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Abstract: We present a historical trace manager and new dynamic scheduling heuristics
that can be used, and are studied, in the client-agent-server model on the ‘grid’. These
heuristics rely on the common acknowledgment of the characteristics of the tasks submitted
to the agent, but also on the construction of the underlying historical trace of the different
tasks submitted to each server. We study each heuristic and compare them on several
metrics to an instantiation of MCT (Minimum Completion time), chosen as reference heuristic.
The simulation experiments we have conducted show that they are likely to give good
results when tested in a real environment.
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Ordonnancement sur la grille : historique des taches et
heuristiques dynamiques

Résumé : Nous présentons un gestionnaire d’historique des taches, ainsi que de nouvelles
heuristiques qui sont utilisées et présentées dans le modele ’client-agent-serveur” sur la
grille. Ces heuristiques reposent sur les caractéristiques connues des taches soumises a
I'agent, ainsi que sur la construction en paralléle d"un historique des taches soumises a
chaque serveur. Nous les étudions en les comparant sur plusieurs métriques a une instan-
ciation de MCT. Les résultats d’expérimentation obtenus montrent qu’elles sont 8 méme de
donner de bonnes performances dans un environnement réel.

Mots-clés : ressources temps partagées, heuristiques dynamiques d’ordonnancement, ges-
tionnaire d’historique des taches, MCT, NetSolve



1 Introduction

The client-agent-server model is often used in grid applications -grid middleware -. Any-
one who can contact an agent can have access to the underlying resources connected to
this agent. It is transparent for the user, whereas these resources are distant and dis-
tributed on the grid, that we usually call metacomputing. Some environments, called NES
for Network Enable Server, exist, rely on and popularize this model (NetSolve [CD96],
Ninf [HN99], Diet [CDF*01]). Some of them are application-centric, e.g. they are optimized
for an application type that can be characterized (AppleS [BW97] and APST [COBWO00]
for an application composed of independent tasks). Scientists use them to access scientific
optimized functions libraries, in area as various as biochemistry, fluid mechanic, nuclear
([SBSS98],[NHRS85]). . .

For the execution of an application on a distributed environment to be the most effective, it
is relevant to optimize the choice of the resources where its composing tasks are mapped.
The agent is the focal point that is in charge to optimize the schedule according to a cer-
tain metric. In order to determine the network state and the load of each server needed
to allocate the task, the agent disposes of its own monitors or eventually uses supervisors
beforehand installed such as NWS [WSH99].

In the literature, it is often assumed that a server can compute only one task at a time
([BSBT99],IMAS*99]). We propose here to consider a scheduling in a shared-time but ded-
icated resources context, e.g. a server loaded with already mapped and running tasks can
be chosen to receive new jobs.

To achieve our goal, we consider the historical trace of the already mapped tasks to simulate
the environment and take scheduling decisions accordingly. Hence, we have developed a
distributed computing environment simulator that takes into account that the network and
servers can share their resources with several applications. We have tested in simulated
experiments several heuristics. The proposed heuristics, that use the historical trace, are
compared to an instantiation of MCT, that models the NetSolve scheduling strategy. The
goal of our new dynamic heuristics is not only to optimize the makespan, that is much
more an application metric, but also to optimize the finishing time date of each task, that
is to disturb the less possible the system state but still be the best for the new incoming
task. Moreover, several other metrics, like the makespan and the sum-flow, are considered
in this paper.

Our contribution is to consider the historical trace and new dynamic heuristics built on its
top. Our proposed heuristics are likely to outperform the MCT algorithm implemented in
the real NetSolve system, even on the makespan.



The rest of this document is organized as follow : the section 2 describes NetSolve, an NES
relying on the client-agent-server model ; models used for applications and for the grid are
defined in section 3 and the management of the historical trace is explained in section 4 ; in
the section 5, we show the observed metrics on which we compare the heuristics exposed
in the section 6 ; finally we conclude in the section 7 and present our future objectives.

2 NetSolve

We present in this section a NES (Network Enable Server) called NetSolve [CD96] that uses
in its agent body MCT (section 2.3) as a scheduling heuristic.

2.1 Overview

NetSolve [CD96] is a client-agent-server based environment developed in the University
of Tennessee, designed to provide network access to remote computational resources for
solving computationally intense scientific problems. A NetSolve system consists in three
parts : clients which need some resources to solve some problems, servers which run on
machines that have some resources available and an agent which maps the requested prob-
lems of clients to servers.

The system works as follow : the client requests the agent for a server that can compute its
job. The agent uses the information provided to compute its best choice. Then, the client
requests the answered server. Every machine in a NetSolve system runs a NetSolve server
to give access to installed and optimized scientific packages. The client can perform its
requests in a blocking or non-blocking fashion.

2.2 NetSolve Model

To choose the best server capable to compute the new submitted task, the agent uses the
following information :

1. the peek performance of the server, given in Kflops by the LINPACK benchmark ;

2. the load of the server, a number given by the Unix command upt i me sent sporadi-
cally;

3. the network state. It is the last known bandwidth and latency between the agent and
the server ;

4. the parameters and the result data size. It is the data quantity of the input and output
that is to be transferred between the client and the server ;

5. the number of operations, requested by the task.



1 For all server S; that can resolve the new submitted problem

2 D, (S;) = estimated amount of time for the transfer of the data.
3 D, (S;) = estimated amount of time to solve the problem.

4 Affect the server S; the score D1(S;) + D2(S;).

5 Choose the server ig|S;, = mingeryers Si-

Figure 1: MCT algorithm

2.3 Mapping Schema

NetSolve algorithm is described fig 1. To score each server, the agent adds the amount of
time that the task needs in its transfer phase to the one in its computing phase, if mapped
to the considered server. The score the lowest gives the best server to choose. Hence, the
heuristic employed is MCT (Minimum Completion Time) : the best server minimizes the
task finishing date. MCT is a robust, rapid algorithm, that gives good results in minimizing
the makespan, but it needs accurate information. The refreshment of the measures in the
MCT algorithm are sporadic:

¢ The server load is transferred at least every 60 seconds (if it has varied of more than
20 from the last load), and at most every 300 seconds ;

¢ the latency and the bandwidth values, once communicated, are refreshed every 1800
seconds ;

¢ the server notifies the agent the finishing of a task when this occurs.
Moreover, the MCT heuristic is completed by two other mechanisms :

¢ the client will normally contact the answered server, so the agent adds 100 to the
server last recorded workload to correct the load this new task will generate ;

* when receiving a task end notification, if the last load was upper than 100, the server
decreases the value by 99.

This two mechanisms are interesting to still try to do good quality choices if new tasks ar-
rive immediately after having mapped a task. But still, the quality of MCT decisions is not
necessary the best because of the frequency and the quality of the incoming information
on the state of the system. Indeed, on Unix systems, the upt i me command gives only the
average load of the last minute.

The execution table 1 shows the behavior of NetSolve. At time 34:25, the agent increases
the load value by 100 due to the first mechanism. But its effect is limited : the server who



[ time ] Toad/(action) [ time [ Toad/(action) ]

3425 O(sendy) 39:43 19
3443 28 4136 | (receiveq)
3543 73 4243 130
36:35 (sends) 4426 | (receives)
36:43 121 44:43 75
37:43 174 45:43 28

Table 1: Execution of 2 dgemm 1500 with NetSolve on one server

has recorded an increase of its load greater than 20 sends its new load to the agent at time
34:43. The same happens when the second task arrives at 35:35 with the transfer of the load
at time 35:43. The second mechanism has worked but not by itself and its effect is limited :
the agent last load value is decreased from 196 to 97 but then refreshed to 130. The second
mechanism effect is out when the second task finished, with the load of 130 decreased to
31 at time 44:26 then refreshed at time 44:43 to 75. Therefore, in this example, most of the
time the load has a value that does not represent the facts.

Thus, even if the server tells the agent its load immediately after starting its new task, the
load would not tell anything useful to the agent. Moreover, if the server communicates its
load immediately after the first mechanism has taken place, this value is replaced by the
new one which does not reflect what has been done, e.g. the assignation of a task to the
server and the acknowledgment the server load will increase. The second point is that even
if the mechanisms correct the CPU value during some time, this correction is not really pre-
cise. The second mechanism can be of no worth if there was only one task on the server
(the load can be less than 100). Third and last point, the estimation of the amount of time
of a task is done at a given time, using the last system state recorded, maybe modified, to
that time. Nevertheless, the CPU load of a server can decrease in a significant way after
the agent has mapped the task, because of the ending of some tasks, leading to choices that
would have been better if considering that server.

This is why we propose to build an history of the tasks that are given to servers. The agent
knows information about each task allocated to each server and thus can predict when a
server will deserve any attention even if it is loaded, and eventually give it some new task
to solve.

3 Simulation Model

During the experiments, the network and the different entities that compose the NetSolve
system were simulated with the Simgrid tool [Cas01]. The dynamic mapping heuristics
were evaluated using some parameters that characterize heterogeneous servers and each
task of the metatask. We explain in this section the different models used to refer and model
the client-agent-server mechanisms, the heterogeneous entities and metatask, according



to the Purdue taxonomy [BSBT98]. We used the Gnu Standard Library [GSL] for all the
probabilistic distributions used thereafter.

3.1 Platform Model Characterization

We assume the client is able to reach each server as is the agent. The experiments were
conducted on the basis that we are on a dedicated area, that is only the agent can make
use of the servers. It is common on clusters using reservation mechanisms (qsub). We
suppose that we know for each server an accurate estimation of the number of processors,
their speed and the network bandwidth.

Moreover, we suppose that all the problems can be solved on any server, as this is not really
important for the experiment (that is, when a task arrives, all servers are eligible). We have
not tested what would arrive if a server was suddenly struck down, for clients who had
jobs on it would have to re-submit their jobs. Likewise, we do not have considered any
arrival of a new server in the system.

3.2 Application Model Characterization

We are for the moment interested in metatask mapping, e.g the application is composed
of independent tasks (there is no communication between the tasks). For example, we can
consider a metatask as composed of Monte Carlo simulations requested by one or more
users. It is not in our concern here to deal with the deadline time nor do we consider the
preemptive aspect of the problem : a task, if assigned, can not be stopped and continue
later nor be removed and be scheduled to another server. If a task has to be duplicated, it
is up to the client to do so, requesting twice the agent services.

A task can be executed by a server when all of the input data are finished to be sent from
the client. A task is finished when the data output is finished to be sent back to the client.
We assume we know an accurate estimation of the size of the input and output data, and
the computation cost.

3.3 Instantiation

The assumption of these whole parameters is commonly made when studying mapping
heuristics in Heterogeneous Computing Network, and are obtained from benchmarks exe-
cuted on each server ([Qui02]).

We have chosen the servers cards to be exactly the same (100 Mbits/sec) and the experi-
ments were conducted with a number of servers held to 25. We used a Uniform distribution
to generate the heterogeneous set of servers, each of them of one processor A processor can



produce a number in the range of 150-500 Kflops.

For describing the dates of arrival of the tasks, we used a Poisson distribution whose pa-
rameter p varies from 0 to 70 (section 6). We used a Uniform distribution to express the
input and output size of data to be transferred between the client and the server. The
boundary limits are 1 Ko and 300 Mo. The computation cost is generated from a Uniform
distribution, with these rules :

¢ the computation phase costs more than 10 times than the transfer phase ;

* the computation phase must not be greater than 600 seconds on the fastest server of
the 25 available

4 Historical Trace Manager

We have developed a historical trace manager which is sought by the agent when a new
task arrives. Its information are at the origin of the heuristics that we will describe later.

4.1 Overview

The historical trace manager has two goals. It keeps the information of each task and com-
putes the Gantt Chart for each server considering the new submitted task. Hence the sched-
uler can see the impact the new task has on each task previously mapped on this server and
predict the completion dates.

As clients are able to reach each server, the network is reduced in our model to the band-
width of each server full duplex network card. The simulation program allows concurrent
sends as well as concurrent receives. Like the computation phase, that begins with the end
of the input transfer, they are implemented in a time slice model : n tasks in the same phase
on the same server are assumed to take 1/n of the server power until one of them finishes.
The same schema is repeated until all tasks simulated completion date are obtained. We
consider in our model that a context swap takes no time. The figure 2 details an example
of a four tasks metatask, with no input and ouput datas, mapped on a server.

We can easily predict the finishing time of all the tasks assigned to each server. Hence,
the use of the historical trace when a new task arrives can lead us to consider servers that
would not have been otherwise : even if a server is loaded when a new task arrives, its load
can decrease later because of finishing tasks. We use these information for new heuristics
proposed further.
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Figure 2: Gantt Charts drawn with the HTM results

size of the memory need (Mo) phase time needed
square matrix | input | output on server

input data cost 3

1200 21.97 10.98 computing cost 18
output data cost 1
input data cost 5

1500 34.33 17.16 computing cost 33
output data cost 1
input data cost 8

1800 49.43 24.72 computing cost 53
output data cost 2

Table 2: tasks needs




task | arrival date | size of the | real completion | simulated completion | error on real
matrix date date duration
1 33.00 1500 80.79 79.99 1.67
2 59.92 1200 92.08 93.19 3.45
3 73.92 1800 142.79 142.50 0.42
1 29.41 1500 76.69 76.29 0.84
2 56.43 1200 89.15 89.50 1.07
4 96.41 1200 136.97 139.40 5.99
6 140.41 1200 204.84 204.85 0.01
3 70.42 1800 210.61 195.74 10.6
5 121.43 1500 235.38 232.92 2.16
8 181.45 1200 248.02 248.56 0.81
9 206.41 1200 259.91 261.63 3.21
7 166.42 1800 289.08 288.91 0.14

Table 3: Two metatask executions

4.2 Some Tests Performed in a Real Environment

The model is simple and the few tests performed gave good results. Some metatasks, com-
posed of matrices multiplications, were considered. A matrix can be of size 1200, 1500
or 1800. The needs of the tasks are given in the table 2. Two executions with the error
(percentage) made on the real duration of each task, are given in the table 3.

8 5,
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OlghGiltntt | 100% oo : : 2 : 5 task 1
a : ° ! 100 % :
; i L ‘ ; s task 2
[ 100% ‘ New task : task3
LT :
Gantt Chart [ 100% task 1
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Figure 3: Notations for the historical trace use



4.3 Notations

Let a server loaded with some tasks. The oldest one, not yet finished when a new one
arrives is of local number 1. If after this one n — 1 tasks have been mapped to this server,
then a new one will be of local number n + 1. (figure 3). Note that tasks 1 < ¢ < n + 1 can
have already completed.

Let a task t mapped to the server j. Its arrival date is noted a; and its completion date C}.
Let assume that this task is the local task ¢. Then we note a; ; = a; the arrival date of the
local task ¢ on the server j, d; ; its duration on the unloaded server and C;; = C; its real
completion time.

The HTM provides the following numbers after simulating the execution of tasks (fig 3) :
T; ; refers to the simulated finishing date of the local task i before the arrival of the new
task. T} ; is its finishing date given after the simulation of the execution of the new task on
the server j (if the model is perfect, then when the task ¢ finishes, Cy = Tj; ;). We call the
remaining length of the local task i, D; = T; — ap41-

Finally, we define the perturbation of the new task on the local task i as 6; ; = T; ; — T ;.

5 Performance Metrics

The experiments explained further were conducted to compare on different metrics our
new heuristics using the historical trace manager to NetSolve MCT. The main goal was to
find, if possible, a heuristic that would still have good makespan performances but also
give a good quality of service to each task, for they are not necessarily parts of the same
application.

1. Makespan
The makespan of the metatask is the completion time of the last finished task :

max(Ci;)
]

Minimizing the makespan is usually the goal of the schedule of an application. The
sooner the application is finished, the best it is. The makespan is dependent of the
number of tasks that compose the metatask. So, for a low arrival rate, giving the
gain in percentage can not give extremely good results : as it is the same metatask
to be scheduled, the arrival dates are the same. It is more a gain on the flow of the
last task that makes the makespan. Hence, as the number of tasks grows, the gain in
percentage decreases.

2. Sum-Flow
Considering the problem on the system side, it is interesting to see how much of the
resources are used. The flow-time is the time a task ¢ has spent in the system :

F,=Ci—a4



Hence, a well-suited metric for continuous job arrivals [Bak74] is the sum-flow :
2T
t

3. Max-Flow [IABCM98]
It is defined as
max F;

Thus, we can know the maximum amount of time a task has spent in the system and
possibly see by this measure the impact of later arrived tasks on an already scheduled
one or the choice to use a server that is slower.

4. Max-Stretch [JABCM98]
The stretch of a task t, assigned to the server j, hence being of local number 3, is
defined by s; = s;; = F;/d; ;. We know by that factor how much a task has been
slowed down relative to the time it takes on the same but unloaded server. Thus the
max-stretch is defined as max; s¢. It is much more a metric for the client point of view.
It can be qualified of Quality Of Service of the agent.

Note: These 2 metrics are complementary to understand what happened, however
the task that has spend the most time in the system is not necessary the same than the
one that has been the most delayed.

5. Number of tasks that have finished sooner
Whereas this is not a metric, this value gives, in correlation with the previous met-
rics, a relevant idea of a quality of service given to each task when comparing two
heuristics. For instance, comparing the heuristics H; with MCT (on the same set of

tasks {t; ...t,} and same environment), it is |{t;|Ct, g, < Ct; yro7}

The user point of view is not that the last allocated task finishes the soonest (trying to
optimize the makespan) but that his own tasks (a subset of all clients requests) finish
as fast as possible. Therefore, if we can provide a heuristic where most of the tasks
finish sooner than MCT’s, we can claim that this heuristic, to the user point of view,
outperforms MCT.

6 Mapping Heuristics

We first give the common background of the experiments done for each heuristic, and then
describe the heuristics and their results (See section 4.3 for notations).



6.1 Experimental Simulation Overview

We have implemented all the mechanisms that compose NetSolve listed in section 2.3. It
implies the MCT heuristic, the two load correction mechanisms when mapping a task to
a server or when receiving a task completion message. It is to note that the load is boiled
down to the number of task a server is running. Hence, +100 and —99 mechanisms are
translated to +1 and —1 and the values used to compute the scores are far more precise
than in the reality: NetSolve knows perfectly the system states. In consequence, our sim-
ulation of NetSolve MCT behaves better than the algorithm does in reality. Therefore, if
we build a heuristic that outperform our simulation of NetSolve MCT, this heuristic will be
likely to outperform NetSolve in reality (see section 2.3 and 4.2).

The following experiments were conducted on the same randomly generated pairs (servers,metatask),
(see section 3.3), allowing to compare each proposed heuristic to the modelized NetSolve

MCT. They were designed to see the quality of the schedule if the agent is more or less

loaded. Hence, p1 was varied from 0 to 70, where each server is executing at most one task

at a given moment, for the most of the heuristics tested.

For each value of ¢4, we varied the number of tasks from 10 to 250. For each pair (u,nbtasks),
1000 simulations were performed, whose results were compared to the corresponding one
using the simulated NetSolve MCT. Hence, graphs are produced using the mean of the
1000 simulations : results for a heuristic represent 200000 simulations.

For three heuristics (HMCT, MP, and MSF), we have conducted experiments with a larger
number of tasks, equal to 970, and means are obtained from 250 simulations. It is 48000
pairs (servers,metatask) that are analysed for each heuristic. As they confirm the previous
results and tendencies, we will only refer, when studying the heuristics, to the previous
one. However, the reader can find them figures 15, 16, and 17.

Results for a heuristic are given in five 3D graphics, one for each metric observed. Note
that the first one concerning the number of tasks that finish sooner contains two informa-
tion: the graph itself shows the percentage of tasks that finish sooner or equal to simulated
NetSolve MCT ; the colored base shows the percentage of tasks that finish at the same time.
Our gain is then the difference of the two numbers, and a gain is done if the value is greater
than 50. For the other graphics, they show the gain in percentage using our heuristics (it is
a gain when it is positive).

6.2 HMCT

HMCT is MCT that uses the historical trace management and is compared to NetSolve
MCT. The historical trace manager simulates the new task on each server. Then, the sched-
uler selects the server that gives the best finishing date, e.g. the shortest. The algorithm is
given figure 18.



Graphs 4 shows that there is a gain up to 10% on the makespan for y < 10. For y > 30
the gain is still positive even if almost null. The Sum-Flow is greater for HMCT than MCT
for p > 10 (leading to negatives performances). This can be explained as follows: HMCT
can map a new task to a server that is running some jobs, hence increasing their flows. For
p < 10, the rate is so high that the flow is increased for both algorithms (hence, the gain on
the Max-Flow), but the percentage of tasks that finish sooner is greater than 50%. Then, it
is lower and decreases (under 20% for p = 30).

As far as the makespan is concerned, HMCT outperforms NetSolve MCT (more than 8%
for p < 20). However, the percentage of tasks that finish sooner is poor and the Max-
Stretch always negative. In a client-agent-server context, this is to improve. Moreover,
MCT algorithm is not a well load-balanced heuristic : in the real case, a server can not
handle too many jobs. In a high heterogeneous network, the risk is that fastest servers
collapse.

6.3 Min_Max_Completion

We consider here the case of scheduling tasks that compose an only application. The last
task submitted to the agent is not necessarily the one that will determine the makespan of
the application. Indeed, if using MCT (or HMCT) leads to map the task for its best com-
pletion time, this is not true for the application. Hence, we propose Min_Max_Completion.
The HTM computes the completion time of the task that completes the latest on each server
if the new task is assigned on it. The agent chooses the server that minimizes this comple-
tion time.

Results are slightly the same as HMCT results but MMC algorithm does not give better
results on the makespan than HMCT, as it was expected. Moreover, if the Max-Stretch is
a little better and the Max-Flow unchanged, the number of task that finish sooner and the
Sum-Flow are slightly worse.

6.4 Heuristics Relying on Minimum Perturbation

We have tested some heuristics relying on the idea to perturb the less the system. They
differ in the importance given to each perturbation a new task generates on a server : each
perturbation can be weighted, hence favoring for instance the finishing date of the oldest.
If not said, in case of equality (for instance when the system starts), MCT is used, e.g. the
chosen server is the one where the new task, the task n + 1, finishes the soonest.

6.4.1 Min_Perturbation

From the information given by the historical trace manager, the scheduler chooses the
server that minimizes )", d; (see the algorithm figure 19).



We can see on Graphs 6 that when nbtask > 80, the gain on the makespan is positive
(around 5% for nbtask = 250 and p < 20). MP allows to gain on the Sum-Flow, with a peak
at 15% for p = 30. The percentage of tasks that finish sooner is always greater than 60%,
with a peak at 70% for i = 30, (when in most of the cases, no more than one task is running
on a given server). Moreover, MP allows the server to answer 90% faster in the worst case
and is always better than NetSolve MCT. The Max-Flow is always better except for p = 30.

6.4.2 Min_Perturbation_load

It is the same as before, but in equal case, the heuristic considers the simulated amount of
time the new task requires multiplicated by the number of tasks still running on the server.
The algorithm is detailed in figure 20.

The results differ from those of MP on the Sum-Flow (worse) and on the Max-Flow (bet-
ter). The gain on the Max-Flow is due to the fact that perturbation on previous tasks is
minimized and less tasks are concerned by a perturbation.

6.4.3 Min_Perturbation_L,

The perturbation is computed with the euclidian metric, hence, the server jo that minimizes
i1 (6;,5)? is chosen.

There is some similarities to MP, even if it gives worse results for 1 < 10 on the percentage

of tasks that finish sooner and the makespan, that are less good than MCT’s.

6.44 Min_Perturbation_masse

Four heuristics are studied. Two of them (MP_masse_decres and MP_masse_decresIncr)
tend to complete the oldest running tasks, weighting their perturbations with a correpond-

ing factor, as the two other (MP_masse_cres and MP_masse_cresIncr) favors the newest.
The factor is determined by the rank of the task:

In MP_masse_cres, each perturbation §; is weighted by ¢ the rank of the local task i, whereas

in MP_masse_cresIncr, it is by the number of oldest tasks still running (thus MP_masse_cresIncr
is MP_masse_cres if tasks finish in the same order as they arrive). In MP_masse_decres,
each perturbation ¢; is weighted by n + 1 — 4, i the rank of the local task i, whereas in
MP_masse_decresIncr, it is by the number of newest tasks still running (thus MP_masse_decresIncr
is MP_masse_decres if tasks finish in the same order as they arrive).

The algorithms are given figure 21 and 22.

Results are equivalent for MP_masse_cres(Incr) and MP_masse_decres(Incr). Moreover, re-
sults between MP_masse_(de)cres and MP_masse_(de)cresIncr only differ on the makespan
and the Sum-Flow : MP_masse_(de)cres give better results than MP_masse_(de)cresIncr.



Note: Algorithms relying on Minimum Perturbation presents a major drawback. When
only one server is idle, it will be chosen by the heuristic, whatever its speed, leading to
possibly bad performances. This can happen when dealing with highly heterogeneous
resources and a high rate of costly requests.

6.5 Min_Length

The historical trace manager simulates the new task on each machine. The scheduler uses

its information to choose the server that minimizes the quantity Z"+ D;, that is the sum
of the remaining length of each task at the new task arrival, including the new one.

For p < 10, the gain on the makespan is negative, then almost null as soon as x> 20. A
gain is performed on the Sum-Flow for ¢ > 10. Min_Length and MCT give the same results
on the number of tasks that finish sooner.

6.6 Min Sum_ Flow

As described in the algorithm given figure 23, the heuristic requests the HTM to com-
pute the whole Sum-Flow when assigning the incoming task to each server. Hence, the
heuristic returns the identity of the server j, that minimizes the system sum flow, e.g.
min; (Zk# i1 (T! e —aik) + Z’ "+1( —aj ;). But as the difference between two values
is only due to perturbat1ons and to the new simulated task duration, the HTM only needs
to compute 1" | 6;; + Tnt1,j — An1,; for each server j, that is the perturbation of the last
task on the server plus the manager estimated length of the new task.

MSF achieves to gain on the makespan like HMCT does, e.g. around 10% for ¢ < 10. The
gain on the Max-Stretch is positive for y < 30, the gain Max-Flow is always positive with
a peak to 23% for p = 30. Surprisingly, the gain on the Sum-Flow is lower than expected.
The number of task that finish sooner is lower than MCT’s.

Since the cost of the new task is computed, the algorithm begins like HMCT. Thus, the
mapping decision can be viewed as partly composed of HMCT and MP part. Moreover,
MSF results can be considered (except on the Max_Flow) like a mean between MP and
HMCT.

7 Conclusion and Future Work

In this paper we have studied the problem of scheduling a metatask on a set of servers in
the “client-agent-server” model.

We have introduced the concept of historical trace in order to better predict the behavior
of each server as well as the impact of the mapping of the tasks onto the environment.
We have proposed new heuristics based on the historical trace concept. Among them,



three heuristics present good results: HMCT is a variant of MCT as used in NetSolve ;
Min_Perturbation tends to minimize the impact on already mapped tasks ; MSF tends to
gather the advantages of the two previous heuristics.

Our simulation experiments show that, for a negligible cost: HMCT performs better than
MCT on the makespan, but does not give the same quality of service than other does for
same makespan results ; Min_Perturbation and Min_Sum_Flow outperform on most cases
for most of the metrics observed, like the makespan, our simulation of NetSolve scheduling
heuristic (MCT) which has a far better knowledge of the environment than in reality.
However, in degenerated cases, Min_Perturbation has some drawbacks that MSF does not
have. Therefore the MSF heuristic is a good candidate for scheduling metatasks in the gen-
eral case.

Our future works are directed towards implementing these heuristics into the NetSolve
code in order to perform tests on real applications and real environments. Next, we plan to
build a scalable version of the historical trace manager in order to distribute the scheduler
in the DIET environment which has a hierarchy of agents [CDF*01].
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Figure 6: Results for Min_Perturbation vs MCT on 25 servers, 250 tasks
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Figure 9: Results for Min_Perturbation_mass_cres vs MCT on 25 servers, 250 tasks
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Figure 11: Results for Min_Perturbation_mass_decres vs MCT on 25 servers, 250 tasks
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Figure 15: Results for HMCT vs MCT on 25 servers
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Figure 16: Results for MP vs MCT on 25 servers
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1 For each new task ¢

2 For each server j that can resolve the new submitted problem

3 The task ¢ is of local number /;

4 Ask the HTM to compute Cj; ;

5 Map task ¢ to the server jo such that Cy; j, = min; Ci;

6 Tell the HTM that the task ¢ is allocated to the server jg
Figure 18: HMCT algorithm

1 For each new task ¢

2 For each server j that can resolve the new submitted problem

3 Ask the HTM to compute P; = 3", §; ;

4 If all P; are equal

5 map task to the server jo that minimizes C,1,;

6 Else Map task ¢ to the server jg such that Pj, = min; P;

7 Tell the HTM that the task ¢ is allocated to the server jg

Figure 19: MP algorithm

For each new task ¢

For each server j that can resolve the new submitted problem
Ask the HTM to compute P; = " 6; ;
Let N B; be the number of tasks still running

If all P; are equal
map task to the server jo that minimizes NB; * Dy 14 ;

Else Map task ¢ to the server jg such that P;; = min; P;

Tell the HTM that the task ¢ is allocated to the server jg

Figure 20: MP_load algorithm




1 For each new task ¢

2 For each server j that can resolve the new submitted problem
3 Ask the HTM to compute P; = ). i * J;

4 If all P; are equal

5 map task to the server jo that minimizes C,1,;

6 Else Map task ¢ to the server jo such that P;; = min; P;

7 Tell the HTM that the task ¢ is allocated to the server jg

Figure 21: MP_masse_cres algorithm

1 For each new task ¢

2 For each server j that can resolve the new submitted problem
3 NB=1

4 For each task ¢ still running, sorted in their arrival date

5 Ask the HTM to compute P;j+ = NB * §;

6 NB+=1

7 If all P; are equal

8 map task to the server j, that minimizes Cy 1 ;

9 Else Map task ¢ to the server jj such that P;, = min; P;

10  Tell the HTM that the task ¢ is allocated to the server jq

Figure 22: MP_masse_cresIncr algorithm

1 For each new task ¢

2 For each server j that can resolve the new submitted problem
3 The task ¢ is of local number /;

4 Ask the HTM to compute P; = 3. 6; ; + T, j — ay; 5

5 Map task t to the server jo such that P;, = min; P;

6 Tell the HTM that the task ¢ is allocated to the server jg

Figure 23: MSF algorithm
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