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Abstract: In this paper we present a new model able to combine quality of service and
mobility aspects in wireless ATM networks. Namely, besides the hop count and load pa-
rameters of the basic ATM layouts, we introduce a new notion of distance, that estimates
the time needed to reconstruct the virtual channel of a wireless user when it moves through
the network. Quality of service guarantee dictates that the rerouting phase must be imper-
ceptible, that is the maximum distance between two virtual channels must be maintained
as low as possible. Therefore, a natural combinatorial problem arises in which suitable
trade-offs must be determined between the different performance measures. We first show
that deciding the existence of a layout with maximum hop count h, load [ and distance d
is NP-complete, even in the very restricted case h = 2, I = 1 and d = 1. We then provide
optimal layout constructions for basic interconnection networks, such as chains and rings.
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Chemins virtuels dynamiques pour ATM Sans fil

Résumé : Dans cet article, nous présentons un nouveau modéle capable de combiner la
qualité de service et les aspects de mobilité dans les réseaux ATM sans fil. Plus précisément,
mis & part le nombre de sauts et la charge dans les réseaux ATM de base, nous introduisons
une nouvelle notion de distance, qui estime le temps nécessaire pour reconstruire le chemin
virtuel d’un utilisateur lorsqu’il se déplace & travers le réseau. La qualité de service garantit
que le calcul de nouvelles routes doit étre transparente, c’est & dire que la distance maximale
entre les deux chemins virtuels doivent étre maintenue aussi basse que possible. Par consé-
quent, nous avons un probléme combinatoire pour lequel des compromis convenables doivent
étre trouvés entre les diverses mesures de performance. Nous montrons d’abord que décider
de l'existence d’un réseau virtuel avec un un nombre de sauts borné h, une charge [ et une
distance d est les NP Complet, méme dans le méme cas restraint h = 2, [ = 1 et d = 1.
Ensuite, nous donnons les constructions optimales pour les réseaux de l'interconnexion de
base, tels que les chaines et les anneaux.

Mots-clés : Routage, Réseaux ATM, Réseaux sans fil, Utilisateurs Mobiles.



Dynamic Layouts for Wireless ATM 3

1 Introduction

Wireless ATM networks are emerging as one of the most promising technologies able to
support users mobility while maintaining the quality of service offered by the classical ATM
protocol for Broadband ISDN [2]. The mobility extension of ATM gives rise to two main
application scenarios, called respectively End-to-End WATM and WATM Interworking [13].
While the former provides seamless extension of ATM capabilities to users by allowing ATM
connections that extend until the mobile terminals, the latter represents an intermediate
solution used primarily for high-speed transport over network backbones by exploiting the
basic ATM protocol with additional mobility control capabilities. Wireless independent
subnets are connected at the borders of the network backbone by means of specified ATM
interface nodes, and users are allowed to move among the different wireless subnets. In both
scenarios, the mobility facility requires the efficient solution of several problems, such as
handover (users movement), routing, location management, connection control and so forth.
A detailed discussion of these and other related issues can be found in [13, 6, 5, 21, 19].

The classical ATM protocol for Broadband ISDN is based on two types of predetermined
routes in the network: wirtual paths or VPs, constituted by a sequence of successive edges
or physical links, and wirtual channels or VCs, each given by the concatenation of a proper
sequence of VPs [16, 15, 20]. Routing in virtual paths can be performed very efficiently by
dedicated hardware, while a message passing from one virtual path to another one requires
more complex and slower elaboration.

A graph theoretical model related to this ATM design problem has been first proposed
in [12, 7]. In such a framework, the VP layouts determined by the VPs constructed on the
network are evaluated mainly with respect to two different cost measures: the hop count,
that is the maximum number of VPs belonging to a VC, which represents the number of
VP changes of messages along their route to the destination, and the load, given by the
maximum number of virtual paths sharing an edge, that determines the size of the VP
routing tables (see, e.g., [8]). For further details and technical justifications of the model for
ATM networks see for instance [1, 12].

While the problem of determining VP layouts with bounded hop count and load is
NP-hard under different assumptions [12, 9], many optimal and near optimal constructions
have been given for various interconnection networks such as chain, trees, grids and so
forth [7, 17, 10, 11, 22, 4] ( see [23] for a survey).

In this paper we mainly focus on handover management issues in wireless ATM. In fact,
they are of fundamental importance, as the virtual channels must be continually modified
due to the terminals movements during the lifetime of a connection. In particular, we
extend the model of [12, 7] in order to combine quality of service and mobility aspects in
wireless ATM networks. In such a framework, a subset of the nodes of the physical graph or
network backbone corresponds to radio bridges or stations covering cells of the geographic
space. A given source node provides high speed services to mobile users residing in the
cells and able to move between adjacent cells during an handover phases. Adjacencies are
represented by means of a cells adjacency graph in which nodes are cells and there exists
an edge between a pair of cells if they are adjacent in the geographic space. Such a graph
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4 M. Flammni, A. Navarra, G. Gambosi

in general does not coincide with the physical graph. As an example, in nowadays cellular
systems like GSM the physical graph G is a tree, cells correspond to its leaves and the
adjacency graph is an hexagonal grid (see for instance [18]). When users move from a cell
to an adjacent one, the corresponding virtual channels must be reconstructed in order to
maintain their connection to the source. This rerouting phase must be as fast as possible
in order to maintain the required quality of service provided by the basic ATM protocol.
Typical handover managements issues are the path extension scheme, in which a VC is
always extended by a virtual path during a handover [5], or the anchor-based rerouting and
the nearest common node rerouting [13, 3], that involve the deletion of all the VPs of the
old VC and the addition of all the VPs of the new one after a commmon prefix of the two
VCs. Other handover strategies can be found in [13, 6, 5].

Starting from the above observations, besides the standard hop count and load perfor-
mance measures, we introduce the new notion of virtual channel distance, that estimates the
time needed to reconstruct a virtual channel during a handover phase. Informally speak-
ing, the channel distance between adjacent cells u and v is the sum of the number of VPs
deleted from the virtual channel VC(u) of v and added to obtain VC(v) after the longest
commmon prefix of VC(u) and VC(v). In order to make the rerouting phase imperceptible
to users and thus to obtain a sufficient quality of service, the maximum distance between
two virtual channels must be maintained as low as possible. Therefore, a natural combina-
torial problem arises in which suitable trade-offs must be determined between the different
performance measures.

The above scenario concerns End-to-End WATM, but it can be directly applied to WATM
Interworking just replacing the cells with the interface nodes used at the borders of the ATM
backbone to comunicate with the wireless subnets.

We first show that deciding the existence of a layout with maximum hop count h, load
[ and distance d is NP-complete, even in the very restricted case h =2,/ =1 and d = 1.

We then provide optimal layout constructions for basic interconnection networks, such
as chains and rings. Such results are obtained by means of nice recursive characterizations
of the structure of optimal layouts, that is that maximize the size of the covered chain or
ring. The solution of the respective arising recurrences corresponds to the maximum size
of a chain or ring allowing a layout with bounded values of h, [ and d. All the results are
shown for two slightly different realistic notions of distance.

The paper is organized as follows. In the next section we introduce the model, the
notation and the necessary definitions. In Section 3 we provide the above mentioned hardness
results for the layout construction problem. In Section 4 and 5 we provide the optimal layouts
for chains and rings, respectively. Finally, in Section 6, we give some conclusive remarks
and discuss some open questions.

2 The WATM model

We model the network as an undirected graph G = (V, E), where nodes in V represent
switches and edges in E are point-to-point communication links. In G there exists a subset
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Dynamic Layouts for Wireless ATM 5

of nodes U C V constituted by cells with corresponding radio stations, i.e., switches adapted
to support mobility and having the additional capability of establishing connections with
the mobile terminals. A distinguished source node s € V provides high speed services to the
users moving along the network. We observe that, according to the wireless nature of the
system, during the handover phase mobile terminals do not necessarily have to move along
the network G, but they can switch directly from one cell to another, provided that they are
adjacent in the physical space. It is thus possible to define a (connected) adjacency graph
A= (U, F), whose edges in F' represent adjacencies between cells.

Radio link

(@D
Radio Terminal

Figure 1: GSM Tree.

An example of a GSM-like system is shown in Figure 1. A layout ¥ for G = (V, E)
with source s € V is a collection of paths in G, termed wvirtual paths (VPs for short), and a
mapping that defines, for each cell u € U, a virtual channel VCy(u) connecting s to u, i.e.,
a collection of VPs whose concatenation forms a shortest path in G from s to u.

Definition 2.1 [12] The hop count hy(u) of a node w € U in a layout ¥ is the number of
VPs contained in VCy(u), that is |VCy(u)|. The maximal hop count of ¥ is Hpax(¥) =
maxyecy{hw(u)}.

Definition 2.2 [12] The load ly(e) of an edge e € E in a layout U is the number of VPs
1 € U that include e. The maximal load Lmax(¥) of U is max.cr{lw(e)}.

As already observed, when passing from a cell © € U to an adjacent one v € U, the vir-
tual channel VCy(v) must be reconstructed from V Cy(u) changing only a limited number
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6 M. Flammni, A. Navarra, G. Gambosi

of VPs. Once fixed VCy(u) and VCy(v), denoted as VCy(u,v) the set of VPs in the sub-
channel corresponding to the longest common prefix of V' Cy(u) and VCy(v), this requires
the deletion of all the VPs of VCy(u) that occur after VCy(u,v), plus the addition of all
the VPs of VCy(v) after VCy(u,v). The number of removed and added VPs, denoted as
D(VCy(u),VCyg(v)), is called the distance of VCy(u) and VCy(v) and naturally defines a
channel distance measure dg between pairs of adjacent nodes in A.

Definition 2.3 The channel distance of two nodes v and v such that {u,v} € F (i.e.,
adjacent in A) is dw(u,v) = D(VCy(u), VCy(v)) = he(u) + hw(v) — 2|VCys(u,v)|. The
maximal distance of ¥ is Dyax (V) = maxyy, yyep{dw(u,v)}.

Tt is now possible to give the following definition concerning layouts for WATM networks.

Definition 2.4 A layout ¥ with Humax(¥) < h, Linax(P) <1 and Dpax(P) < d is a (h,l,d)-
layout for G, s and A.

In the following, when the layout ¥ is clear from the context, for simplicity we will drop
the index ¥ from the notation. Moreover, we will always assume that all the VPs of ¥ are
contained in at least one VC. In fact, if such property does not hold, the not used VPs can
be simply removed without increasing the performance measures h, [ and d.

Notice that an alternative definition of channel distance can be also the symmetric differ-
ence between VC(u) and VC(v), i.e., Da(VC(u),VC(v)) = |[VC(u)AVC(v)|. This differs
from the measure of Definition 2.3 when there exist VPs that occur after VC(u,v) both in
VC(u) and VC(v). Such VPs must not be removed nor added when reconstructing VC(v)
from VC(u). By definition, DA(VC(u), VC(v)) < D(VC(u),VC(v)) always holds, thus
any (h,l,d)-layout under D is also (h, [, d)-layout under Da.

The distance D seems to be more appropriate than DA, since during the handover phase
the control signals must anyway propagate from u back to the end of VC(u,v) and then
arrive to v when adding the new VPs (see also [6, 13]), thus yielding a delay proportional
to D(VC(u),VC(v)). However, all the results in the sequel will be proved under both the
two distance measures.

Before concluding the section, let us remark that for practical purposes and quality of
services guarantees, it makes sense to consider the case where d << h. In fact, while a little
communication delay proportional to the hop count in general can be tolerated, connections
gaps due to rerouting of virtual channels must not be appreciated by mobile users. On the
other hand, when d > 2h, our model coincides with the classical one presented in [12] for
standard ATM networks, since the difference between any two virtual channels is always at
most equal to 2h.

Clearly, in general a low distance d requires high hop count h and load /. Similarly, a
low h or [ causes an increase on the other two parameters. Hence, every measure can be
traded off for the others.
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3 Hardness of construction

In this section we show that constructing optimal dynamic layouts is in general an NP-hard
problem, even for the very simple case h =2 and | = d = 1.

Notice that when d = 1, for any two cells u,v € U adjacent in A = (U, F), during an
handover from u to v by definition only one VP can be modified. This means that in every
(h,1,1)-layout U, either VC(v) is a prefix of VC(u) and thus V C(v) is obtained from VC(u)
by adding a new VP from u to v, or vice versa. In any case, a VP between w and v must
be contained in ¥. As a direct consequence, the virtual topology defined by the VPs of ¥
coincides with the adjacency graph A. Moreover, A must be acyclic. In fact, when moving
in one direction along a cycle, it is not possible to rebuild the virtual channel of the initial
node when it is reached twice. Since the distances D and Da coincide in layout inducing
trees, all the results for (h,[, 1)-layouts hold for both the two measures.

Theorem 3.1 Given a network G = (V,E), a source s € V and an adjacency graph A =
(U, F), deciding the existence of a (2,1,1)-layout for G, s and A is an NP-complete problem.

Proof. First of all observe that, for any h,[,d, the problem of deciding the existence of
a (h,l,d)-layout is in NP, as given G = (V, E), s, A = (U, F) and a layout U, it is possible
to check in polynomial time whether Hpax () < b, Linax(¥) < 1 and Dpax(P) < d.

We prove the claim by providing a polynomial time reduction from Disjoint Shortest
Paths (DSP), a well known NP-complete problem. An instance of DSP consists of a graph
G and k source destination pairs (s1,t1),...,(Sk,tx) for an integer k& > 0. We want to
determine whether there exist k edge-disjoint shortest paths in G, each connecting a different
pair (s;,t;), 1 <i<k.

Without loss of generality, it is possible to assume that all the pairs (s;,t;), 1 < i < k, are
disjoint, i.e., all nodes s1, ..., Sk, t1,-- ., tr are different. In fact, any instance not satisfying
this property can be trivially modified into an equivalent one in which every node v occurring
in k' < k pairs is connected in G to k' new nodes vy, ...,v, and the k' pairs contain in the
order vy, ..., v instead of v.

Starting from an instance of DSP, we construct a network G’ = (V', E'), a source s € V'
and an adjacency graph A = (U, F') that admit a (2,1, 1)-layout if and only if there exist
the requested k edge-disjoint shortest paths in the instance of DSP.

Let G' = (V', E’) be such that, given a new source node s not contained in the initial
graph G, V! =V U {s} and E' = EU {{s,s;}|1 <i < k}. Concerning the adjacency graph
A=(UF),let U={s,81,..,8k,t1,...,tx} and F = {{s,8,}|1 <i < k}U{{si,t:}[1 <i <
k}

Given any layout for G, s and A, since each VC must induce a shortest path in G’, each
virtual channel VC(s;) = (s, s;), 1 < i < k, consists of the single edge {s, s;}. Moreover, if
we restrict to maximum distance 1, each VC(t;), 1 < i < k, is the concatenation of the VP
(s, s;) and another VP (s;,t;) corresponding to a shortest path from s; to ¢; in G’ and thus
in G. Therefore, there exists a layout with maximum load 1 and maximum distance 1 in
G' if and only if there exist the requested k edge-disjoint shortest paths in the instance of

RR n° 4616



8 M. Flammni, A. Navarra, G. Gambosi

DSP. The theorem follows by observing that any such layout must clearly have maximum
hop count 2, since each VC is the concatenation of at most 2 VPs. d

For h =1, any [ and any d, the layout construction problem can be solved in polynomial
time by exploiting suitable flow constrictions like the ones presented in [9].

4 Optimal layouts for chain networks

In this section we provide optimal layouts for chain networks. More precisely, we consider
the case in which the physical graph is a chain C,, of n nodes, that is V' = {1,2,...,n} and
E = {{v,v+1}|1 < v < n —1}, and the adjacency graph A coincides with C,,. Moreover,
without loss of generality, we take the leftmost node of the chain as the source, i.e. s =1,
as otherwise we can split the layout construction problem into two equivalent independent
subproblems for the left and the right hand sides of the source, respectively. Finally, we
always assume d > 1, as by the same considerations of the previous section the virtual
topology induced by the VPs of any (h, [, 1)-layout ¥ coincides with the adjacency graph
A and thus with C,,. Therefore, the largest chain admitting a (h, !, 1)-layout is such that
n=h+1.

In the following we denote by (u,v) the unique VP corresponding to the shortest path
from u to v in C,, and by {({s,v1){v1,v2) ... {(vk,v)) or simply (s,v1,v2,..., vk, v} the virtual
channel V C(v) of v given by the concatenation of the VPs (s, v1), (v1, v2), ..., (v&,v). Clearly,
S<V <2< ...<v <.

Definition 4.1 Two VPs (u1,v1) and {us,vs) are crossing if u; < uz < vy < va. A layout
¥ s crossing-free if it does not contain any pair of crossing VPs.

Definition 4.2 A layout ¥ is canonic if it is crossing-free and the virtual topology induced
by its VPs is a tree.

According to the following definition, a (h, [, d)-layout for chains is optimal if it reaches
the maximum number of nodes.

Definition 4.3 Given fized h,l,d and a {(h,l,d)-layout ¥ for a chain Cy, U is optimal if no
(h,1,d)-layout exists for any chain Cp, with m > n.

We now prove that for every h,l,d, the determination of an optimal (h, [, d)-layout can
be restricted to the class of the canonic layouts.

Theorem 4.4 For every h,l,d, any optimal {h,l,d)-layout for a chain is canonic.

Proof. We show that the claim holds under the D channel distance, since this directly
implies the theorem also for D. In fact, assume that any optimal (h, !, d)-layout under D
is canonic and let ¥ be an optimal (h, [, d)-layout for a chain C),, under Da. Clearly, since ¥
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induces a tree, ¥ is a {(h,!, d)-layout also under D. Then, if ® is an optimal (h, [, d)-layout
for a chain C,, under D, m > n. By the definition of the distances D and Da, ® is also a
(h,1,d)-layout for C,, under Da. Thus, m = n and ® is canonic.

Assume by contradiction that there exists an optimal (h, !, d)-layout ¥ for a chain C,
containing crossings or such that a vertex v is the right endpoint of more than one VP, that
is ¥ contains cycles and thus it does not induce a tree. We now show that it is possible
construct a (h,l, d)-layout ® for a chain C,, with m > n, thus contradicting the optimality
of U.

By hypothesis, there must exist v, 1 < v < n, such that the following two properties are
satisfied:

1. The VPs of ¥ used to reach the nodes in the subchain [1,v] induce a tree and do not
form crossings with any other VP, included the ones terminating after v;

2. Property 1. is not true for the subchain [1,v + 1].

This means that every two VPs (u1,v1), {(u2,v2) € ¥ with v; < v are not crossing, all
VPs (w, z) € ¥ with z < v induce a tree and finally node v + 1 is the right endpoint of more
than one VP or at least one VP (u, v+ 1) entering in v+ 1 forms a crossing with some other
VP terminating after v. Notice that v > 2, as between the first two nodes of the chain there
can be a unique VP that cannot be crossed by any other VP and clearly induces a tree.
Moreover, v < n, as otherwise ¥ would be canonic against the hypothesis.

Given any two nodes u,w such that v < v and w < v, let us denote as P(u,w) as the
unique path of VPs of ¥ in the subchain [1,v] that goes from u to w. We construct the
layout @ for the larger C,, starting from ¥ by means of the following two steps.

e Step I: Replace every VP (w, z) with z > v + 1 crossing at least one VP (u,v + 1) (if
any) with the pair of VPs (w,v + 1}, (v+1, z), and modify all the VCs of ¥ containing
(w, 2} accordingly. Let Y be the resulting layout. Notice that, since no VP is modified
until node v, for any two nodes © < v and w < v, the path P(u,w) of the VPs from u
to v in [1,v] is the same in ¥ and Y.

AANAYN  AAVEN

v—1v v+4+1z 29 23 v v+1 21 29

Figure 2: Crossing elimination (Step 1).

o Step 2: Let (u1,v+1), (ug,v+1), ..., (ur,v+1) be all the VPs terminating in v+1 in the
layout Y resulting from Step 1. Then the chain P(uy,u;) from u; to uy steps through
Ug,...,u,_1 (see Figure 2), as by hypothesis the VPs of ¥ in [1,v] do not generate
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10 M. Flammni, A. Navarra, G. Gambosi

crossings and the same holds for Y. In other words, P(u1,ux) is the concatenation of
the subchains P(u1,u2),. .., P(ur—_1, uk)-

Add k — 1 nodes w;, 1 <14 <k, between v and v + 1, and replace the VPs {u;,v + 1)
with (u;,wg—i+1) for 2 < i < k. For simplicity we assume that wi,...,wr—1 are
rational numbers included in the interval [v,v + 1], so that v + 1 and the successive
nodes do not need to be renamed according to their order in the chain. In every VC
of T containing a VP {(u;,v + 1), 2 < i < k, substitute the chain of VPs obtained by
the concatenation of P(u1,u;) and (u;,v + 1) with the unique VP {(ui,v + 1). Let ®
be the resulting layout (see Figure 3).

@@m

uy uz v v+1 z1 2o 23 UL Uy U3 v o wip wy v+1z1 2o 23

Figure 3: Cycles elimination (Step 2).

Again, since no VP is modified until node v, for any two nodes v < v and w < v,
P(u,w) in ® is the same of ¥ and Y.

As a consequence of Step 1 and Step 2, we obtain a layout ® for a chain C,, with
m=mn+k—1>n. In fact, k£ > 1 since by hypothesis v + 1 is the right endpoint of more
than one VP in ¥ and thus in T, and if such condition does not hold there exists at least
one VP (w, z) in ¥ crossing a VP terminating at v + 1. Thus, in T v + 1 is again the right
endpoint of more than one VP, since the VP (w,v + 1) is added during Step 1. Therefore,
in order to complete the proof, it remains to show that ® is a (h, [, d)-layout for C,,, that is
it does not increase the three performance measures. We consider each case separately.

¢ Hop Count

Since the VCs of the nodes belonging to the subchain [1,v] are never modified, hg(u) =
hwg(u) < h for each u € [1,v].

The virtual channel V Cs(w;) of each node w; with 1 <4 < k — 1 added during Step 2
is obtained by the concatenation of V Cy(ug—;+1) and the VP (ug_;11,w;). Therefore,
he(w;) = hy(ug_s41) +1 < h, as up_y1 is the left endpoint of at least one VP in ¥
and thus has hop count hy(ug_;41) < h — 1.

Let us finally consider the subchain [v + 1,n]. Observe first that if u is the first node
of C,, having a VP (u,v + 1) terminating to v + 1 in ¥, then v = uy. In fact, in ¥
no VP (w, z) crossing a VP terminating at v + 1 can exist for w < w and {u,v + 1) is
also a VP in Y. Let u be any node in [v + 1,n]. If VCy(u) contains a VP (w, z) with
w < uy and z > v + 1, then by the above observation no VP of VCy(u) can generate
a crossing with a VP of ¥ terminating at v + 1, thus V Cy(u) is not modified during
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Step 1. Moreover, VCy(u) is not modified during Step 2, as it contains (w, z) and
thus no VP {u;,v + 1) with 2 < i < k. Therefore, hg(u) = hg(u) < h. It remains
to consider the case in which VCy(u) contains a VP (w,z) with 41 < w < v and
z > v+ 1. In this case, VCy(u) is modified during Step 1 only if z > v+ 1 and in this
case its VP (w, z) is substituted with the two VPs (w,v +1) and (v + 1, 2). Therefore,
hy(u) < hg(u)+1. Since (w,v+1) isa VP of T and w > w1, w = u; for a given i such
that 2 < ¢ < k. Thus, during Step 2, the chain of VPs obtained by the concatenation
of P(uy,u;) and (u;,v+1) in V Cy(u) is substituted with the unique VP {(u;,v+1), so
that he(u) < hy(u) — 1. In conclusion, hg(u) < hy(u) —1 < hg(u) < h, and therefore
Humax(®) < h.

e Load

Clearly Liax(T) < Lmax(¥) < I, as in Step 1 some VPs (w, z) with w < v + 1 and
z > v+ 1 are split in two VPs {(w,v + 1) and (v + 1, z). This cannot increase the load
of any edge. Actually some loads can even decrease when some VPs resulting from
the splits are coincident or coincide with previously existing ones in W.

Step 2 adds the new nodes wy, ..., w, and modifies only the load of the edges in the
subchain [v,v + 1], that however is always bounded by Iy ({v,v + 1}) < I. Therefore,
we can conclude that L. (®) < 1.

e Distance

The distance in & between the VCs of two adjacent nodes in the subchain [1,v] is the
same as in ¥, since the VCs of all these nodes are never modified.

The distance in & between the VCs of v and the first added node during Step 2,
wy, is exactly one if the VP (v,v + 1) was contained in ¥, otherwise dg(v,w;) <
dy(v,v+1). In fact, while VCs (v) AV Cs (w1 ) contains the VPs contained in the chain
P(ug,v) plus (ug,w1), VCy(v)AVCy(v + 1) contains the VPs in the chain P(u;,v)
(containing P(ug,v)) for a given uw; with i < k plus (u;,v + 1). Thus, dy(v,v +
1) = |VCy(v)AVCy (v + 1)| is equal to de(v,w1) = |VCo(v)AVCs(w1)| plus the
number of VPs in the (possibly empty) subchain P(u;,us). Therefore, in every case
de (v, wy1) < d.

Let us now consider the subchain of the nodes in the set {wy,ws,...,wr_1,v + 1},
and for simplicity let wy = v+ 1. In order to prove that the channel distance between
any two adjacent nodes is at most d, it is sufficient to show that in T each cycle
C(us,uip1) with 1 < 4 < k consisting of {u;,v + 1), (u;41,v + 1) and the chain of
VPs P(u;,u;+1) has length at most d. In fact, such a length after Step 2 is exactly
the distance between VCo(wg_i+1) and VCo(wg—;) (see Figure 3). In ¥ there must
necessarily exist two nodes v; and ve with v; < u; and u;4+1 < vy < v such that, given
z>v+1,21 >v+1and 23 > v+1, (v1,21) belongs to VC(z — 1) and (s, 22) belongs
to VC(z) or vice versa. In fact, if such condition does not hold, either the VPs starting
from w; and terminating after v or the VPs starting from wu;;; and terminating after v
are can not be used in ¥, thus contradicting the hypothesis that each VP belongs to at
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least one VC. So, after Step 1, since Da(VCy(z —1),VCy(2)) < d, the cycle induced
by (vi,v + 1), {(ve,v + 1), and P(v1,v2) in T consists of at most d VPs. Therefore
C(u;, ui41) has length at most d, as P(vq,v2) is contained in P(u;, wit1)-

We are now left with the remaining subchain [v + 1, n]. For every u € [v +1,n], let us
define VCY (u) (resp. VC%(u), VC(u)) as the subset of the VPS (w, z) in VCy(u)
(resp. VCr(u), VCs(u)) with 2 < v+ 1, VCZ(u) (resp. VC%(u), VC2(u)) as the
subset of the VPS (w,z) in VCy(u) (resp. VCr(u), VCs(u)) with w < v+ 1 and
z >wv+1, and finally VC3 (u) (resp. VC3%(u), VC3 (u)) as the subset of the VPS (w, z)
in VCy(u) (resp. VCr(u), VCs(u)) with w > v + 1. Clearly, VC%(u), VC32(u) and
V C3 (u) form a partition of V Cg(u). Moreover for every u € [v+1,n—1], dy(u,u+1) =
Da(VCy(u),VCOy(u+ 1)) = [VCy(u)AVCy(u + 1)| = [VCy(u)AVCy(u + 1)| +
|[VCE (w)AVCE (u+ 1)+ |[VCE(uw)AVCS (u + 1)|. In fact, a VP in a given VY (u),
1 < j <3, can only be found in VC}, (u + 1). The same considerations hold for T and
.

Let us first determine how VC} (u) and VCY (u + 1) are modified during Step 1 and
Step 2. As already remarked for the hop count measure, VCy(u) is modified during
Step 1 and Step 2 only if it contains a VP (w, z) with u; < w < v and z > v+ 1.
In this case, if 2 > v + 1, during Step 1 (w, z) in V Cy(u) is substituted with the two
VPs (w,v + 1) and (v + 1,z). In every case, (w,v + 1) is a VP of T and w = u;
for a given ¢ such that 2 < ¢ < k. Thus, during Step 2, the chain of VPs obtained
by the concatenation of P(u1,u;) and {(u;,v + 1) in VCr(u) is substituted with the
unique VP (u3,v + 1). The same consideration holds for node v + 1. In conclusion,
VCi(u) =VCi(u+1)if VCy(u) and VCy(u + 1) are both modified in Step 2 (and
eventually in Step 1), VCg(u) = VCi(u) and VCq(u+ 1) = VCL(u + 1) if VCy(u)
and VCy(u + 1) are not modified. Finally, if VCy(u) is modified and VCy(u + 1) is
not modified, if (w, z) is the VP of VCy(u+1) with w < u; and z > v+1 (it must exist
since VCy (u+1) is not modified), VCy, (u) AV CY (u+1) contains the VPs of VCy(u) in
P(w,u;) and in the (not empty) chain P(uy,u;), while VCL(u)AVCY (u+1) only the
VPs of VCqs(u) in the chain P(w,u) plus eventually the VP (uq,v+ 1). A symmetric
argument applies when V Cy(u) is not modified and V Cy(u + 1) is modified, therefore
in every case |VC3(v)AVCE(u+1)| < |[VCL(u)AVCY (u + 1)

By definition, the subsets VC2(u) and VC2(u + 1) have both cardinality one. If
VC%(u) = VC%(u+ 1), their contained VP (w, 2), is split during Step 1 in two VPs
(w,v + 1) and (v + 1, z), and since (w,v + 1) € VCL(u), it follows that VC%(u) =
VCi(u+ 1) = {{v + 1,2)}. Clearly, VC2(u) = VCi(u + 1) = {{v + 1,z)} also
if VC2(u) = VCa(u+ 1) = {{v+1,2)}. Since Step 2 does not modify VC%(u)
and VC%(u + 1), ie.,, VC%(u) = VC2(u) and VC3(u+1) =VCa(u+1), VC2(u) =
VC2(u+1)if VCZ (u) = VCZ(u+1), and thus |[VC2 (u)AVCE (u+1)| < |[VCE (u)AVCE (u+
1)
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Finally, since during Step 1 and Step 2 all the VPs starting after v + 1 are never
modified, VC3(u) = VC%(u) = VC3(u) and the same holds for u + 1, so that
VO3 (w)AVCE (u+1)| = |[VC2(u)AVCE (u + 1)

In conclusion, dg(u,u + 1) = |[VCL(w)AVCh(u + 1)| + |[VC2(uw)AVCE(u + 1)| +
[VCE(uw)AVCE (u+l)| < |VCL (w)AVCE (ut1)|+|VCE (w) AV CE (u+1) |[+|VCE (u) AVCS (u+
1)| < d, therefore Dpax(®) < d.

We have thus shown that ® is a (h,[,d)-layout for a chain C,, larger than C,, thus
contradicting the optimality of ¥, hence the theorem. d

Motivated by Theorem 4.4, in the remaining part of this section we focus on canonic
(h,1,d)-layouts for chains, as they can be the only optimal ones. Again, since the distances
D and DA coincide in layouts inducing trees, all the results hold for both the two cost
measures.

Let us say that a tree is ordered if it is rooted and for every internal node a total order
is defined on its children. The following lemma shows that every ordered tree induces a
canonic layout, by means of the following procedure from [12].

Induce VPL(T): Induces a layout according to an ordered tree T of n vertices.
1. Label vertices of T in preorder, visiting the subtrees of each internal
node according to the order defined on their roots.
Let A(u) be the label of a vertex u € T, 1 < AMu) < n.
2. For every edge (u,v) € T connect a VP between A(u) and A(v).
3. Return ¥y, the collection of generated VPs.

Lemma 4.5 [12] Let T be an ordered tree. Then procedure InduceV PL(T) induces a
camonic layout.

Clearly, also the vice versa is true, that is every canonic layout induces an ordered tree by
exploiting a reverse procedure that defines the order of the nodes according to their labels.
Therefore, there exists a bijection between canonic layouts and ordered trees.

We now introduce a new class of ordered trees 7 (h, 1, d) that allows to completely define
the structure of an optimal (h, [, d)-layout. Informally, denoted as 7 (h,!) the ordered tree
corresponding to optimal layouts with maximum hop count h and load [ without considering
the distance measure [11], 7 (h,[,d) is a maximal subtree of 7 (h,l) with the additional
property that the distance between two adjacent nodes in the preorder labelling of the
ordered tree, and thus between two adjacent nodes in the induced layout, is always at most
d. Moreover, the containment of 7 (h,l,d) in T (h,l) guarantees that the hop count h and
the load [ are not exceeded in the induced layout.

The definition of 7 (h, 1, d) is recursive and the solution of the associated recurrence gives
the exact number of the nodes reached by an optimal (h,[,d)-layout. Before introducing
T(h,l,d), let us define another ordered tree that is exploited in its definition.

RR n° 4616



14 M. Flammni, A. Navarra, G. Gambosi

T(h,l—1,d) T(h—1,0—1,d) T(h—min{h,d—1}+1,0—1,d)
Figure 4: The recursive decomposition of T'(h, [, d).

Definition 4.6 Given any h,l,d, T'(h,l,d) is an ordered tree defined recursively as follows.
T(h,l,d) is obtained by joining the roots of min{h,d — 1} subtrees T'(i,l — 1,d) with h —
min{h,d — 1} +1 < i < h in such a way that the root of T(i — 1,1 — 1,d) is the rightmost
child of the root of T(i,l — 1,d). A last node is finally added as the rightmost child of
T(h—min{h,d—1} + 1,1 —1,d). Trees T(0,1,d) and T'(h,0,d) consist of a unique node.

An example of T'(h,l,d) can be seen in Figure 4. Informally speaking, T'(h,[,d) is an
ordered tree with the above stated property that the distance between two adjacent nodes
in a preorder labelling of the ordered tree is at most d. Moreover, T'(h, [, d) has the further
constraint that its rightmost leaf, the only node of T'(h,l,d) not having a successive one in
the tree, is always at distance min{h,d — 1} < d — 1 from the root. This makes sure that,
when T'(h,,d) is used as a subtree in other trees and the leaf has a successive node outside
the subtree, the distance between such nodes remains bounded by d.

T (h,1,d)

T(h,l—1,d) T(h—1,1,d)
Figure 5: 7 (h,l,d) in terms of T'(h,l —1,d) and 7 (h — 1,1, d).

Definition 4.7 The ordered tree T (h,l,d) is defined recursively as the join of the roots of
the tree T(h—1,1,d) and the tree T(h,l—1,d) in such a way that the root of T (h—1,1,d) is
the rightmost child of the root of T'(h,1—1,d) (see Figure 5). Trees T(0,1,d) and T (h,0,d)
consist of a unique node.
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Expanding the above recursive definition, it is also possible to view 7 (h,!,d) as given
by the join of the roots of h + 1 subtrees T'(i,1 — 1,d) for 0 < ¢ < h in such a way that for
1 > 0 the root of a T (i — 1,1 — 1,d) is the rightmost child of the root of a T'(i,l — 1,d) (see
Figure 6).

The following lemma establishes that 7 (h,[,d) is the ordered tree induced by an optimal
(h,1,d)-layout.

T(h-1,d) T(h-1,-1,d) T(2,]-1,d) T(1,l-1,d) T(0,l-1,d)

Figure 6: T(h,l,d) in terms of trees of type T'.

Lemma 4.8 The layout ¥ induced by T (h,l,d) is a {h,l,d)-layout. Moreover, every canonic
(h,1,d)-layout U induces an ordered tree T contained in T (h,l,d).

Proof. Let us first prove that the layout ¥ induced by 7 (h,[,d) is a (h,[,d)-layout.
Tt is easy to see that Hmax(¥) is bounded by h and Dpax(d) by d, since by Definition 4.7
the height of 7 (h,1,d) is h and the distance between two consecutive nodes in the preorder
labelling associated to 7 (h,[,d) is at most d. In order to show that L,.x(P) < I, we first
prove by induction on [ that every T'(h, [, d) induces a layout with maximum load [. In fact,
by Definition 4.7, every 7 (h, [, d) is obtained by joining the roots of h + 1 trees T'(i,] — 1, d)
with 0 <4 < h, and since each T'(¢,] — 1, d) induces a layout ¥; such that L., (P;) <1—1,
ﬁmax(\I’) =1+ maxo<;<h Emax(‘I’i) <l

The claim trivially holds for I < 1 as T'(h,0,d) consists of a single node thus yielding a
layout of maximum load equal to 0, while T'(h, 1, d) is a chain of min{h,d—1} +1 nodes and
therefore it induces a layout of maximum load equal to 1. Given any [ > 1 and assuming
by induction that the claim holds for every T'(h,l — 1,d), let us prove that every T'(h,l,d)
induces a layout with maximum load equal to I. By Definition 4.6, T'(h,[,d) is obtained by
joining the roots of min{h,d — 1} trees T'(i,] — 1,d) with h — min{h,d — 1} +1 < i < h,
plus a last node attached as rightmost leaf of T'(h — min{h,d — 1} + 1,1,d). Again, since
each T'(i,] — 1,d) induces a layout ¥; such that L,.x(¥;) <! — 1, the maximum load of the
layout induced by T'(h,l,d) is at most 1 + maxo<i<h Lmax(¥i) < 1.

We prove the second part of the claim by showing an iterative procedure that embeds
the tree T induced by any canonic {h, [, d)-layout ¥ into 7 (h,l,d). Let us say that an edge
of T is of rank 4, 1 < ¢ < [, if it corresponds to a VP {(u,v) of ¥ such that [ — i other VPs
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(w, z) in ¥ exist with w < u and z > v. Therefore, an edge of rank ¢ is associated to a VP
having i —1 VPs above it in ¥. Let us define the rank of each edge of 7(h, !, d) accordingly.
The procedure is divided into / phases such that in each phase ¢ all the edges of rank ¢ in T
are embedded in 7 (h,,d). The edges of rank 1 in T correspond to the path {(ug, ..., up_1)
of k£ < h VPs from the root ug to the rightmost leaf u,_;1 of T, and in phase 1 its edges
are matched with the first k£ ones belonging to the path of length A from the root to the
rightmost leaf of 7 (h, l,d). Since T is induced by a canonic {h, [, d)-layout, the first endpoint
u; of each such a matched edge {u;,u;4+1}, 0 < j < k —1, is the starting node of a path P;
of length k; < min{h— j,d— 1} containing only edges of rank 2 and terminating to the leaf
of T' whose successive node in the preorder labelling associated to T is the other endpoint
u;t1. In fact, since u; is at level j in T" and T has height h, P; has length at most h — j.
Moreover, P; can not be longer than d — 1, otherwise the distance between its last leaf node
and u;4+1 would be greater than d. Clearly, each rank 2 edge of T' belongs to one of such
paths P;. During phase 2, each P; is matched with the first k; edges of the rank 2 path
of length min{h — j,d — 1} in 7 (h,l,d) that goes from the node matched to u; to the leaf
whose successive node in the preorder labelling associated to 7 (h, [, d) is the node matched
with u;41. The same steps are performed in each phase ¢ for the rank ¢ paths of T starting
at the first endpoint of each edge of rank ¢ — 1 matched during the previous phase. Since
T is induced by ¥ and Hmax(¥) < [, | phases are sufficient to embed all T in 7 (h,[,d).
Furthermore, by definition of 7 (h,[,d), all the edges can be matched until phase [ included.
This concludes the proof. O

Let 7,(h,l,d) and T, (h,l,d) denote the number of nodes in 7 (h,l,d) and in T'(h,l,d),
respectively. Directly from Definition 4.6 and 4.7, it follows that 7, (h,l,d) = T, (h,1—1,d)+
T.(h—1,1,d) = EZ:O T,.(k,l — 1,d), where the value of every T, (k,l — 1,d) for 0 < k< h
is obtained by the following recursive equation:

L) — 1 ifl=0o0r h=0,
n(h,1,d) = 14 yethd=U=1 T (b j1—1,d) otherwise.

Before solving the above recurrence, we recall that given n+1 positive integers m, k1, ..., kn
such that m = ky + - - - + kn, the multinomial coefficient (, ™, ) is defined as 7
(see for instance [14]).

Lemma 4.9 For every h,l,d, T,(h,l,d) =

I h—1 ;
ZZ Z <i—kh’ﬁ—kz,--wkd—3—kd—2,kd—2)'

i=0J=0 0 < kg 9<kg3<...<ka<ki <i
ki+ka+...4+ki—a=17

Proof. Let A be the matrix defined as follow:

1 ifi=0and j =0,
A ;j=¢ 0 ifi=0and j >0,
J A;_1,+ otherwise.

t=max{0,j—d+2}
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Notice that by definition A4, ; = 0 for j > i(d — 2).

It is easy to see that a generic element A, ; represents the number of subtrees T'(h —
j,1 —i,d) that are in T'(h,l,d) or analogously in the expansion of the recursive definition
of T'(h,l,d) until obtaining only trees of load I — i. Moreover, by the recurrence of T, it
results that Ei:o Z?:_ol A; ; is exactly the number of nodes in T'(h,[,d), that is the value
T.(h,l,d).

In order to determine the sum of the first [ + 1 rows and h columns of A, we observe
that each row 7 of A corresponds to the coefficients of the i-th power of the polynomial
2 +2773+. ..+ 22 + £+ 1. More precisely, a generic element A, ; is equal to the coefficient
of 27 in the expansion of the polynomial (z?~2 + 2?3 +...+ 22+ 2+ 1)*. By applying d —2
times the well known equality (a+b)* = 3, _ (})a*bi=* to (232 + 293+ ...+ 22 + x + 1)°
with a = 2472 4+ 2973 4+ ...+ 22 4+ x and b = 1 and iterating the same argument, we obtain

(xd_2+md_3+-~~+a:2+x+1)i=

k1=0
~ (i
=Y (k )(xd_3+---+xz+x+1)k1x’“ =
ki=0 N1
1 i k1 k
= (k) (k1>(:cd_4+~~~+x2+a:+1)k2xk1+k2 =..=
k1=0 N1/ gy=0 \'2

i . kl kd—S
= (Z ) (k1> Z (kd—3> ghithatthay _
k1=0 k1 k=0 2 kg—z=0 ka—2
7 k ka— .
- - ZS ( ¢ ) (kl) ... (kd_3) phitket-tka_z
AUYACY R ’

k1=0koy=0 kg_o=

; i\ (k Baes) k1 thodothi_s
that can be rewritten as 3gcy, <k, o< <ro<ki<i () (i) - (gos)m et thae =

E;(SO_Q)E 0Shgop Sha_g <. Shy <k <i (kzl)(z;) (i::g)ﬂf]
ki +ko+...+kg_og=13

Therefore, recalling the definition of multinomial coefficient and that A;,; is the coefficient
of £7 in (x3 2 4+ 293 + ...+ 22 + 2 4+ 1)1,

1 k1 kq_s
A .= =
" 2 (’ﬁ) (’Cz) (kdz
0<kyo<hkss<. .<hky<hki <i
ki+ko+...+kao=13
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7!
- 2 i — k1) (k1 — ko)l (ka—s — ka—2)ka_2!
0<ki2<ks3<...<kys<hks <1 (¢ = k)il ?) (Fas a2k

ki+ko+...+ki—o=17

)
N Z (i—k1,k1—k2,~-,kd—3—kd—2,kd—2>'

0<hgo<hkas<..<hks<hki<i
ki+ka+...+ks—2a=73j

The lemma follows by observing that T, (h, 1, d) = Y iy Y720 Ai ;- O

The following theorem is a direct consequence of Lemma 4.8, Lemma 4.9 and Defini-
tion 4.7.

Theorem 4.10 For every h,l,d, the mazimum number of nodes reachable on a chain net-
work by a {h,l,d)-layout is T,(h,l,d) =

)
1+ ) .
ZZZ Z (l—kl,kl —kg,...,kd_3 —kd_g,kd_g)
k=1i=05=0 0 < hgoy <ha-g < ... < ks < k1 <
ki+ka+...+ksg2=7

Unfortunately 7,(h,l,d) in general cannot be expressed by means of a more compact
closed formula. However, there are a few cases in which it can be significantly simplified.
Some of them are listed below.

e d=2: T,(h,[,2)=h-1+1.

In fact, by the definition of the matrix A in the proof of Lemma 4.9, the only non null
elements of A belong to the first column and their value is always equal to one. Hence,
the number of the nodes of every T'(k,[,2) is [ + 1 and

h
Tu(h,1,2) =1+ Y To(k,l—1,2)=1+h-1
k=1

Such a number of nodes can be directly inferred also by exploiting the equation stated
in the claim of Theorem 4.10.

o d>h: T(h,1,d) = (").
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In fact, the generic element A; ; of A for 1 <7 </land 0 <j < h—1 can be simplified
as A;; = (“ﬁ“ ). Therefore, the sum of the elements of the submatrix given by the
first [ + 1 rows and h columns of A is

1+i§(ﬂ'2—i11>=1+i(h—;+i>=1+§(z’-;fizl>:

Therefore,

h h
k+1-1 k+1-1 h+1
To(h,1,d) = 1+Z( o )_Z< o )_( l )
k=1 k=0
Notice that in this case 7, (h, !, d) coincides with the number of nodes 7,(h,[) in the
ordered tree 7 (h, 1) defined in [11], that is with the maximum size of a chain admitting
a (h, l)-layout for standard ATM networks (i.e., without the distance measure). In fact,
clearly 7, (h,l,d) < T,(h,l) for every h,l,d. Moreover, the ordered tree 7 (h,1) of [11]
induces a layout with distance d = h + 1, so that 7,,(h,l,d) > T,(h,l) when d > h.
Therefore, in this case 7 (h, 1) and 7 (h, 1, d) coincide and 7, (h,1) = T,.(h,1,d) = ("T).
o d=h: To(h,1,d) = T,(h,1) — L = () — L),
In fact, it is easy to see that the number of nodes removed from 7 (h,1) to get T (h,1,d)

can be suitably bounded as l(l .

o (1-1)(d—2) <d<h: Tu(h1,d) = (h—d) 5 + (1) = 151,
In fact, since all the elements of the row of index 7 in A are null starting from the
column of index I(d — 2) 4+ 2, the sum of all the elements of the submatrix given by
the first [ + 1 rows and h columns of A coincides with the sum of all the elements in
the first [ + 1 rows of A. Therefore, since by definition of A the sum of the elements

in the row of index i is (d — 1)¢, it results Tp(h, I,d) = 3"_o(d — 1)i = D7

By Definition 4.7, we can decompose 7 (h,l,d) in (h —d) trees T'(k,l—1,d) for h—d <
k < h and a remaining tail of trees in the recursive decomposition that coincides
with 7(d,l,d). Hence, by the previous considerations for the case h = d, we have

Ta(h,1,d) = (h — )Wl 4 (441 — -1
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5 Optimal layouts for ring networks

In this section we provide optimal layouts for ring networks R, with V = {0,1,...,n — 1}
and E = {{i,(1 + 1)modn}|0 < i < n —1}. Again we assume that the adjacency graph A
coincides with R,, and without loss of generality we take s = 0 as the source node. Moreover,
we let d > 1, since as remarked in Section 3, no layout with maximum distance 1 exists for
cyclic adjacency graphs.

Notice that in any (h,, d)-layout ¥ for R,, by the shortest path property, if n is odd the
nodes in the subring [1, | §]] are reached in one direction from the source, say clockwise, while
all the remaining ones anti-clockwise. This means that ¥ can be divided into two separated
sublayouts ¥, and ¥, respectively for the subchains of the nodes reached clockwise in ¥,
that is [0, | %]], and anticlockwise, that is from [%] to 0 in clockwise direction, extremes
included. However, the results of the previous section for chains do not extend in a trivial
way, as a further constraint exists for the final nodes || and [%], that are adjacent in A
and thus must be at distance at most d in ¥. A similar observation holds when n is even.

As for chains, let us say that a (h,l,d)-layout ¥ for rings is optimal if it reaches the
maximum number of nodes. Moreover, let us call ¥ canonic if the clockwise and anticlockwise
sublayouts ¥. and ¥, are both crossing-free and the virtual topologies induced by their VPs
are trees. The following lemma is the equivalent of Theorem 4.4 for rings.

g b

T(h,1,d,[2]) T(h,1,d,|2])

extra chilLL

Figure 7: Optimal layout for a ring network with an odd d.

Lemma 5.1 For every h,l,d, there exists an optimal {h, 1, d)-layout for rings that is canonic.

Proof.

Let ¥ be an optimal (h,!,d)-layout for a ring R,, ¥, and ¥, be the sublayouts of ¥
induced respectively by the subchains of the nodes reached clockwise and anticlockwise from
the source in ¥, n. and n, be the number of nodes of ¥, and ¥,, and finally u and v be the
extreme nodes of ¥, and ¥,, that is the farthest ones from the source. Clearly, the number
of nodes in R,, is m = n.+ n, — 1, since the source belongs both the two subchains and thus
it must be counted only once.
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We distinguish between the following two cases.

Case 1: hy(u) < [£] and hy(v) < £.

Without loss of generality let us assume that the clockwise subchain is not smaller than
the anticlockwise one, that is n, > n,. If ¥, is not canonic, then by performing the same
steps of Theorem 4.4, it is possible to obtain a (h,!,d)-layout @, for a larger clockwise
subchain (if ¥, is canonic let ®. = ¥,). Then, it is possible to replace ¥, with the canonic
layout ®, symmetric to ®.. Clearly, the layout ® given by the union of ®. and ®, forms
a canonic layout for a ring R,, with m > n. Such a ring is obtained by adding the edge
{w, z} between w and z, where w and z are the last nodes of ®. and ®,, respectively.
In order to show that ® is a (h,l, d)-layout for R,,, we observe that the only violation of
the performance measures can be the distance between the VCs of the two extreme nodes
w, 2. However, by the definition of distance and by the construction of Theorem 4.4,
de(w,2) < he(w) + ha(z) < hg(u) + hy(v) < 2% =d.

Case 2 hy(u) > £ or hy(v) > ¢ (or analogously hy(u) > %tt or hy(v) > 2E1).

Since u and v are adjacent in R, and reached respectively clockwise and anticlockwise, a
handover from u to v (or vice versa) requires the replacement of all the VPs in VCy(u) and
the addition of all the VPs in V Cy(v). Therefore, dy(u,v) = hy(u) + hy(v) < d and thus
either hy(u) < 45 or hy(v) < 451, Without loss of generality, assume that the first case
holds.

Again, if ¥, is not canonic, let ®. the canonic (h, [, d)-layout for the clockwise subchain
obtained like in Theorem 4.4 ($, = U, otherwise). Let ®, the canonic {h, [, d)-layout for the
anticlockwise subchain symmetric to ®.. Before constructing the final global layout &, we
append to the last node z of ®, a further node 2’ by means of the edge {z, 2’} (see Figure 7),
we add the VP (z,2') to &, and finally fix VCs(2') as the concatenation of VCgs(z) and
(z,2"). Let @ be the layout given by the union of ®. and ®,.

Again, ® forms a canonic layout for a ring R,, with m > n obtained by joining 2’ and the
last node of @, w, with the edge {w, 2'}. In fact, by the shortest path property, |n.—n,| <1,
and if m. and m, are the cardinalities of the clockwise and anticlockwise subchains of ®, as
Me > Ne, Mg =Mme+12>n.+1>n,. Therefore, m=mc+mg—1>n.+n,—1=mn.

Clearly, all the VCs of & correspond to shortest paths, and in order to complete the
proof it remains to show that again ® is a (h, [, d)-layout for R,,. To this aim, we observe
that the only violations of the performance measure can be the hop count he(z') of 2/, plus
the distances between the VCs of the nodes w and z’, and of the nodes z and z’. Since by
hypothesis hy(u) < hg(v) — 1, ha(2') = ha(2) + 1 = ha(w) + 1 < hg(u) + 1 < hyg(v) < h.
Moreover, dg(z,2') = 1 and dg(w,2')) < hg(w) + ha(z') = he(w) + ha(2) + 1 < hy(u) +
he(v) +1 <291 41 =4. O

Notice that Lemma 5.1 holds for the distances D and D a indifferently, as the same holds
for Theorem 4.4. Again, since D and Da coincide in layout inducing trees, all the following
results are valid under both the two cost measures.

Starting from Lemma 5.1, we generalize the ordered tree 7 (h,l,d) to T (h,l,d,t) by
adding a further parameter ¢ < h, which fixes the hop count of the rightmost leaf to t.
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T(h,l—1,d) T(h-1,1—1,d) T(h—min{h,t} +1,1—1,d)
Figure 8: T (h,l,d,t) in terms of trees of type T'.

Roughly speaking, T(h,l,d,h) = T (h,l,d) and T (h,l,d,d — 1) = T'(h,l,d). More precisely,
T (h,l,d,t) is defined recursively as the join of the roots of min{h, ¢} subtrees T'(3,]/—1, d) for
h—min{h,t} <i < hin such a way that for ¢ < h the root of a T'(¢,{ — 1, d) is the rightmost
child of the root of a T'(i+1,1—1, d), plus a final node as rightmost child of T'(h—min{h,t}+
1,1 —1,d) (see Figure 8). Thus, 7, (h,l,d,t) =1+ ZZ:hfmm{h,t}-i-l T,(k,1—1,d), that is
Tn(h,1,d,t) =

h -1 k-1
i
1+ Z Z Z ( i—k1,ky = ko, kq—3 — ka—2>kq_2 )
k=h—min{h,t}+13=0 j=0 0<kg_ o <kg 3<...<ky<ky <i

kid+ky+...+kg_o=3j

Lemma 4.8 extends directly to 7 (h, [, d, t), that in turn corresponds to an optimal (h, [, d)-
layout for a chain with the further property that the rightmost node (opposite of the source)
has hop count t. Therefore, it is possible to prove the following theorem.

Theorem 5.2 The mazimum number of nodes reachable on a ring network by o (h,l,d)-
layout is 2T, (h,1,d, | 2]) — ((d + 1) mod 2), with T, (h,1,d, [2]) =

1+ Z Z Z ( i_kl‘kl—k2‘---‘ik’d—3_kd—2‘kd—2 )

kehomin{h 11100 05k Sy €S g s

Proof. As already observed, any layout ¥ for a ring R,, can be split in two separated
sublayouts ¥. and ¥, for the subchains of the nodes reached clockwise and anticlockwise
in ¥, respectively. If ¢; and 2 are the hop counts of the last two nodes u and v of the two
subchains, the condition d(u,v) = h(u)+h(v) < d must hold, therefore t; < [£] orts < [£].
Without loss of generality let us focus on layouts in which t; < t5 and let us consider first
the case in which d is odd.
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Since 7 (h,l,d,t1) corresponds to an optimal (h,l,d)-layout for a chain in which the
last node has hop count t;, if n. and n, are the number of nodes in the clockwise and
anticlockwise subchains, it results n. < 7,(h,l,d, ;%) and by the shortest path property
ng < ne + 1, hence any ring R,, admitting a (h, [, d)-layout has at most n = n, + n, — 1 <
2n. < 27,(h,1,d, %52) nodes.

A layout with such a number of nodes can be obtained by taking the layout ¥, induced
by 7 (h,l,d, %) for the clockwise subchain, and for the anticlockwise one the symmetric
layout ¥, induced by 7 (h,l,d, ‘12;1) plus a final node attached as rightmost child of the
righmost leaf of 7(h,l,d, %) The union of ¥, and ¥, clearly forms an optimal canonic
(h,1,d)-layout ¥, that is for a ring R,, with a maximum number of nodes.

The case in which d is even is simpler, as it is immediate to see that the maximum
number of nodes is obtained when ¥, and ¥, are both induced by 7 (h,!,d, %), thus yielding
an optimal canonic (h, [, d)-layout ¥ for a ring R, with n = 27,(h,l,d, %) — 1 nodes. This
concludes the proof. O

Before concluding this section, let us observe that as for chains there are cases in which
the formula of Theorem 5.2 can be simplified. For instance we obtain 7,,(h,1,d, |4]) = 1 +1

for d = 2, T, (h,1,d, [2]) = 1 + (h;rl) _ (h—Ll%Hl) for d > h, T, (h,1,d,|4]) =1+ (h;“l) -
(h—L?'J+l) _@ for d = hand T, (h,1,d, | ]) = 1+(h—d)(¢fi:12) + (d—li-l) _ (d—I_?JH) B 1(151)
for I-1)(d—2)<d<h.

6 Conclusion

We have extended the basic ATM model presented in [12, 7] to cope with quality of service
and mobility aspect in wireless ATM networks. This is obtained by adding a further measure,
the VCs distance, that represents the time needed to reconstruct connecting VCs when
handovers occur and must be maintained as low as possible in order to avoid the rerouting
mechanism to be appreciated by the mobile users. We have shown that the problem of finding
suitable trade-offs between the various performance measures is in general an intractable
problem, while optimal constructions have been given for chain and ring topologies.

Among the various questions left open, we have the extension of our results to more gen-
eral topologies. Moreover, it would be nice to consider the case in which the physical graph
does not coincide with the adjacency graph. A typical example, is a GSM like network in
which the physical network is a tree and cells correspond to its leaves. Another worth inves-
tigating issue is the determination of layouts in which the routed paths are not necessarily
the shortest ones, but have a fixed stretch factor or even unbounded length. Finally, all the
results should be extended to the all-to-all communication pattern, that is when connections
can be established between every pair of mobile users.
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