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Abstract: This paper presents a public-key cryptosystem based on a subclass of the well-
known satisfiability problem from propositional logic, namely the doubly-balanced 3-SAT
problem. We first describe the construction of an instance of our system starting from
such a 3-SAT formula. Then we discuss security issues: this is achieved on the one hand
by exploring best methods to date for solving this particular problem, and on the other
hand by studying (systems of multivariate) polynomial equation solving algorithms in this
particular setting. The result of our investigations is that both types of method fail to break
our instances. We end the paper with some complexity considerations and implementation
results.
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Un systéme de type Polly Cracker basé sur le probléme
de la satisfaisabilité

Résumé : Nous présentons ici un systéme de chiffrement a clef publique construit & par-
tir d’une sous-classe du probléme de satisfaisabilité de la logique propositionnelle, appelé
probléme 3-SAT doublement balancé. Nous décrivons d’abord la construction d’une instance
de notre systéme a partir d’une telle formule 3-satisfaisable. Puis nous étudions la sécurité
d’un tel systéme, d’une part en explorant les meilleures méthodes actuelles pour résoudre
ce probléme sous-jacent, d’autre part par ’étude d’algorithmes de résolution de systémes
d’équations multivariées dans ce contexte. Nous concluons que notre systéme est résistant &
ces deux types de méthodes. Des considérations pratiques de complexité et d’implantation
terminent ’article.

Mots-clés : cryptosystémes d’essence combinatoire, 3-SAT, génération d’instances diffi-
ciles, systémes d’équations polynomiales.



A Polly Cracker system based on Satisfiability 3

1 Introduction

Since the failure of knapsack-based cryptosystems [Sh, Od], a widely accepted opinion was
that NP-complete problems were not suited for the construction of secure trapdoor one-way
functions. In 1993, M. Fellows and N. Koblitz [FK] proposed to further investigate the use of
those problems for designing public-key cryptosystems, and proposed a general framework,
called CA-systems', the main illustration of which was the Polly Cracker cryptosystem. In
this system, the public-key is a set S = {p1,...,p¢} of multivariate polynomials over a finite
field Iy, and the secret-key is a zero a of S. To encrypt a message M € F;, Bob chooses an
element 1 = Zle hip; of the ideal generated by S, and sends ¢ = 9 + M. Knowledge of «
then allows Alice to decrypt the ciphertext just by evaluating it on a.

The (public-key, secret-key) pair is derived from an instance of an NP-complete combina-
torial? problem, in such a way that knowing the public-key is equivalent to knowing the
considered instance, and that finding a secret-key from the public-key is equivalent to find-
ing a solution for this particular instance.

M. Fellows and N. Koblitz suggest several NP-complete problems for use in this context,
mainly based on graph theory (e.g. 3-colorability, perfect codes in graphs,...). The public-
keys arising from such problems suffer from an intrinsic weakness - namely, some public-key
polynomials are linear - as pointed out by R. Steinwandt et al. [GS]. Besides, algorithms
that are fast on average have been found for several NP-complete graph problems, such as
k-colorability, under commonly used distributions on graphs [Wa).

Here, we follow the CA-systems line of research by proposing a public-key cryptosystem
based on the well-known SATISFIABILITY problem from propositional logic. More precisely,
we use the 3-SAT problem. One advantage of using this underlying hard problem is that it
avoids the presence of degree one polynomials in the public-key.

not seem

The 3-SAT problem has been extensively studied, see e.g. [CMi, Mo, CMo, Ro|, mainly
due to the fact that it is of interest in other research areas, such as planning or scheduling.
Although proven to be NP-complete, this problem admits many “easy” instances, where
deterministic algorithms (such as the recursive DPLL[DL]) perform quite well in practice.
Indeed, let n (resp. m) denote the number of variables (resp. clauses) of the problem, and
set m = cn with ¢ € R**. Then, as c increases, it has been shown experimentally that the
probability of an instance of chosen for 3-SAT being satisfiable shifts from almost one to
almost zero. The range of ¢ over which this transition occurs is® 3.003 < ¢ < 4.598. This
is known as the threshold conjecture. In this range, there is a value of ¢ corresponding to a
complexity peak at which on average half of the instances are satisfiable. The exact value
of ¢ yielding this peak can be numerically determined for each instance distribution.
¢ thus Non-deterministic methods have also been devised, that often give better results on

1For “combinatorial-algebraic” cryptosystems.

2In a broad sense, i.e. this includes graph theory, boolean logic,...

3For 3-sar ; For k-sat with higher values of k, this range is shifted. Also, the higher n is, the sharper
the range becomes.
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4 Frangoise Levy-dit-Vehel , Ludovic Perret

satisfiable instances (e.g. Walksat, [SK]), especially near the threshold region. They are
known as local search methods.

For small values of n - say up to several thousands - all instances are within reach of current
algorithms, i.e. those will almost always find a solution if any, or prove there are no (the
search tree of DPLL, in case of unsatisfiable instances, gives a proof thereof). Thus, the
hardness of this problem is tightly located in the critical range for ¢, and for (very) large
values of n. Having this in mind, and also that the parameter sizes and generation times
of our system have to be polynomial*, we chose to restrict ourselves to a particular class
of the 3-SAT instances, namely the class of so-called doubly-balanced 3-saT [DB], a.k.a.
literal-regular 3-SAT [BS]. Formulae in this class have the particularity that every variable
appears (almost) equally often, and (almost) as often negated as unnegated. Instances from
this class are much more difficult to solve in general than random 3-SAT instances, as they
are designed to have structural regularities, thus confusing variable selection heuristics that
are used by most solvers (for example, DPLL-like algorithms treat the variables with a small
number of occurences first.)

Note that for random 3-SAT the complexity peak occurs for ¢ & 4.25, while for doubly-
balanced 3-SAT , it has been shown to be ¢ & 3.5 (both values experimentally determined).

The paper is organized as follows: in the next section, we begin by providing the necessary
background to understand the basics of the 3-SAT problem, as well as methods for generating
random instances, and doubly-balanced ones. Then we show how to translate this problem
into a system of polynomial equations, in order to use it in our cryptographic setting. We
exhibit the correspondence existing between the models of 3-SAT and the solutions of the
system. In section 3, we describe the cryptographic scheme we propose. Section 4 is devoted
to its security: we investigate carefully the single break attacks found by R. Steinwandt et
al. [GS], and show that they cannot be conducted in our context. We also investigate total
break methods on the system. They are of two types: the first type is the use of 3-SAT solvers
to break the considered instances, from which we protected ourselves by carefully choosing
the instances. The second type is to run algorithms computing (an element of) the variety of
the set of polynomials involved. The best algorithm known to us - namely F4 [Fa] - does in
fact more: it computes a Grobner basis of the set of polynomials. For the considered sizes,
it appears that such an algorithm is of no help. We end the paper by a section concerning
complexity of parameter generation, as well as implementation aspects: parameter sizes, run
times... We would like to mention that, when investigating Polly Cracker-type systems, our
intention was not to design a scheme that was likely to compete with the public-key systems
in use. What we were interested in was mainly to show that it was possible to achieve
a reasonable level of security while using this type of systems; we also believe that our
approach of the SATISFIABILITY problem from a cryptographic standpoint is quite original.

4In the size of the input of 3-sat, namely nlg(n), denoting by lg() the base-two logarithm.

INRIA



A Polly Cracker system based on Satisfiability 5

2 CNF formulae and systems of polynomial equations

2.1 3-SAT and instance generation methods

We begin by recalling what the 3-SAT problem is. Let X = {z1,...,2,} be a set of boolean
variables, and let A, V,” denote logical and, or, not respectively. A truth assignment for X
is a function ¢t : X — {True, False}. For a variable z; € X, if t(z;) = True, we say that
z; is true under ¢. (If ¢t(z;) = False, then 2 is true under t). For 1 < j < n, a literal
u; is either z; or ©;. A clause over X is the disjunction of a set of literals over X. It is
satisfied by a truth assignment if, and only if at least one of its members is true under that
assignment. A clause containing only three literals will be called a 3-clause. For instance,
c=xj VZj, Vs, 1< ji,j,j3 <n,is a 3-clause, and is satisfied unless t(z;,) = False,
t(z;,) = True, t(zj,) = False. A CNF-formula® C is the conjunction of arbitrarily many
clauses ¢y, . ..,¢,, m € N*. It is satisfiable if, and only if there exists some truth assignment
for X that simultaneously satisfies all the clauses in C. Such a truth assignment is called a
satisfying truth assignment, or a model for the formula C. If C contains only 3-clauses, then
we say that C is a 3-CNF formula. For instance, C = AL, c; where ¢; = uj, V uj, V ujg,
m € N*, is such a formula.

In the sequel, we shall denote a CNF-formula either as a conjunction of clauses as above, or
equivalently as a collection of clauses, the conjunction then being implicit.

The 3-satisfiability problem can then be stated as follows:

INSTANCE: a collection C = {c1,...,¢n} of 3-clauses on X.
QUESTION: is there a satisfying truth assignment for C ?

The random 3-SAT problem which we referred to in the introduction is the 3-SAT problem
in which instances are generated according to the following procedure®:
The number of variables n and the number of clauses m being fixed, randomly select three
distinct variables out of m, then negate each variable with probability 1/2. Combine these
literals in a 3-clause. Repeat this process until the desired number m of clauses is reached.
Conjoined them to form a CNF-formula.

The restriction of 3-SAT to balanced formulae is the one in which a formula C is such
that, for all 4, 1 < i < n, each variable z; appears equally often” i.e. in [3m/n| clauses
(there are 3m positions to fill, corresponding to the m 3-clauses). But then, it can be that
some variables appear more often negated than unnegated (or the converse). The doubly-
balanced 3-SAT subclass is precisely the class of formulae that do not present this type
of irregularity; namely, a formula in this class is such that each literal appears (almost)
3m/(2n) times (there are 2n possible literals). Such instances can be generated with the
following algorithm:

The number of variables n and the number of clauses m is being fized. Place |3m/(2n)]

5Conjunctive Normal Form.
SFixed Clause Length generation.
7Almost: occurences of some variables must be added if 3m/n is not an integer.

RR n° 4698



6 Frangoise Levy-dit-Vehel , Ludovic Perret

occurences of each of the 2n literals in a bag. To reach exactly 3m literals in the bag, add
randomly some literals, not twice the same. To construct each clause, remove three literals
on distinct variables from the bag. At some point, if the literals remaining in the bag concern
only one or two distinct variables, then randomly add distinct variables in the bag, negating
each of them with probability 1/2. Keep on the construction of the clauses until the desired
number is reached.

Note that to generate a (doubly-balanced) formula admitting a particular model y, one
simply modifies the above procedure by throwing away the 3-clauses that are not satisfied

by y.

2.2 Counstructing a system of polynomial equations from 3-SAT

We shall now explain how to translate an instance of the 3-SAT problem into a system of
polynomial equations. A similar description already appeared in [Bal].

We shall denote by K[X], the polynomial ring K[z, ..., z,] over the field K. We choose
two field values T, F' € K, representing True and False respectively. To a 3-clause ¢ involving
the three literals u;, ug, ug, 1 < 4, k, £ < n, one can associate a total degree 3 polynomial
in K[X] as follows: if u; = z;, then we replace u; by (z; — T); if u; = &;, then we replace
it by (z; — F). Replace V by multiplication. For instance, the polynomial® p.(X) € K[X]
correponding to the clause ¢ = z; V @3 V ¢ is p.(X) = (z; — T)(z, — F)(x¢ — T). Is is then
clear that a satifiying truth assignment of X for ¢ corresponds to a zero of the polynomial
pe(X). Moreover:

Theorem 1. A 3-CNF C = {c1,...,cm} admits a model if, and only if the corresponding
system of polynomial equations {p1(X) =0,...,pm(X) = 0} has a solution over the algebraic
closure of K.

Proof
We shall indeed prove more: first, we exhibit a one-to-one correspondence between the
models of C and a variety we call V defined below:
For an ideal J C K[X] generated by a set S, we shall here denote by Vi (J), the variety of
S, that is:

Vk(J)={z€ K", f(z) =0, Vf e S}.

Now denote by I, the ideal generated by the polynomials p;, 1 < i < m, and let y be an
element of the variety

Vie(I) = {z € K™, pi(2) = 0, ¥1 < i < m}.

Then we claim that the models of C are in one-to-one correspondence with the elements
of Vi (I) with coordinates in {T, F} C K: first, note that those elements indeed form the
variety

Vie(I) N (N7 Vi (< (25 — T)(zj — F) >) = Vi (< {pit1<i<m, {(z; — T)(zj — F)}hi<j<n >)-

8Letting X stand for z1,...,%n.

INRIA



A Polly Cracker system based on Satisfiability 7

Denote this variety by V. Then
yeVe (pily) =0Vli<i<mandy; € {T,F}V1<j<n)
& V1 <i<m, ¢ is satisfied by t, : X — {True, False} given by:
for 1 <j <mn,if y; =T then t,(x;) = True, if y; = F then t,(x;) = False.

This exactly states that ¢, is a model of C.

Next, letting K stand for the algebraic closure of K, we prove that every element of
Vg (I) can be mapped to an element of V:
Let z € Vig(I). If z; € {T,F},V1 < j < n, nothing has to be proven. Otherwise, there
exists (at least one) j, 1 < j < n with z; € K \ {T, F}. Call jp one such js. Due to the form
of the polynomials p;, as we have p;(z) = 0 V1 < i < m, it must be that the value of the
variable z;, has no influence on the cancellation of the p;s: in other words, for each p;, we
have p;(z) = 0 thanks to some other value z;, with j; # jo (variable z;, can be considered
as a “free” variable in this system); and we must evidently have z;, € {T, F}. Thus z can
be mapped to the element Z € V defined by Z; = #z; for all js such that z; € {T, F'}, and

Z; = T otherwise®. O

We shall here use for K a finite field F,. We ask that T" and F' be two non-zero field
elements, so we set ¢ > 3.

3 The system

Selecting the Public-key/Secret-key pair

Alice chooses a finite field F, with ¢ > 3, and positive integers m and n. She also takes
a vector y of {T, F'}™ at random. This is her secret-key.

She then generates an instance C of doubly-balanced 3-SAT admitting y as model.
now.[...] For this, she uses a generation method due to E. Hirsch [Hi] and called hgen?2.
This method follows the one described in section 2.1, but with some other constraints, that
aim to generate formulae with as independent clauses as possible. For instance, if a clause
involves literals u;, uy and u, then his algorithm is designed such that no other clause of C
involve any two of them.

Having done this, Alice publishes the set C, together with m, n and ¢ (values T and F are
also publicly known). In section 5, we shall explain how we represent C. Indeed, as shown
in section 2.2, it would have been equivalent - from an information theoretic viewpoint - to
publish the m polynomials correponding to these m clauses, but the “clause-representation”
allows for a more compact form.

9We can equivalently set it to F.

RR n° 4698



8 Frangoise Levy-dit-Vehel , Ludovic Perret

Encryption

The encryption phase follows a regular Polly Cracker scheme. Let M € F, be the
plaintext to be transmitted. To encrypt M, Bob first chooses at random m' = m clauses'®
from the total set of m clauses of the public-key C, with 0 < 8 < 1. We recommend
1/4 < 3 < 1/2. Then, he transforms the chosen clauses ¢;, , .. .,c; , into polynomials p;, (),
as explained above. Next, Bob chooses m' random polynomials h¢(X) € F[z1,...,z,]. To
keep a reasonable complexity in terms of the size of the polynomials, and of the time needed
for the generation, the hy’s are chosen to be quadratic polynomials involving a moderate
number of terms, e.g. lgn or possibly +/n terms. The ciphertext he sends to Alice is then
the total degree 5 polynomial of F,[z1,...,2,] defined by :

o(X) = D he(X)pj, (X) + M.
=1

Decryption
Upon receiving ¢(X), Alice evaluates it at y to recover the plaintext:

Z hZ p]z + M=M.

4 Security issues

Total break

Given a system of m polynomial equations of total degree 3 in n variables over a finite
field F,, the security of our scheme relies on the difficulty of finding a solution to this system
in the algebraic closure of I, . finite In other words, if I denotes the ideal generated by these
polynomials, the problem is to find an element of Ve ( ). This problem can be solved by
means of computing a Grobner basis of I. In this case this gives in fact all the elements of
VF (I). The complexity of computing a Grobner basis of a system of polynomials - although
theoretlcally doubly exponential in the number of variables - depends in practice very much
on the nature of the system, and of the algorithm used. To our knowledge, the best current
algorithm for computing Grobner bases is F4, and is due to J.C. Faugére [Fa]. systems,
Faugére HFE’s variables memory.

We have run the Fy4 algorithm on instances of our scheme via the web interface!! of Fgb.
Practically, yet for polynomial systems corresponding to n = 100 variables and m = 350
clauses, such an algorithm fails computing a Grébner basis: indeed, we have noticed that,
after some iterations, the algorithm cannot terminate, due to the handling of huge matrices
(typically square matrices of a hundred thousand entries). Thus, the sizes we consider are
far out of reach of this type of algorithms.

10This choice was made for the sake of efficiency.
11 http://calfor.lip6.fr/ jcf/Software/Fgb/index.html
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A Polly Cracker system based on Satisfiability 9

Another attempt to break our system would be to run a 3-SAT solver on it. It is clear
that the crucial point in using the 3-SAT problem in a Polly Cracker system lies in the
method chosen for generating hard satisfiable instances. While it remains an open problem
to generate hard solved instances [IL], the doubly-balanced 3-SAT formulae are among the
hardest 3-SAT instances to solve by currently known methods: this is due to the fact that
they are not completely random, as instances from the random 3-SAT problem can be,
nor completely “structured” (this terminology refers to 3-SAT instances arising from the
modelisation of real-life phenomena occurring in e.g. planning or scheduling). Thus, efficient
algorithms on random formulae such as UnitWalk or OKsolver [Sa] will be defeated by the
regularity of those formulae, whereas algorithms that perform well on structured instances
- like Zchaff or Sato [Sa] - will then behave poorly, those formulae being too “random” to
handle. The ones chosen by us for the construction of our public-keys come from the hgen?2
generator of E. Hirsch. Formulae generated by this algorithm have proven to be the ones
that best resist to known solvers. Besides, instances from this generation method have
won the smallest (in terms of n) satisfiable unsolved instance challenge of the sa1’2002
competition'?: the smallest such instance had parameters n = 500 and m = 1750.

Single break

We recall that this attack, as opposed to the total break one, consists of recovering
the cleartext from a ciphertext, but does not recover a secret key, thus in principle not
compromising other uses of the system.

R. Steinwandt et al. [GS] have pointed out two attacks allowing to retrieve the cleartext
from a ciphertext, both based on the fact that, as the cleartext is an element of F,, it is
sufficient to compute the coefficients hy(0) to obtain it. The one based on the assumption
that the terms of the public polynomials all belong to a small’® subset of F,[X] is not
applicable here. The other one assumes the presence of so-called characteristic terms in
the public-key. Such a term X" in p; is such that it does not appear as a term of p;, for
j #1i,1<4,57 <m. Then, if one has the additional property that the term X" cannot
be obtained as a product of the form X*#X? XH being a term of p; and X% a term of
hj, with j # i and 6 # 0, then one can recover the coefficient h;(0) simply by the equality
a; X" = a; X" x h;(0), a; being the coefficient of X*¢ in the ciphertext, and «; the coefficient
of X" in p;.

While it is the case in our system that, for all 1 < ¢ < m, p; possesses at least one such
characteristic term, the attack does not work, as the following method shows: retrieve for a
fixed instance of balanced 3-SAT (n,m), we have first exhibited the characteristic monomials
of each p;. For fixed 4, 1 < i < m, let us call those monomials a;, X"i1,...,a; X **. For
each of them - say a;; X Yii - we have computed V; ;= Qi /a,-]., where a;; is the coefficient
of X" in the ciphertext. If the values Vj; coincinde for all 1 < j < k;, that means that
one can determine h;(0) uniquely (as being equal to V;;). If not, that means that for some
monomials a;; X%, the second condition in Steinwandt’s attack does not hold. We are then

12 http://www.satlive.org/SATCompetition
13Namely of size less than a few thousand.

RR n° 4698



10 Frangoise Levy-dit-Vehel , Ludovic Perret

left with more than one possible value for h;(0), thus not being able to determine it uniquely.
Of course, one could set h;(0) to be the most often taken value of V;,. But the thing is that
there are not many characteristic terms for each p; (i.e. k; is small'*, typically 2 or 3), so
that this sort of decision is likely to give a false value for h;(0). There is also a possibility
that a;; =0, i.e. that the term X" cancels in the ciphertext. In this case, it can be that,
for a particular ¢, no value can be obtained for h;(0) (if this is the case for all 1 < j < k;).
In the table below, we have quoted, for n = 50,75 100 and m = 4n, the number of is such
that h;(0) is uniquely determined, ambiguously determined, and not known at all. We have
done these experiments for a ciphertext involving polynomials {h;}1<i<m with lgn terms,
and with +/n terms respectively. It is plain that the more terms there are in the h;s’, the less
coefficients h;(0) can be determined. What the results tell is that an unsufficient proportion
of these values can effectively be determined (on average 25% for y/n, and for lgn: around
30% for n < 100, and about 40% for larger values of n), thus rendering that attack infeasible
on these instances. We precise that those tests have been run on 20 instances of each size,
and that the values given are respectively the smallest number of is found among the 20
instances, the largest one, and the mean values of the results obtained for each of them. For
example for n = 50, we had to find 200 values for h;(0); when the h;s involve /n terms,
we could get the right values of h;(0) for 54 indices ¢ on average, one instance yielding
only 47 indices, and one instance yielding 65 such indices. There were on average 131.2
values of h;(0) that were ambiguously determined (at least 122 and at most 146 such values,
depending on the instances tested), and the number of indices i for which the values h;(0)
were unknown is 14.8 on average (with min. equal to 8 and max equal to 26).

Finally, those tests were conducted under the assumption that all the polynomials of the
public-key are used to construct the ciphertext (i.e. m' = m). In the case when m' < m,
which we recommend, this attack is completely infeasible, as the adversary does not know
which polynomials Bob has chosen.

n =50 n=7175 n =100

m = 200 m = 300 m = 400

47 65 54 77 119 88.7 | 94 119 104.9
Vv 122 146 131.2 | 175 209 198.4 | 258 296 283.7

8 26 148 |6 17 13 8 21 114

50 75 56.4 | 77 108 95.8 | 122 164 148.6
lg(n) | 114 137 131.3 | 178 202 193.5 | 215 267 242.8

8 16 124 |4 16 108 |2 14 8.6

5 Practical considerations

In this section, we consider 3.003 < ¢ < 4.598 and 1/4 < 8 < 1/2, those quantities being
typically chosen to be ¢ = 3.5 and 8 = 1/3.

14Remember that the number of terms of p; is at most 8.
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A Polly Cracker system based on Satisfiability 11

The generation of the set C of clauses has been performed using the algorithm hgen2.
Apart from that, the complete implementation of instances of our system has been done
using the MAGMA symbolic language - which we found best suited for the manipulation of
multivariate polynomials (multiplication, evaluation on a vector of Fy', computation of the
number of terms ...) - with interfaces in C.
in MAGMA in The single break attack has also been conducted with MAGMA.

5.1 Parameter sizes

public-key, The public-key consists of m 3-clauses in the variables z;, 1 < i < n. It can thus
be stored using 3mlg(n) bits, that is 0(nlg(n)) bits with m = cn.

The secret-key is n bits long, as we can identify T with 1 and F' with 0 for its storage.

The size of the ciphertext ¢ can be estimated as follows: recall that ¢ is of the form:

!
m

o(X) = he(X)p;, (X) + M.
{=1

The number R of monomials in the ciphertext is at most'® ZZI tese + 1, where t, is
the number of monomials of p;,, namely exactly'® 8 in our case, and s, is the number of
monomials of hg, which we bound from above by lgn. With m' = fm and m = cn, this
yields R = O(nlgn). Besides, each ciphertext monomial can be stored using O(lgq + lgn)
bits: indeed, as each monomial az{"...x%" is of total degree at most 5 (we recall that the
total degree of hy is two), it can be stored as (a, (j1,;j,),- .-, (J5, ®j5)), with 2?21 aj; <5.
For each (j;, a;; ), one needs lgn + 3 bits, monomial. yielding lg g+ 5(lgn + 3) bits for each
monomial.

Finally, this gives a ciphertext of size O((nlgn)(lg g + lgn)) bits. Summerizing, we have:

Proposition 1. The proposed scheme, involving m polynomials in n variables over F,
(m = cn, m' = Bm), has the following features:

The public-key is of size O(nlgmn) bits.
The secret-key is n bits.

The ciphertext is O((nlgn)(lgq +1gn)) bits.

5.2 Running times

We first give the time needed for the generation of the set C of clauses, for different values
of n, and for m = 3.5n, according to the hgen2 implementation:

15 Some terms possibly cancelling.
16Dye to the fact that T and F are non-zero.
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n | time (seconds)
250 0.78
300 0.79
400 1.42
500 2.23
600 3.03
700 4.39

We can evaluate the complexity of encryption and decryption in terms of n and lggq: for
clarity, first set r = Igq. The complexity!” of an operation (addition or multiplication) over
IF, is known to be O(0(r)), with ©(r) = rlgrlglgr. Then, we have:

Proposition 2. For the system described, with m = cn and m' = Bm, the following com-
plexities hold:

The cost of generating the ciphertext is O(nlgn®(r)) bit operations, plus the cost of
generating O(nrlgn) bits.

The cost of decryption is O(nlgn®(r)) bit operations.

Proof
The bit cost of generating the ciphertext ¢ can be divided into three steps:

- the complexity of constructing the m' polynomials p; starting from the m’ clauses
Ciys+ -+, Cir, chosen by Bob. This can be estimated as O(m'), which is O(n) as m' =

Bm = Ben.

- the complexity of generating the h;s: for each h;, one has to generate 1gn coeflicients
in F, at random, that is rlgn bits. And the number of h;s to generate is m' = fen,
thus yielding O(nr lgn) bits to generate at random.

- the complexity of computing c: this is the heaviest part of the generation. We need to
perform R multiplications of elements of F, and at most R additions, where R is the
number of monomials in ¢. This makes O(RO(r)) bit operations. With the estimate
on R given in the previous paragraph, we get O(nlgn®(r)) bit operations. Comparing
to this, the cost of computing the exponents of the monomials (addition of integers
less than 5) is negligible.

For decryption, we have to evaluate the complexity of evaluating ¢ on some point of Fy. A
typical monomial - being of total degree at most five - can be evaluated with O(1) multi-
plications in Fy, i.e. with bit cost O(©(r)). Then, R additions in F, have to be performed,
as there are R monomials in ¢. Thus we obtain a bit complexity of O(RO(r)), that is
O(nlgn®(r)). 0

17bit cost.
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Of course, these complexities give only the orders of magnitude of the encryption/decryption
costs. In particular, the decryption phase is much faster than the encryption one in practice.
To have a more precise idea, we have quoted below real-time implementations. The table
successively gives, for several values of n and for m' = m/3 = (3.5n)/3 and m/4 = (3.5n) /4
(when this value was not an integer, we took the integer part of it), the size of the public-key
(PK), the encryption time, the number of terms of the ciphertext and the decryption time.

(n,m') | size of PK | encryption time | Number of terms | decryption time
(KBytes) (seconds) in ciphertext (seconds)
(500,583) 5.8 32.16 29515 0.93
(500,437) 5.8 18.87 22276 0.71
(550,641) 6.5 47,80 36556 1.3
(550,481) 6.5 26, 84 27438 0.97
(600,700) 72 58 38078 1.49
(600,525) 7.2 33.34 20824 1.14

6 Concluding remarks

We have presented a cryptographic scheme of Polly-cracker type, the underlying problem of
which is based on a subclass of the family of SATISFIABILITY problems. We have examined
its security on the one hand by considering single break attacks, and on the other hand
by exploring the best known methods to date to attack the hard problem. Of course, the
security arguments presented do not constitute a proof of the security of our system in a
formal sense. A result about proven security seems hard to reach at the moment, but is
within the scope of our current investigations. For the moment, we think that those results
are yet quite interesting, first because we achieved some kind of (computational) security
while using Polly Cracker-type schemes - which has never been reached so far - and also
because we believe that our approach - namely the investigation of sharp methods from
propositional logic and the setting of results in a cryptographic context - is quite new. and
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