
parameterized system is a particular infinite system in the sense that each of its
instances is finite but the number of states of the system depends on one or several
parameters. So, taking into account the set of all possible instances of the system
requires considering an arbitrary number of cases. Recently, verification of such
parameterized systems has been in full expansion [6, 12, 19, 20, 25, 24, 8, 23].

For classes of systems composed of an arbitrary number of processes communi-
cating in a synchronous [18, 19] or asynchronous [17] way and eventually sharing
a control process, the problem of verifying a restricted set of properties is decid-
able. Presently, the most popular techniques for verifying parameterized systems
are incomplete [21, 4, 12, 20, 24].

An approach to apply model-checking to a parameterized system is to use a
symbolic representation of the states and transitions of the system to generate a
finite state abstraction of the operational model of the system.

We suppose a specification obtained by a refinement process. Several methods,
like B [5], TLA™T [22], CSP2B [13], ... propose a refinement based development.
In such a development, the system conception is done progressively by increasing
the accuracy of the systems description at each specification step. The interest of
a refinement based development is that it guarantees preservation of the abstract
systems properties. In this paper, our refinement concept is close to the one of the
B event systems. In the B refinement method, the refinement is verified by proof.
Safety properties of the systems are expressed by an invariant and are verified by
proof too. In [10], we express the refinement semantics as a relation between tran-
sition systems that can be verified using an algorithmic method. This allows an
algorithmic verification of the refinement by model exploration and a verification of
the PLTL properties by model-checking.

We consider the class of parameterized systems composed of an arbitrary number
of similar processes for which the parameter represents the number of processes.
In this framework, there is a modelisation where symbolic states can be seen as
regular languages [12, 20] and where the reachability problem can be solved using
an acceleration method. On such an abstraction, it is possible to:

e verify safety properties of the system by model-checking;

e verify refinement by model exploration;
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e verify properties expressed in Propositional Linear Time Logic (PLT L) about
the behaviors of the system.

In this paper, we extend the algorithmic verification of the refinement relation
between finite state systems defined in [10] to parameterized systems. For that,
we define the semantics for this refinement relation we call p. But p cannot be
computed directly since we have to use acceleration techniques [12, 20] to compute
a finite symbolic representation of a parameterized system. So we define another
refinement relation, R, that can be computed using acceleration techniques. The
main contribution of this paper is to guarantee that if R is verified between two
symbolic systems, then p is also verified for the corresponding concrete systems.
We give some conditions required for this to hold. We also provide an algorithmic
verification of R based on fixed points computations. This algorithmic verification
is not guaranteed to terminate because it relies on the constructions of the reacha-
bility graphs of the systems which are not guaranteed to terminate. The goal of this
work is to take advantage of property preservation by the refinement. Indeed, when
the refinement is verified, most of the PLT L properties that hold on the symbolic
abstract model are preserved for the refined one.

The paper is organized as follows. In Section 2, we give preliminary notions
about transducers and regular languages to model parameterized systems and define
our notion of symbolic transitions system. In Section 3, we define the semantics
of the refinement relation p for parameterized systems. As in general p can not be
computed, we extend it to R, a relation that can be calculated by accelerations
techniques. In Section 4, we show that, under some conditions, if the refinement
relation R holds between two symbolic systems, then p holds too. In Section 5, we
present how R can be computed in an iterative way. We end by some concluding
remarks, a tool description, and directions for future work in Section 5.

2 Symbolic Model

In this section, we define a symbolic model for transition systems based on regular
languages and transducers.

2.1 Representing States and Transitions

Let X be a finite alphabet. In our approach, states of the system are words of a
regular language E C ¥* and transitions are relations between these words.

Consider the set of all possible states of finite systems for which the last process
is in state a and the others are in state w. This set contains the global configu-
rations a, wa, wwa, ...,w™ 'a, ... corresponding to systems respectively composed of
1,2,3,...,n,... processes. A state of a system (or global configuration) is a word
a1as...a, over X, where n is the number of processes and each a; is the state of the
i-th process.

The transition relation is a relation between words of the same length. A tran-
sition labeled by an action a transforms (according to a) a word into another word
by changing the letters corresponding to the processes being transformed by a.

Example 1 Consider an action transforming the most right process in state w
into a process in state r. Applying this action to the configuration wwwa (case of
a system composed of 4 processes) transforms it into the configuration wwra.

An action «a can be written using the triple (ww,(w — r),a). The second
element of the triple describes the transformation made by the action using a word
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of pairs over ¥ x X. The first and last elements of the triple describe the context
in which the action can be applied using words over ¥, i.e., states of the processes
which are not concerned with the action.

If, now, the system is composed of an arbitrary number of processes, the regular
expression w*a represents the global state of the system for which the last process
is in state a and every other process is in state w, this independently of the number
of processes. Then, w*a characterizes a symbolic configuration (global state) of the
parameterized system.

We extend the transition relation between words to a symbolic transition rela-
tion between regular languages. Consider a symbolic action transforming the first
process in state w into a process in state r. Applying this action to a symbolic
configuration like w*a transforms it into the symbolic configuration w*ra. Such
an action can be represented by the triple (£*, (w — r),w*) where w = ¥\ {w}.
The first and last elements of the triple are regular languages, called left and right
contexts of the action. Their definition, according to [4], is as follows:

Definition 1 A left context C; is a regular language accepted by a deterministic
finite state automaton having a single accepting state. A right context C,. is a
regular language such that its reverse language is a left context.

An action a is represented by a triple (Cy, T, C,) where Cj is a left context, T is
aregular language over ¥ x X, and C, is a right context. For example, the symbolic
action (w*,[(r = a)(r = r)*(a = w)], €) indicates that:

e we first observe an arbitrary number of processes in state w, then,

e the first process being in state r changes his state and becomes a (in other
words, it rewrites in a),

o the rightmost process must be in state a and rewrites in w,

e all intermediate processes must be in state r and do not change their state.

2.2 Symbolic Transition Systems

We now define the model using a symbolic transition system. In the formal frame-
work of transition systems, a symbolic configuration is called a symbolic state.

Definition 2 A symbolic transition system is quadruple (X, Eg, Act, =) where X is
a finite alphabet, Eqy is a regular initial configuration on X, Act is a set of (names
of ) symbolic actions, and — is a symbolic transition relation (— C T* x Act x ¥*).

The labeled transition relation — is defined by a set of triples (E, «, E') (written
ES EY).

The transition relation — can be extended to a sequence of transitions in the
standard way: E' is reachable from FE, written E —* E’, if there exists a sequence
of symbolic states E = E° E',...,E™ = E' such that for each i > 0 we have
Ei 2 B+l We write E - to express that no action can be applied from E.

Let X be a variable such that its domain is included into ¥*. Let Att(Ep) =
{E|Ey =" E} be the set of reachable states from Ej. Let APy be a set of atomic
propositions where each atomic proposition e is either X = L or X C L, where
L C ¥*. Let SPs be a set of propositions over ¥ where each proposition is defined
by the following grammar: p1,ps := e|p1 V p2|—p1.

Definition 3 We define a state proposition p € SPs to be valid for a symbolic state
E, written E = p, as follows:
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Figure 1: A transducer accepting all words of pairs of the form (w,w)*(w,r)(r,r)*

e EEX=LiffE=L,

e EEXCLIfECIL,

e EEpM Vp iff EEEp1 or E = ps,
o EE=-piff -E=p.

We call invariant a predicate I witch holds on each symbolic state. In other
words, I is an invariant of a transition system T'S over X iff I € SPs AVE.(E €
Att(Ey) = E EI).

2.2.1 Transducers for the transition relation

A transition labeled by a (€ Act) can be represented by a finite state automaton
over ¥ x X, called a transducer (see for example Fig. 1).

Definition 4 Let 31 and Yo be two alphabets. A transducer T over Yo X X1 is a
finite state automaton over X9 X X1 accepting words of pairs (a;,b;) for 1 <i<mn
coming from the words (a; ...a,) € £5 and (by...b,) € X3.

Let id(L) be the language recognized by a transducer accepting identical pairs of
words of L. We write id for id(X). The transducer 7, for the action oo = (Cy, T, Cg)
accepts all words of pairs belonging to the language defined by id(Cy).T.id(Cq). It
expresses the relation —».

Definition 5 The symbolic transition relation — induced by T, links all pairs of
words (ay...ay, b1 ...b,) such that words of pairs (ai,b1)-..(a,,by) are accepted by T, .
We say that = is a regular relation.

2.3 Calculating the Reachable Configuration for a Transition

Given a transducer 7, and an automaton A accepting a symbolic configuration E,
we can built a new automaton 4’ accepting all words of a symbolic configuration
E', such that E 3 E' and resulting from the composition of 7, and A, written
To o A.

Definition 6 The composition T, o A of a transducer To, = (X X X, R, ro, 07,
Fr.)) and an automaton A = (X, Q, qo, 04, Fa) is the automaton (X,Q X R, (qo,
70),0, Fa X Fr.) where (g2,72) € 6((q1,71),b) if there exists an a € ¥ such that
g2 € 64(q1,a) et ro € 071, (11, (a,b)).

Using this composition, we can compute the next reachable state of the system.
But this is not enough to have a finite representation of the behavior of the system
because some actions can be executed again and again from an initial configuration.
For instance, consider the symbolic state w*a and the action « transforming the last
process in state w into a process in state r. If we apply successively a from w*a, we
get an infinite sequence of symbolic states w*a = w*ra = w*rra = w*rrra = ...
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since the transition can be applied again and again from the last computed state.
To have a finite representation of the behavior of the system, we must compute
in one step the reachable symbolic state corresponding to an arbitrary number of
applications of the same action, i.e., compute the transitive closure of the action,
called acceleration.

2.4 Acceleration

In [4], the authors give the sufficient conditions required to compute automati-
cally the accelerated transducer corresponding to an action transforming only one
process, i.e., where T is limited to a pair of letters. In [20, 12], this is extended to
actions transforming simultaneously many processes. Let k be the maximal number
of times a same symbol can be rewritten for the same action. If k is bounded, an
accelerated transducer having a state space in a size of k exponential can be com-
puted. When the construction cannot be calculated, there are widening techniques
[12] allowing an upper-approximation of the set of reachable states.

Each accelerated transducer represents the effect of an arbitrary number of ap-
plications of the action. We write a* (resp. a™) the transitive and reflexive (resp.
the transitive closure) of an action a.

The application of an action a (resp. at) to a symbolic configuration E is
written a(F) (resp. at(E)). We also write E(a) (resp. E(a™)) the subset of
E from which the action a (resp. at) can effectively be applied (source of the
application). This subset is calculated by intersecting E and the source language
of a (resp. at). For example, let E = a*{b,c}a* be a symbolic configuration and
a = (E*,[b = a],X*) be an action. We have a(E) = a* Ua*ca* and E(a) =
ENX*b%* = a*ba*.

Using these accelerated actions, we can compute, from the initial symbolic state
of the system, the successive sets of reachable symbolic states of the system. If we
get a set of configurations that has already been computed (this is detected by an
inclusion test between regular languages), then the computation ends. Widening
techniques [12] can be used to help termination.

This computation can be viewed as the construction of a reachability graph
where the transitions are labeled by a* or a™ and where the states are symbolic
configurations F;. This construction is useful to verify the refinement.

3 Refinement

The refinement definition between event systems has been defined in [10] as a re-
lation between transition systems. In this section, we extend this definition to our
symbolic models. First, we give a definition of the refinement relation between sym-
bolic transition systems, written p. Then, we extend p to R by taking into account
transitions acceleration and show that under some conditions, R and p are equal.
Finally, we present an iterative computation to verify that R holds between two
given systems.

3.1 Semantics for the Refinement Relation between Sym-
bolic Models

Let TS, = (X1, Eoq, Act1,—1) and TSy = (X4, Egs, Acty, —2) be two symbolic
transition systems at two levels of refinement and I;, I; be their respective invari-
ants. As in [10], we consider that a refinement introduces new actions, so we have
Acty C Acty. We also require that X; N X5 = (), since refinement renames variables.



3.1 Semantics for the Refinement Relation between Symbolic BlodBFINEMENT

Our goal is to verify that T'Ss is a refinement of T'S; by a relation p between
TS, and T'S1. For that, we first define the relation p, needed to link the states
of the systems and from which p is a restriction. The relation p is implemented
using a deterministic transducer 7, over ¥y x X; recognizing the pairs of words
(a1 ...an, by ...by) such that the words of pairs (a1,b1),. .., (an,b,) are accepted
by 7,. For instance, if £; = {a, b} and ¥y = {z,y, 2}, the configuration z*yz*zz*
is linked to the configuration a*ba* for the relation u = {(z,a), (y,b), (z,a)}. The
transducer 7, accepts the language ((z,a) + (y,b) + (z,a))*.

To formalize p, we also need an invariant Iy » which is a formula of the form
T(X3) C X; where T is a deterministic transducer over X5 x ¥;. The relation
depends on the validity of the conjunction of I, I and I; .

Definition 7 We define a proposition p to be valid for the pair of symbolic states
(Es, Ev), written (Es, Ey) =4 p, as follows:

o (B3, Eq) =4 p iff either p € SPs, and Ey = p, or p € SPs, and E, |= p or,
p=T(Xz2) C Xy and T(E>) C Ey,

o (Ez,E1) =gpVaqiff (B2, Er) Egp or (B, Er) g4,

o (B2, Er) g —p iff ~((E2, E1) 4 D).

A symbolic state Fs in T'Ss is linked to a symbolic state F; in T'Sy, written
Ey p Er, iff (Ey, Ey) =g It NI, AT 5. We denote by u(E) the language accepted
by 7,(E). As in [10], the refinement relation is defined as a restriction of p.

3.1.1 Definition of the refinement relation.

To describe the refinement relation, we keep
the transitions of TSy which are labeled in
Acty, but new transitions (those in Acty \
Acty) that are introduced by the refinement

E; are considered as 7-transitions, i.e. silent

/ I\a transitions (see Fig. 2), so Acta becomes
E; Act; U {1t} = Acty,. Silent transitions

a are not allowed to take control of the sys-

tem forever, so infinite paths are forbid-
den for silent transitions. We also require
that transitions from TS do not introduce

Figure 2: Silent transitions new deadlocks. Consequently, vicacity and
savety properties are preserved during refine-
ment.

Definition 8 Let a be an action in Acty. Let TS; = (X1, E1qg, Acty, —1) and
TSy = (X, Eag, Act1,,—2) be two transition systems. The refinement relation
p C X% x 1" is defined as the greater binary relation included in u satisfying the
following clauses :

1. (strict transition refinement) (Fy p By A By 59 E}) = (3E} s.t. By =
Ey NEj p Ey)
This means that if a symbolic state Es of the refined system is linked to a state
E; of the abstract system and if from Ey we can apply a transition leading
to E), then there must be a state E{ in the abstract system such that E| is
reachable by applying the transition to Ey, and E must be linked to Ei (see
Fig. 3).
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] P e
Eq Ea Eq P
Es(a) kS
Ei(a) )
e% «a E1(7) P
<P
Symbolic abstract Symbolic refined
em system

syst
Symbolic abstract Symbolic refined
System system
Figure 3: Strict transition Figure 4: Stuttering transition

2. (stuttering transition refinement) (E, p E; A By 5, EY) = (Eb p Ey)
This means that if a symbolic state Es of the refined system is linked to a state
E; of the abstract system, and if from Es we can apply a T—transition leading
to E}, then E must be linked to E; (see Fig. 4).

3. (non 7-deadlock) (E3 p Ey A Ey »3) = (Ey »1)
This means that if a symbolic state Es5 of the refined system is linked to a state
E; of the abstract system, and if from Ey mo transition can be applied, then
no transition can be applied to E; either (see Fig. 5).

4. (non 7-divergence) (E; p E;) = - (Ey =9 Ej 59 --+)
This means that if a symbolic state E> of the refined system is linked to a
state E1 of the abstract system, then we can not have an infinite sequence of
T-transition applying to Ey (see Fig. 6).

The refinement relation p is defined inductively from the initial states of the
refined and abstract symbolic transition systems.

Definition 9 Let T'S; = <21,E10,Act1, —)1) and TS, = (Ez,EQO,ACt1T7 —)2) be
two transition systems. TSy is refined by T'Sy, written T'S; 2 TSy, if EogpErg.

Since a symbolic state E is a regular language, an action applies to a subset of
E. In Fig. 3 and Fig. 4, we see that each configuration represented by Es(a) is
linked to a configuration of the abstract system by p. Moreover, E;(a) equals to

p(Es(a)).

Figure 5: Non 7-deadlock

In Fig. 5, we label with Es -2 et E; -»; the respective parts of configurations
E, and E; for which no action «; applies.

Extending p to R by acceleration. Since a symbolic configuration represents
an arbitrary number of configurations, a transition may be applied an arbitrary
number of times, and the computation of the reachability graph of the system does
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not terminate. To help termination, we use acceleration of the actions. We define
another relation, R, using strict transition closure. Then, R is the greater binary
relation included in p and satisfying Clauses 1, 2, 3, 4 of Definition 8 where — is
replaced by % The computation of R is more likely to be effective since acceleration
helps termination. Using R instead of p to verify refinement is possible iff E2gpEi
is equivalent to EygRE:1y. Unfortunately, in Section 4, we show that it is not the
case. However, we can verify conditions that ensure this equivalence.

4 When Clauses Defining p and R are Equivalent

In order to decide the refinement, we want FogpE7, and FoqRE1q to be equivalent.
This is the case if the configurations Fsy and Ej, are equivalent for each clause
defining p and R. In this section, we first show that Clauses 2, 3 and 4 of Definition 8
are equivalent for R and p. Then we show that it is not the case for Clause 1. Finaly
we define some conditions, which are easy to verify automatically, under which the
equivalence is guaranteed.

4.1 Clauses 2, 3 and 4 of p and R are equivalent

Recall that R C p and p C p and that p is a relation linking states of transition
systems. Then, since relations R and p are defined recursively, we have to put u
in the right part of the implications of the clauses to verify their equivalence. The
following three Lemmas expresses the equivalence for Clauses 2, 3 and 4 of relations
p and R. Proofs for these lemmas can be found in Appendix A.

Lemma 1 The following propositions 1) and 2) are equivalent:
+
1) (BEy p EyNEy 59 EY) = (EY p Ey) 2) (By R ELANEy 5y E') = (E'S u EY).

This means that if two symbolic states Fy and E; verify the stuttering transition
clause for relation p (resp. R), then they also verify the stuttering transition clause
for relation R (resp. p).

Lemma 2 The following propositions 1) and 2) are equivalent:
+ +
1) (E2 p E1 /\Eg —/-)2) = (El —Hl) 2) (E2 R E1 /\E2 4#2) = (El —Hl).

In other words, if two symbolic states Fy and FE; verify the clause for no new
deadloks for relation p (resp. R), then they also verify the clause for no new
deadlocks for relation R (resp. p).

Lemma 3 The following propositions 1) and 2) are equivalent:
T T st T
1)(E2pE1) =>—1(E2—)2Eé—)2) 2)(E2RE]_) :>_|(E2—)2EI;>—)2)

In other words, if two symbolic states Ey and E; verify the non 7-divergence
clause for relation p (resp. R), then they also verify the non 7-divergence clause for
relation R (resp. p).

4.2 Clause 1 of p is not equivalent to Clause 1 of R

In this section, we explain why Clause 1 of p is not equivalent to Clause 1 of R.

10
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Lemma 4 Clause 1 of p implies Clause 1 of R.

(o7 (67 a+
((E2 p E1 NEy =9 Eé) = (ELE{ s.t. B =1 Ei A Eé i Ei)) = ((E2 R Ey ANEy =5
E) = QB st. B, %, BT AET p EY)).

In other words, if two symbolic states Ey and E; verify strict transition refine-
ment clause for relation p, then they also verify strict transition refinement clause
for relation R.

Lemma 5 Clause 1 of R does not imply Clause 1 of p.

+ +
(B2 R EyANEy %9 B'S) = 3B, s.t.E1 S BT ANET wEY)) % (B2 p Ex A
Ey 55 Ey) = (3E; s.t. By =1 E| ANEy p EY)).

In other words, if two symbolic states Fy and F; verify strict transition refine-
ment clause for relation R, then we can not guarantee that they also verify strict
transition refinement clause for relation p.

Suppose Clause 1 is satisfied for R. Then, a symbolic state Es is linked by u to
a symbolic abstract state E;. From E,, we can apply at, leading to a E' ;r From
E; we can also apply o™ and go to state E'f. Moreover, E'S and E'{ are linked
by p. The refinement relation p holds if all intermediate symbolic configurations
reachable from F» and F; by applying successively « are also linked by u. But, this
cannot be guaranteed since we loose the trace of the intermediate symbolic states.
So, Clause 1 for p is not guaranteed to be satisfied. This is illustrated by Example 2.

Example 2 Let ac and as be respectively an action of the refined system and an
action af the abstract system such that:

E(’]:)cc) = ((alaal) + (blabl))*(blacl)(blacl)(clacl)*
L(Tan) = ((a,a) + (b,0))" (b, ¢) (¢, )"

Then, using acceleration, we have:

5(7;3) = ((a1,a1) + (b1,b1))* (b1, 1) (b1, ¢1) (b1, 1) *(e1,¢1)*
L(T,+) = ((a,a) + (b,0))* (b, ¢) (b, )" (¢, ¢)"

[¢7

Le p be the relation such that L(T,) = ((a1,a) + (b1,b) + (c1,¢))* and Ero, Er; be
two symbolic states linked by p such that Ery = (a1 + b1)* and Ery = (a + b)*.

If we apply ac to Ery, we get the configuration ac(Ery) = (a1 +b1)*cier. If we
apply a4 to Erq, we get the configuration aa(Er,) = (a+b)*c. These two resulting
configurations are not linked by p because p(ac(Ers)) = (a + b)*ce, which is not
included in (a + b)*c.

If we apply ag to Er,, we get the configuration aJ(S(EIQ) = (a1 + b1)*cicicy. If
we apply o to Er,, we get the configuration al{(Er;) = (a + b)*cc*. These two
resulting configurations are linked by p because p(alt(Ery)) = (a + b)*cec*, which
is included in (a + b)*cc*.

4.3 Ensuring Equivalence

In this section, we show that EsgpFE1 is equivalent to EqRE7y under some suffi-
cient conditions. In the preceding section, we saw that Clause 1 verified by R does
not imply that Clause 1 is verified by p. But we show that the implication holds if
each action of T'Sy refines its corresponding action in T'S;.

In our formalism, this means that each pair of words (u,v) recognized by a
transducer of the refined system is linked to a pair of words (u’,v") recognized by

11



4.3 Ensuring EquiVélEhde CLAUSES DEFINING p AND R ARE EQUIVALENT

the corresponding transducer of the abstract system in the following way: (u,u’) =
L AL AL, and (v,v") E L AL AL, ie., pu(u) =o' and p(v) = v'. To verify
that an action of T'Sy refines its corresponding action in ST, we need the following
notations and notions.

Definition 10 The synchronized product A% of an automaton A = (,Q,T, q)
with itself is the automaton (¥ X X,Q % Q,T",(qo,q0)) where ((q1,42),(e1,€2),
(quqIZ)) €T fo (Qbehqi) €T and (QQ,627q5) €T.

Let T over ¥ X X1 be a deterministic transducer (a deterministic automaton)
corresponding to the relation y, and 72 be the synchronized product of 7 with
itself. 72 is defined over ((Z3 x £;) X (Zg x ¥1)).

Let f be a function renaming labels of transitions for automata over pairs of
pairs of letters like 72 such that f : ((Z2xX1) X (Z2x 1)) = ((Z2xa) x (X1 xX1))
and f((e1,e2), (e3,e4)) = ((e1,€3), (€2, €4)). I T2 = (((Z2 x T) x (¥1 x £1)),Q x
Q)Tla(q05q0))ﬂ then 7—;”2 = <f((22 X 22) X (El X El))aQ X Q;Tla(q()aqo»‘ The
language accepted by 77 is L(T7) = {((u,v), (v',v")|(u,u') € L(T) A (v,0") €
L(T)}.

Consider the composition of the transducer 7, for an action « of the refined
system with our automaton 77 according to Definition 6.

Clause 1 is verified by p under the following hypothesis:

Hypothesis 1. 1. Vi.((a1; € Acti A ag; € Act2) = L(Tay, 0 TF) € L(Tas,))-
2. ¥Y(u,v).((u,v) € L(Tay,) = (', v"). (u,u’) € L(T) A (v,0") € L(T))

This condition says that for all pairs of words (u,v) recognized by a transducer
Tas, corresponding to an action of the refined system, there exists a pair of words
(u',v") accepted by the transducer 7,,, corresponding to an action with the same
label in the abstract system, such that (u,u') € T and (v,v") € T, ie, u(u) = v’
and p(v) = v'. Example 3 illustrates that Hypothesis 1 is necessary to verify the
refinement.

Example 3 Consider Example 2. We have:

ﬁ(ﬁ?(%c)) = ((a,a) + (b,b))*(b,c)(b,c)(c,c)*, which is not included in L(Ty,) =
((a,a) + (b,b))*(b,c)(c,c)*. Consequently, Hypothesis 1 does not hold and the re-
finement is not verified.

Theorem 1 Under Hypothesis 1, the strict refinement Clause for p is satisfied.

Proof idea.Let ac be an action refining an action a4 of the abstract system accord-
ing to Hypothesis 1. Given E5 and a¢, Ej = {v| Ju € E> A (u,v) € ac} and Ej is
not empty. Let @, be words such that @ € Ey A (i, 7) € ac. Because of Hypothesis
1, the pair (u(@), 4(9)) exists and belongs to a4. Thus, u(a) € E1, so u(9) € E} and
Ej is not empty. By definition, u(E5) = {p@)|v € E3} = {u(v)|Fu € Es A (u,v) €
ac}. By Hypothesis 1, we also have {(u,v)|(u,v) € ac} C {(u,v)|(p(u), u(v)) €
aa}. So, we can write pu(ES) C {p(v)|Fu € Ex A (pu(u), u(v)) € aa}. By definition:
u(E2) = {p(u)|u € Ez}, and we can write u(E3) C {p(v)[3z € p(Ez) A (z, p(v)) €
aa}t. We also have p(E2) C E;. Consequently, we can write pu(ES) C {u(v)|3z €
Ey A (2, 1(v)) € ag}. Therefore, E{ = {u|3z € E1 A (z,u) € aa}. So, u(E}) C E|
and the clause is true.

Theorem 2 Under Hypothesis 1, EagRE1 is equivalent to EsgpErg.

Proof. From Theorem 1 and Lemma 4, Clause 1 of p is equivalent to Clause 1 of R.
Since Lemma, 1, 2, 3 guarantee the equivalence between the other clauses, we have

12



4 WHEN CLAUSES DEFINING p ANDIRrARe EQUPVthliisN Of a T-simulation

EQOREIO < E20pE10.

Hypothesis 1 can be verified according to Definitions 6 and 10 before the al-
gorithmic verification of the refinement relation R, which is described in the next
section.

4.4 Iterative Computation of a 7-simulation

In [10], we show that the refinement relation is a special case of 7-simulation. It
is well-known that a (bi)simulation can be computed in an iterative way when one
of the systems is finitely branching. In our framework, the transition systems are
finitely branching since the sets Act and ¥ are finite sets.

Consequently, the relation R can be calculated by a width-first exploration of
the set of reachable symbolic configurations. This exploration uses successive under-
approximations of the least fixed points calculation for the set of reachable config-
urations. To give a semi-effective procedure to decide refinement, we must be able
to compute completely the simultaneous exploration of the two systems symbolic
reachable configurations. We do this exploration from the refined systems reachable
states, since R is a 7-simulation of the refined system 7'Ss by the abstract system
TS;. For that, it is enought to know:

1. How to glue symbolic configurations? We must decide whether the current
configuration E» of T'Ss is linked by p to the current configuration or not. E;
of T'S;. This is effective since we can decide whether (Ey, En) =g LI AI AL 5
or not.

2. How to compute the actions accelerations for the abstract and refined systems
to calculate the simulation? This is semi-effective because the computation of
the accelerations may not terminate.

3. How to decide strict transition refinement? This if effective by composing the
transducers for the actions of the refined system with 7}2 and checking that
either the language of the resulting automaton is included in the language of
the transducer of the corresponding action of the abstract system or not.

4. How to decide stuttering transition refinement? For that,

(a) we have to compute the 7-transitions, i.e, the new transitions accelera-
tions; the calculation of a 7-transition is semi-effective;

(b) we must construct the symbolic reachable configurations using the 7-
transitions from a configuration E» already linked to F;. Remark that
this needs a width first exploration of the set of symbolic configura-
tions reachable by the 7-transitions and, consequently, successive upper-
approximations of a least fixed point computation.

5. How to decide lack of 7-deadlocks? For that, we detect deadlocks from each
symbolic reachable configuration of the refined model during the joint explo-
ration (see Fig 5).

6. How to decide non 7-divergence? A sufficient condition for that is the absence
of cycles of 7-transitions in the reachability graph. Detection of such cycles,
called 7-cycles, is done using a semi-effective procedure, detailed below.

Within the 7-transitions we have a potential cycle when a symbolic configuration
E’ has a non empty intersection with a symbolic configuration E being one of its
predecessors in a sequence of T-transitions. Let E = Ey, Ey, ..., E, = E' be

13
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Figure 6: Non 7-divergence

the symbolic configurations of the sequence of 7-transitions from E to E’'. Let
So, S1, - -, Sn be the source parts of each T-application of the potential cycle (see
Fig. 6). We have the three following cases:

e Case 1. A potential cycle corresponds to a 7-cycle (then it is a fixed point of
the sequence of T-transitions) if S, = Sy (see Example 4).

e Case 2. A potential cycle does not correspond to any 7-cycle if S,, NSy =0
(see Example 5) .

e Case 3. Otherwise, we cannot conclude and we must apply the sequence of
T-transitions again from the configuration S, NSy (see Example 6) .

Example 4 Let T; and Tz be two transducers for T-transitions and Ey be an initial
state. We have:

L(T1) = (a — b)id(X*)
L(Tz) = (b — a)id(X*)

Eg = aa*.

Then, by applying successively T1 and T2 from Ey, we get the following sequence:
Ey = aa*, E1 = ba*, Ey = aa*. Here, the source parts of the T-transitions are equal
to the computed configurations. So, we have Eg = So = aa*, Ey = S1 = ba*, andt
E; =85 = aa*. We have a potential cycle because Eg N Es is not empty. Moreover,
we have So = Sy. Consequently the potential cycle corresponds to a T-cycle.

Example 5 Let 71 and Tz be two transducers for T-transitions and Ey be an initial
state. We have:

L(Th) =id(w+7r)*(a - w)id(w + r)*(r = a)id(w + r)*
L(T2) =id(w*a)(r = w)((r = w +id(w))*
Eoy = (w+r)a(w+r)*.

Then, by applying successively T1 and T2 from Ey, we get the following sequence:
Ey = (w+r)*alw +r)*, B = (w+r)*w(w + r)*a(w + r)*, B> = ww*aw*. There
is a potential cycle because FEg N E5 is not empty. Eg N By = ww*aw*. We want
to know if this potential cycle is a T-cycle. For that we compute the source parts
of the transducers for the T-transitions. We get So = (w + r)*a(w + r)*r(w + r)*,
S1 = w*w(r + w)* and So = 0. So the potential cycle is not a T-cycle.

Example 6 Let T; and Ts be two transducers for T-transitions and Ey be an initial
state. We have:

L(T1) =id(a*a)(b — ¢)id(b)*
L(T2) = id(X)*(c — a)id(b)*
Ey = a*ab*.

14
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Then, by applying successively T1 and T2 from Ey, we get the following sequence:
Ey = a*ab*, By = a*ach*, By = a*aab*. As Eo N E» is not empty, we have a
potential cycle. We compute the source parts of the transducers, and we get Sy =
a*abb*, S1 = Ey = a*acb*, et Sy = a*aabb*. As S is not empty, we can not
conclude. We have to aply the transducers again from Sy N Sy = a*aabb*. By
applying the tranducers again, we generate a growing sequence of configurations like
So = a*aaabb*, then Sy = a*aaaabb*, etc... and we can not conclude.

The refinement relation provides a formal framework for verifying parameterized
systems, since when the refinement holds, most of the properties that have been
verified on the abstract model are preserved by the refined one (See [9] for more
details).

5 Conclusions and Future Works

In this paper, we show that the refinement relation that we have defined using
acceleration can be semi-computed. This allows us to verify the refinement relation
for an intersecting class of parameterized systems, those for which the parameter is
an arbitrary number of similar processes. The refinement relation is computed on
the symbolic models of the systems. These symbolic models must also be computed.
For that, we must represent states and actions of the system by regular languages
and transducers and compute the accelerations of the actions (it is possible when the
actions satisfy the conditions given in [3, 4]). We must also generate a reachability
graph where the states regular languages and transitions are accelerated actions by
using an effective construction of the set of reachable states. In this paper, we also
provide semi-algorithms to 1)calculate the reachability graph of the system 2)detect
absence of new 7-cycles. Remark that in our approach, the reachability graph is
used by other algorithm or semi-algorithms to verify the refinement clauses.
Tools. We have implemented a tool, using LASH [1] libraries to verify the
refinement relation for parameterized systems and the tool RMC [2] to compute
transducers acceleration. Presently, our tool generates symbolic reachability graphs,
verifies refinement between two symbolic systems and also verifies safety properties
for these systems. When the refinement is not verified, our tool finds the origin of
the error. We have used our tool to verify automatically the refinement between
two levels of refinement of the PID system [16]. It took 13 seconds (see [9] for more
details). We must however complete this framework by adding the verification of
PLTL properties. When the tool will be completed, we will be in measure to
evaluate the contribution of our verification approach for parameterized systems.
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A Equivalence for Clauses Defining Relations R and
p-
Lemma [4] Clause 1 for p implies Clause 1 for R.
(By p By NEy 34 EY) = (3E} s.t. B 31 E{ ANEy u E)) = (Bs R Ey ANEs <,
EY) = QB s.t.E S, BT AET u E'Y))
Proof. We have to proove that (1) = (2) where (1) is (B2 p E1AEy o Ey) = (3E;
st. By 3, ELAE, u E)) and (2) is (B: R By A B2 &y EY) = 3B st.
E; a—+>1 E'T AE'T u E'T)). For that we proove —(2) = —=(1). Suppose —(2). There
are 2 possibilities:
e First, 38, s.t. By 2 E'Y but ~(E'F uE'T). By definition B’} = Uy, Ef
st. Bi' 3 Ei where EY = E». So, there exists at least one configuration
E} C E'f st. =(EJRE'Y). By definition, E'Y = U5, Ei st. Eir' 5 Ej
where E? = E;. So, =(EJuE!) where E! C E'}. Therefore, p does not hold.

n
e Second, there is no E} s.t. By %1 E'J). So there is no « transition from Ej.

For the other clauses, we show equivalence of the Clauses (1)(for p) and (2)(for
R) by 2 contrapositions. Case 1 corresponds to prooving that —(1) = —(2) and
case 2 corresponds to prooving that —(2) = —(1). Recall that p C p and R C p.

Lemma [1] The following propositions are equivalent.
+
1) (Ey p By NEy 55 EY) = (B pw Ey) 2) (BEa R By NEy Do E'T) = (B'S 1 Ey)
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Proof. Case 1. Suppose Ey pEi, Es 52 Eb and —~(E5u Ey). By definition E’; =
Uis: Ei st Ei' 5 Ei where EY = E>. So, E} C E'5. Consequently —(E'S uE)
and we are done. .

Case 2. Suppose EZREl, Ey, 5y E'Y and ~(E'S pEy). By definition ES =
Uis1 B3 s:t. Ei~' 5 Ej where EY = E,. So, there exists EJ part of E'S s.t.
—~(E}pE;) and we are done.

Lemma [2] The following propositions are equivalent.
+ +
1) (Eg p Ei N Ey —Hg) = (E1 —Hl) 2) (E2 R E; A Ey —ﬁg) = (E1 —Hl)

Proof. Case 1. Suppose Es p Ei, Es -»5 and =(E; -»1). If no action a can be
applied from FE,, then no action a™ can be applied from E,. If o can be applied
from Ej, then a™ can also be applied from Ej .

+ +
Case 2. Suppose F> RE;, E; »3 and —~(E; -»1). If no action at can be applied
from Es, then no action « can be applied from Es. If aT can be applied from E,
then « can also be applied from FEj.

Lemma [3] The following propositions are equivalent.
+ +
1) (Eg pEl) = (E2 1)2 Eé l)g ) 2) (E2 REl) = (Ez T—)Q Eé T—>2 )

Proof. Case 1. Suppose FopF;. Let 0 = 11,79, ..., T, be a sequence of 7-transitions
such that B9 3 E! B3 ... I Ep = Ei with (i < n) inducing a 7-cycle. Let E'S

ot ) o
be such that E 2 E',. By definition E'y = |J;5, E# such that Ei™' B3 Ej so

E} C E'5. So, 1 (and 737) can be applied from E'j. In the same way, the other
transitions can also be applied and the sequence o’ of transitions i, 75", ..., 7;F can
also be applied. Moreover, E} C E'5. So, the sequence ¢’ induces a cycle and R is
not verified.

+

Case 2. Suppose (E2RE;) and o' = 7i7, 75", ...,7;F be a sequence of T-transitions

10 7—1+ 11 ot T m 14 . . . . .
such that E'5 = E'y > ... 3 E'S = E', with (i < n) inducing a cycle. Obviously,
o' induces a cycle from E') and we are done.
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