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Abstract: This paper deals with the approximation of the unfolding of a smooth develop-
pable surface with a triangle mesh. First of all, we give an explicit approximation of the
unfolding of a smooth developable surface with the unfolding of a developable triangle mesh
close to the smooth surface. The quality of the approximation depends on the maximal
angle between the normals of the two surfaces and the relative curvature distance of the
smooth surface (which is linked to the curvature of the smooth surface and the Hausdorff
distance between the two surfaces). We give examples of sequences of developable triangle
meshes inscribed on a sphere of radius 1, with a number of vertices and edges tending to
infinity.
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Dépliage de Surfaces

Résumé : Ce travail étudie 'approximation du dépliage dans le plan d’une surface lisse
développable par le dépligage dans le plan d’une surface triangulée développable. Nous don-
nons dabord une approximation explicite qui dépend de ’angle maximal entre les normales
des deux surfaces, de la courbure de la surface lisse et de la distance de Hausdorff entre les
deux surfaces. Nous donnons ensuite des exemples de suites de triangulations developpables
dont le nombre de sommets et d’arétes tend vers l'infini, toutes inscrites sur une sphére de
rayon 1.

Mots-clés : Surfaces developpables, maillages triangulés, courbure de Gauss



Unfolding 3

1 Introduction
This paper deals with the approximation of a smooth surface by a developable triangle mesh.

e In the main part of this paper, we consider the case where the smooth surface is itself
developable. It is well known that a smooth surface is developable (that is, locally
isometric to a plane) if and only if its Gauss curvature is identically 0. Similarly, a
triangle mesh is developable if its discrete Gauss curvature is 0 (that is the sum of the
angles incident to any interior vertex is 2m). After unfolding the smooth surface and
the triangle mesh, we compare their shape by giving an upper bound of their mutual
Hausdorff distance in terms of geometric invariants: the angles of the triangles of the
mesh, the curvature of the smooth surface, the Hausdorff distance between both initial
surfaces and the maximal angle between the normals of both surfaces. Remark that
the two unfolded surfaces can be very different from one another, even if the initial
surfaces are close for the Hausdorff distance. The unfolding of the half “lampion”
of Schwarz convinces us easily. (This problem appears in many applications, such as
geology, where people want to unfold strata under isometric deformations. At a certain
scale, the stratum can be considered as a smooth surface, approximated by a triangle
mesh (some of its vertices belong to data).)

e On the other hand, we devote a paragraph to contradict the mistaken belief that
the geometry of a smooth surface is better and better approximated if the triangle
mesh approximation has a bigger and bigger amount of vertices on it. We construct
a sequence of developable triangle meshes whose cardinal of vertices and edges goes
to infinity, and which are all incribed on a portion of a sphere of fixed radius. We
end this paragraph by showing an exemple of a triangle mesh with strictly negative
Gauss curvature at each interior vertex, incribed on a convex smooth surface, which
has the following property: switching some edges and keeping its vertices fixed, it is
still inscribed on the same smooth surface but is now positively curved at each interior
vertex.

It is important to notice that our approach is different from the work of Alla Sheffer et al.
[16], Mathieu Desbrun et al. [5] and Bruno Lévy et al. [11], which give explicit algorithms
to unfold triangulations which are not necessarily developpable. These authors minimize an
energy ([5] and [11]) related to the distorsion of the angles of the triangles. However, there
is no underlying smooth surface in their work, and then no comparison betwenn smooth and
discrete unfoldings is possible. On the contrary, we give a theorem which compares the un-
folding of a smooth developpable surface and the unfolding of a developpable triangulation.

The notion of the reach of a smooth surface is one of the main tools of this paper. It
allows to compare a smooth surface with a triangulated mesh “close to it”. It was first
introduced by H. Federer [7]. It is interesting to notice that the reach is in fact linked to the
(more recent) notions of medial azis and local feature size, which are used in some problems
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4 Morvan & Thibert

of reconstructing a surface from scattered sample points. In [19], F.E. Wolter gives many
interesting results related to the medial axis and the cut locus.

This paper is organized as follows. Section 2 gives classical and usual definitions. Section
3 states our results of approximations. Section 4 gives some “bad examples” concerning the
Gauss curvature of smooth surfaces and inscribed triangle meshes. Sections 5, 6 and 7 sketch
the proofs of results (in section 5 we also give results of approximation of the lengths of the
curves).

2 Definitions

We recall here some classical definitions which concern smooth surfaces, triangle meshes and
the relative position of two surfaces. For more details on smooth surfaces, one may refer to
[1], [6] or [18]. For more details on triangle meshes, one may refer to [7], [8] or [13].

2.1 Smooth surfaces

o In the following, a smooth surface means a C2? surface which is regular, oriented, com-
pact with or without boundary. Let S be a smooth surface of the (oriented) euclidean
space E®. Let 85 denote the boundary of S. S is endowed with the Riemannian struc-
ture induced by the standard scalar product of E*. We denote by da the area form on
S and by ds the canonical orientation of 8S. Let v be the unitary normal vector field
(compatible with the orientation of S) and h be the second fundamental form of S
associated with v. Its determinant at a point p of S is the Gauss curvature G, its trace
is the mean curvature Hy,. The mazimal curvature of S at p is pp = maz(|\}|,|A3]),
where )\11, and Xf, are the principal curvatures of S at p, (that is the eigenvalues of the
second fundamental form). The mazimal curvature of S is

ps = Sup pp.
pES

We denote by k, the geodesic curvature of 0S5 at p.
e We need the following

Proposition 1 Let S be a smooth compact surface of E*. Then there exists an open
set Ug of B® containing S and a continuous map & from Us onto S satisfying the
following: if p belongs to Ug, then there exists a unique point £(p) realizing the distance
from p to S (€ is nothing but the orthogonal projection onto S).

A proof of this proposition can be found in [7].

The open set Us depends locally and globally on the smooth surface S. Locally, the
normals of S do not intersect in Ug. Globally, Us depends on points which can be far
from one another on the surface, but close in E.

We shall also need the notion of the reach of a surface, introduced by H. Federer in

7).

INRIA



Unfolding 5

Definition 1 The reach of a surface S is the largest r > 0 for which & is defined on
the open tubular neighborhood U,.(S) of radius v of S.

Remark that the reach rg of S is smaller than the minimal radius of curvature of S
(which is pLS); (see [12] or [19] for more details). Thus, we have:

ps s <1,

where pg is the maximal curvature of S.

2.2 Triangle meshes
2.2.1 Generalities

A triangle mesh T is a (finite and connected) union of triangles of B3, such that the inter-
section of two triangles is either empty, or equal to a vertex, or equal to an edge.
We denote by 77 the set of triangles of T and by A a generic triangle of T'.

e 9 denotes the length of the longest edge of A, and A(A) the area of A.
e The area A(T) is the sum of the areas of all the triangles of T'.

For the following, we need to define a new geometric invariant on the mesh:

Definition 2 Let A be a triangle of a triangle mesh T'.

e The straightness of a A is the real number

str(A) = sup sin(6,),
p verter of A

where 8, is the angle at p of A.
e The straightness of T is:
str(T) = min str(A).

A€Tr

Remark 1 In particular, if B is any of the three angles of the triangle A, we have:
sin 8 < str(A).

2.2.2 Triangle mesh close to a smooth surface
e A triangle mesh (or a smooth surface) M is closely near a smooth surface S if:

1. M lies in U,(S), where r is the reach of S,

2. the restriction of £ to M is one-to-one (where £ is the map defined in Proposition

1).

RR n° 4615



6 Morvan & Thibert

e We say that a triangle mesh of E? is inscribed in a smooth surface S if all its vertices
belong to S.

o A triangle mesh T is closely inscribed in a smooth surface S if:

1. T is closely near S,
2. all the vertices of T belong to S.

e Let T be a triangle mesh closely near a smooth surface S. Let m be a point lying in
the interior of a triangle A of T. Let N2 be the normal line through m to A. We put

am = (N2, v) € [0,2].

The real number a,, is defined almost everywhere on T'. (If m is a point on an edge
or a vertex, one can define a,, by taking the supremum of the angles between the
triangles which contain m and the normal yg(m)).

We can define the real number
@ = SUp Qm.

meT
a is called the mazimal angle between the normals of S and T.

We introduce now an invariant which relates the triangle mesh and the smooth surface:

Definition 3 Let T be a triangle mesh (or just a triangle) closely near a smooth surface S.
The relative curvature of S to T is the real number defined by:

ws(T) = sg{)ﬁll&(m) —m| pe(m)-
me

Remark 2
A compact triangle mesh T closely near o smooth surface S satisfies:

ws(T) <1.
Moreover, a triangle mesh T closely inscribed in a smooth surface S satisfies:

ws(T) < sup na pe(a)-
AETT

(In fact, if m belongs to a triangle A, then ||£(m) — m|| is smaller than the distance from m
to any point of S. If s is a vertex of A, we have ||£(m) — m|| < ms < na).

INRIA



Unfolding 7

2.2.3 Gauss curvature of a triangle mesh

Let T denote a triangle mesh, p a vertex of T, 77(p) the set of triangles of T' which contain
p as a vertex. Let S% denote the set of interior vertices of T and Sar the set of vertices of
the boundary 0T of T'.

e We call the angle at the vertexr p the real:

ar = Y a.(p),

o€Tr(p)

where a, (p) is the angle at p to the triangle o.

The discrete Gauss curvature at a verter p € S% is:

Gr(p) =27 — ar(p).

The discrete geodesic curvature at a verter p € Sar is:
k(p) = m — ar(p).
The total interior Gauss curvature of T is:

Gm(T)= Y Gr(p) = >, 27 —ar(p)).

peESLET peSLET

The total geodesic curvature of 0T is:

K@T)= Y kp) = Y (v—ar(p).

pESsT pESaT

2.3 Flat (or developable) surfaces

A smooth surface (resp. a triangle mesh) M is flat or developable if its Gauss curvature is
null at each interior point, (resp. vertex). Remark that theorema egregium of Gauss implies
in this case that the interior of M is locally isometric to an open domain of the Euclidean
plane E?. If M is a topological disc, then this isometry is global; we call it an unfolding
u(M) of M. In this case, remark that u(M) is unique up to a rigid motion of E2.

Remark 3 If M is flat, then there exists an homeomorphism gps : M — u(M) which pre-
serves distances. Furthermore, we can suppose that gy is direct (i.e. if gas is differentiable
at a point m, then Dgys(m) is positive definite).

RR n° 4615



8 Morvan & Thibert

2.4 Hausdorff distance between two subsets of E3
The Hausdorff distance between two subsets A and B of E? is:
OHaus (A, B) = max(sup d(x, B), sup d(A4,y)).
z€A yeB

Remark 4
A compact triangle mesh T closely near a smooth surface S satisfies:

ws(T) < 0maus(T, S) ps-

3 Unfolding of a developable surface

In this section, we consider the following situation: S is a smooth developable surface, T
is a developable triangle mesh, which is closely near S. We aim at knowing whether the
unfolding of the triangle mesh T is a “good approxzimation” of the unfolding of the smooth
surface S. We first consider the counter-example of the half “lampion” of Schwarz. Then we
give an explicit approximation of the unfolding of the smooth surface S in the convex case
(part 3.2). Finally we give a result of convergence in the general case (part 3.3).

3.1 Half “lampion” of Schwarz

A typical example of this situation is the famous “lampion” of Schwarz. It is a flat triangle
mesh inscribed on a cylinder. It is not simply connected, but we can “cut a piece of it” which
is homeomorphic to a topological disc: we consider here a half “lampion” of Schwarz (which
is inscribed in half a cylinder). We illustrate here two phenomena:

e In part 3.1.1, we give two half “lampions” of Schwarz whose unfoldings are very different
from one another. Therefore we cannot expect to have a result of convergence without
other assumptions.

e In part 3.1.2, we build two triangle meshes which have the same vertices and whose
unfoldings are very different from one another. This implies that the result depends
on the construction of a triangle mesh from scattered sample points.

3.1.1 Comparaison of two half “lampion” of Schwarz
Let C be a half cylinder of finite height H and of radius R. It can be parametrized by:
Vt € [0, 7] Vu € [0, H] f(t,u) = (R cos(t), R sin(t),u).

Let P(n,N) denote the triangulated mesh whose vertices S; ; belong to C and are defined
as follows:

Vie {0,.n—1} S;; = (R cos(ia), R sin(ia), jh) if j is even,
vj e {0,.N} Si; = (R cos(ia+ §), R sin(ia + §), jh) if j is odd,

INRIA
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(a) P(19-5) (b) P(99-5)

Figure 1: Examples of half “lampions” of Schwarz

and whose faces are:
Si,j Sit1,5 Sij+1s
S Si—1,5+1 Sij+1s

where a = 7 and h = %

Those triangle meshes P(n, N) are called half “lampions” of Schwarz and have the prop-
erty of being developable. Tt is well-known that we can construct a half “lampion” of Schwarz
whose area is as large as we wish (c.f. [1] or [14]). Tt implies that its unfolding can be “very
different” from the unfolding of the half cylinder C.

Remark that the boundaries of the two unfolded half “lampions” of Schwarz of figure 2
are very different from one another and can be very different from the unfolding of the half
cylinder C. The unfolding of C is a rectangle of height H. The height of the unfolded half
“Dampions” of Schwarz P(99 — 5) is more than 1.5H. In fact, the height of a half “lampion”
of Schwarz is getting larger when it is unfolded.

Furthermore, if we consider the problem of the convergence of a sequence of triangle
meshes, one may notice that the height of the unfolding of the half “lampion” of Schwarz
P(n,n?) tends to infinity when n tends to infinity.

That is why, without other assumptions, we cannot expect the unfolding of a sequence
of triangle meshes to give us a good approximation of the unfolding of the smooth surface.
As we will see in part 3.3, this is linked to the fact that one of the following conditions is
not satisfied:

RR n® 4615



10 Morvan & Thibert

q
»
X

q
W
N

(dddd
MO
K
{AA‘

i
Xl
GGG

{

ﬁ‘
{

)

(a) Unfolded P(19-5) (b) Unfolded P(99-5) (c) Unfolded half cylinder

Figure 2: Unfolding of C' and of two half “lampions” of Schwarz closely inscribed in C (the
scale is the same)

o the lengths of the edges of the sequence of triangle meshes tends to 0;

e the straightness of the sequence of triangle meshes is uniformly bounded from below
by a strictly positive constant.

3.1.2 Two developable triangle mesh with the same vertices

We consider a finite family of points & (which belong to a half cylinder) and we build two
triangle meshes whose vertices are these points (figure 3(a) and 3(b)). The triangle mesh
3(b) is a half Lampion of Schwarz. The two unfoldings are different from one another.
Just remark that (if we do not consider the boundary of 3(a) and 3(b)) the surface 3(a) is
obtained by flipping the edges of the surface 3(b).

3.2 Approximation of the unfolding in the convex case

Consider now the case in which the triangle mesh T is closely near the smooth surface S
(vertices of T are close to S- they are not strictly obliged to belong to S). The following
result gives an explicit approximation of the unfolding of S in terms of the one of T' if u(S)

and u(T) are convex. Notice that if the normals of S are close enough to the normals of T,
then the two unfoldings are quite similar.

INRIA
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(a) A developable triangu-
lation whose vertices are
S

FEEEEEEEE

(c) Unfolding of 3(a)

(b) A Half-Lampion of
Schwarz whose vertices
are S

(d) Unfolding of 3(b)

Figure 3: Unfolding of two triangle meshes which have the same set of vertices S

Theorem 1 Let S be a smooth compact connected and developable surface of E® and T be
a developable triangulated mesh of B® closely near S. If u(S) and w(T) are convex and if

_ 14+ wS(A)
€= cos(a)

RR n°® 4615
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12 Morvan & Thibert

then (up to a motion of the plane E*) we have:
. V14 2¢/€+ 40e
8t aus(u(S),u(T)) < diam(T) /e #,

where diam/(T) is the diameter of T, a is the mazximal angle between the normals and ws(T)
is the relative curvature of S to T'.

Remark 5

e We can have the same result in a more general case: if u(T') is star-set in two points p
and ¢ such that diam(u(T)) = pg and if u(S) is star-set in two particular points (for
more detail, see the proofs and especially Proposition 5).

e We could have given a result which is linear in € (and not in 1/€). But in that case the
result depends on the geometry of u(7) and is more difficult to state. More precisely,
if € is small, we could have
Staus(w(S),w(T)) < diam(T) Kr e. Unfortunatly, K7 may be large (for example if
there are a lot of triangles or if the angles of T are small) and the upper bound of
S aus(u(S),u(T)) may be worst.

3.3 Convergence of the unfolding in the general case

Theorem 2 Let S be a smooth compact connected developable surface of E* and (Tn)n>o0 @
sequence of developable triangulated meshes closely near S such that:

e the normals of Ty, tend to the normals of S,
e the lengths of the edges of T, tend to 0 when n tends to infinity;

then a sequence (w(Tn))n>0 of unfoldings of (In)n>o0 tends in the Hausdorff sense to an
unfolding w(S) of S.

We know that the convergence of the normals is implied by a condition on the straightness
when the vertices of triangle meshes belong to S [15]. Therefore we have the following
corollary :

Corollary 1 Let S be a smooth compact connected developable surface of E* and (Tn)n>o0
a sequence of developable triangulated meshes closely inscribed in S such that:

e the straightness of the sequence (T, )n>0 is uniformly bounded from below by a strictly
positive constant;

e the lengths of the edges of T, tend to 0 when n tends to infinity;

then a sequence (u(Ty))n>o of unfoldings of (Tn)n>o tends in the Hausdorff sense to an
unfolding u(S) of S.

INRIA



Unfolding 13

Remark 6 It is possible to have an explicit result of approximation. However, the result
would depend on a third surface Ug C u(S) and giving further details would be tedious (if
you wish to get more details, you can refer to Proposition 7).

4 Some remarks on the approximation by developable
meshes

The crucial assumption in the previous theorem is that both smooth surface and triangle
mesh are developable. The goal of this section is to insist on the mistaken belief that one
can get a good approximation of the Gauss curvature of a smooth surface by computing
the Gauss curvature of an inscribed triangle mesh closely inscribed on it, and having a
big amount of vertices. In particular, the fact that the triangle mesh is developable does not
imply at all that the smooth underlying surface has a “weak Gauss curvature” at some points.

The following theorem gives a family of examples of developable triangle meshes (the
Gauss curvature is thus 0 at each interior vertex) closely inscribed in a piece of the sphere
S%(r) of radius r > 0.

Theorem 3 Let n > 3. There exists g €)0,1] such that and for every o €]0, ], there
exists a developable triangle mesh Ty satisfying:

1. T2 is closely inscribed in “an open connected portion of sphere S? (r)”

2. T? contains (3n + 1) vertices ((n + 1) of them are interior) and 4n faces;

Remark that the triangle mesh 777 depends on the parameter a. If o tends to 0, then
every vertex of T'? tends to the same vertex. In a sense o measures “the height” of T7.
On the other hand, let S” denote “the open connected portion of sphere S*(r)”. S is a
smooth surface whose Gauss curvature is T% at every interior point and then it is not devel-
opable. However Theorem 3 tells us that the triangle meshes T?, which are closely inscribed
in S7, are developable.

This implies that without other assumptions, the knowledge of the Gauss curvature of
a triangulated mesh closely inscribed in o smooth surface does not give information on the
Gauss curvature of the smooth surface. In particular, the knowledge of a developable triangle
mesh closely inscribed in o smooth surface does not allow to conclude whether the smooth
surface is developable. It implies that the fact of building a developable triangle mesh in-
scribed in a smooth surface does not allow us to check an assumption of unfoldness made a
priori on the smooth surface.

Remark 7 The (developable) triangle meshes T are homeomorphic to a disc. In fact, there
does not exist any compact developable triangle mesh without boundary closely inscribed in
the whole sphere. This is an obvious consequence Gauss Bonnet theorem (see [6]): it states

RR n° 4615



14 Morvan & Thibert

that the Euler characteristic x(S) of a smooth compact surface S (whose boundary 95 is
composed by C1,..C, positively oriented closed curves of class C2) satisfies:

P

sz(S)z/SG,, da(p) + Z/C kp ds(p) + Y6,

=1

where {61, ..,0,} is the set of all external angles of the curves Ci,..,C,.
The discrete analogous result for the Euler characteristic x(7') of a triangle mesh T is the
following:

21X (T) = Gine(T) + K(OT).

Since the Euler characteristic of a smooth surface S equals the Euler characteristic any
triangle mesh T closely inscribed in it, one gets:

/Gp da(p) + Zn: k, ds(p) + zp:ﬂi = G (T) + K(OT).
3 =17 Ci i=1

In particular, if S and T have no boundary, the previous equation becomes:

[ 6o dato) = Gl
S

We present here some of those triangle meshes 77 which are closely inscribed in a piece
of sphere §? and we unfold them. We use Geomwview [9] to visualize the examples.

INRIA
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(a) Triangle mesh (b) Unfolded triangle mesh

15

Figure 4: case “n =20 a = 0.4”

=

(a) Triangle mesh (b) Unfolded triangle mesh

Figure 5: case “n = 50 a = 0.6”
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16 Morvan & Thibert

(a) Triangle mesh (b) Unfolded triangle mesh

Figure 6: case “n =7 a = 0.6”

Figure 7: case “n = 500 o = 0.2”

The triangle mesh of figure 8 is still inscribed in sphere S* and the discrete Gauss
curvature at each interior vertex is strictly negative (Gr(p) ~ —0.02 if p is the central

INRIA



Unfolding 17

vertex and Gr(p) &~ —0.04 otherwise). Thus we have a triangle mesh with strictly negative
Gauss curvature inscribed in sphere $%.

Figure 8: Triangle mesh with negative Gauss curvature inscribed in S

RR n°® 4615



18 Morvan & Thibert

The triangle mesh of figure 9 is developable and its boundary “s quite regular”, in the
sense that the discrete Gauss curvature at each vertex of the boundary is not too large.
This triangle mesh is not inscribed in a sphere, but in a smooth surface of revolution, whose
Gauss curvature is strictly positive at each interior point.

(a) Developable triangle mesh (b) Unfolded triangle mesh

Figure 9: Developable triangle mesh inscribed in a smooth surface with strictly positive
Gauss curvature

INRIA



Unfolding 19

The triangle mesh of figure 10 is not developable. More precisely, the discrete Gauss
curvature at each interior vertices is strictly negative (in fact Gr(p) < —0.02 at each interior
vertex p). However, this triangle mesh is closely inscribed in a smooth surface of revolution,
whose Gauss curvature is is strictly positive at each interior point.

Thus we have a triangle mesh with strictly negative Gauss curvature inscribed in a
smooth surface with strictly positive Gauss curvature.

(a) Smooth surface with Gauss curvature (b) Triangle mesh
larger than 0.5

Figure 10: Triangle mesh of strictly negative Gauss curvature inscribed in a smooth surface
with strictly positive Gauss curvature

5 Comparison of shortest paths

This part gives some intermediate results which are used in part 6 to prove the results of
this paper. The main result of that part is the following proposition. Roughly speaking a
triangle mesh closely near a smooth surface, whose normals are close enough to the normals
of the smooth surface and which is close enough to the smooth surface is “almost isometric”
to it.

Proposition 2 Let S be a smooth compact connected surface of E* and T be a triangle
mesh closely near S. Then for every curve C of T':

cos(a) 1
T+ws(T) L(C) < L(&(C)) <

RR n°® 4615



20 Morvan & Thibert

where L(C) is the length of the curve C, L(£(C)) is the length of the curve C, ws(T) is the
relative curvature of S to T and « is the mazimal angle between the normals of S and T'.

This Proposition directly implies the following Corollary which compares the shortest paths
of the two surfaces.

Corollary 2 Let S be a smooth compact connected surface of B> and T be a triangle mesh
closely near S. Then for every points a € T and b€ T:

cos(a) 1
TrestT] Lr(a,b) < Ls(&(a),§(b)) <

~ 1-ws(T)
where Lr(a,b) is the distance on T between a and b, Ls(&(a),&(D)) is the distance on S
between &(a) and £(b), ws(T) is the relative curvature of S to T' and « is the mazimal angle
between the normals of S and T'.

LT(a7 b)7

If the two surfaces S and T are developable, we have the same inequalities with the two
unfoldings. Therefore we have:

Corollary 3 Let S be a smooth compact connected and developable surface of E* and T be
a developabel triangle mesh of E® closely near S. Then there exists a direct homeomorphism
fu(S) = uw(T) from an unfolding u(S) of S onto an unfolding w(T) of T which satisfies
for every curve C of u(S):

(1 —€)L(C) < L(f(C)) < (1 +¢€)L(C),
with
_ 1+ ws(T)

-1
cos(a) ’

where ws(T') is the relative curvature of S to T and « is the mazimal angle between the
normals of T and S.

Remark 8 In particular we have for every points a € u(T) and b € u(T):
cos(a)
1+ ws(T)

where L, (7)(a,b) is the length between a and b in u(T') and L,(g)(f(a), f(b)) is the length
between f(a) and f(b) in u(S)

Lyry(a,b) < Lys)(f(a), (b)) < Ly(t)(a,b),

T 1-ws(T)

In the following, for every points u € E* and v € E®, we denote by uv the euclidean
distance between u and v.
For every compact surface M, we denote by Cus(m1,m2) the shortest path of M joining the
points m; and my of M and by Ljys(m1, m2) the distance between m; and ms on M, i.e.,
the length of Cps(m1, ma).
For every curve C, we denote by L(C) its length.
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5.1 One triangle case

In that part, we will prove the following Proposition:

curve £(C)

curve C of A

Figure 11: In that example L(C) is the length of the curve C and L(£(C)) is the length of
the the curve £(C)

Proposition 3 Let S be a smooth compact connected surface of B and A be a triangle
closely near S. Then for every curve C of A:

cos(a) 1
T ws(A) L(C) < L(&(C)) < T—ws(d) L(C),

where L(C) is the length of the curve C, L(£(C)) is the length of the curve C, ws(A) is the
relative curvature of S to A and « is the mazimal angle between the normals of S and A.

Remark 9 Just notice that if A and S are totally geodesic (that is, included in two planes
and the angle between the normals is constant), then Proposition 3 leads to equalities
(ws(A) = 0). Indeed, if the curve C = [a, b] is parallel to the two surfaces A and S, then we

have:
1 1

L(&(C)) = Ls(&(a),&(b)) = TS(A)LA(G’I)) = mL(C)-

Now, if we take two points ¢ and d in A such that C = [c, d] is orthogonal to [a, b], then we
have :

La(e,d) = cos(a)

= HT(A)L@'

L(E©) = Ls(€(0) 6d) = oms
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5.1.1 Proof of Proposition 3

The proof of Proposition 3 is an immediate consequence of Proposition 4 and of Lemmas 1
and 2. They analyse the behavior of the differential of &.
Since A is closely near S, £ induces a bijection between A and S. The restriction §a of

¢ to A'is a bijection between A and S. Let N* be a normal to A and a, = (N2, Nj, ) €

[0, Z]. For every m where ¢ is differentiable, we put:

[ DE(m). X |

_|Dgm).X|
D{(m) co = Sup ) Dg(m) min — inf )
IDE(m)loe = sup == DEmlnin = 1 =15

|D€|oo = sup |[DE(m)|e  and  [DE|min = inf [DE(m)|min-
meA meA

Proposition 4 Let S be a smooth compact oriented surface of E* and Us a neighborhood
of S where the map & is defined. For every m € Ug, if §(m) € S\ S then £ is differentiable
at m. Furthermore,

< 1

= 1—|[é(m) = m|| pe(m)’

if ||§(m) —ml| pgmy <1, then |DE(m)|eo

and for every X € T, Us:

1

D X
IDEmXN 2 T ietmy =il peom

P77 gy 21 (X,

where DT\ Ty () S 18 the orthogonal projection onto Te(m)S and pe(m) is the mazimal curvature

of S at &(m).
A proof of that proposition can be found in [14].

Remark 10 If the two principal curvatures of S at the the point £(m) are opposite (A1 (£(m)) =
—X2(&(m))), then we have the inequalities :

1
1= [[E(m) = ml| pe(m)

|DE(M)| oo

and
1

L+ [[E(m) = ml| pe(m)

IDE(m) X || = P77y 22 (X

Lemma 1 )
|D£|A|oo < T—ws(A)’

| DAl min 2> %a ’

where wg(A) is the relative curvature of S to A.
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Proof of lemma, 1:
Thanks to Proposition 4, we get for every m € A:

1
< —
|D£|A(m)|00 -1 _wS(A)7
and for every X € T, A:
o7 T 1y s (X
D X|| > ——m2
D6 (m)X| > =

where pr T, (S 18 the orthogonal projection onto T¢(,,)S.
On the other hand, we have:

1277 gy s (X

VX #0
[BY

> cos(am) > cos(a).

Thus ()
cos(a
|D£|A(m)|min 2 HT@*(A)

Lemma 2 Let C be a curve of A. Then
L(C) |D& almin < L(§(C)) < L(C) |DEja]oo-

Proof of lemma 2:
The curve C is parametrized by the application v : [a,b] — C. Since the curve £(C) is
parametrized by the map & o v the length of the curve £(C) satisfies:

n—1
LEE) = sup > [lEG(t) — €t
(t1,00stn) ET(ab) S5
n—1
> | D€ almin sup Z Iy (ti) = v(tia)l

(1,00 )ET(asb) 521

where T'(a,b) is the set of all the subdivisions a = t; < ... < t, = b of [a,b]. Similarly, we
have:

LE(C)) < [DEaloo L(C).
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5.2 Proof of Proposition 2 and its Corollaries

Proof of Proposition 2:
We can divide C into n curves Cy , ..., C, such that

e each curve C; belongs to a triangle A; of T';

o C; = U:‘L:1Ci§

i=1
Since L(C) = ZL(Ci) and L(£(C)) = ZL(S(Q)), by using Proposition 3 we have the
=1 i=1
result. |

Proof of Corollary 2:
By using Proposition 3 with the curve C = Cr(a,b), we have:

L LCr(ab) = ——

Ls(€(@), (1)) < L(E(Cr(a,b) < by

< TS(A) Ly(a,b).

By using Proposition 3 with the curve C = £ 1(Cs(a, b)), we have:

cos(a)

cos(a)
HTS(A) LT(a,b) <

< ey H€) < L(E©) = Ls(€(a).£0)).

O
Proof of Corollary 3:
Let gr denote a direct isometry between T' and «(7T') and gg a direct isometry between S
and u(S). We define the application f = g7 , 5‘}1 o ggl. Since gr and gg are two isometries,
the result follows directly from Proposition 3.
Furthermore, {7 is direct (see [15]). Since gr and gs are direct, f is direct. O

6 Direct e-isometry of the plane

Part 5 (and especially Corollary 3) tells us that if two developable surfaces S and T satisfy
some assumptions, then the two unfoldings u(S) and u(7") are “almost isometric”. In that
part, we study surfaces of the plane E? which are “almost isometric”. In part 6.1, we define
the notion of e-isometry. In part 6.2, we give the Ellipse’s Lemma which is well used after.
In part 6.3, we compare convex surfaces of E*> which are e-isometric and in part 6.4 we deal
with the general case.
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6.1 Definitions
Corollary 3 leads us to introduce the following definition :
Definition 4 Let e € [0,1[, U and V be two connected compact surfaces of E2.

e An homeomorphism f : U — V is an e-isometry if it satisfies for every curve C of U:
(1-)L(C) < L(f(0)) < (1 + OL(C).
e An e-isometry f : U — V is said to be e-strong if it satisfies:
Y(P,Q)€U? (1-)PQ < f(P)F(Q) < (1+€)PQ.

Remark 11

o If U and V are convex, then every e-isometry f: U — V is e-strong.

e An e-isometry f: U — V satisfies for every points P and Q in U:

(1=eLy(P,Q) < Ly (f(P), f(Q) < (1 +€)Ly(P,Q).

(see Corollary 2).

1+ws(T) _ 1

COS(Q)

e The map of Corollary 3 is an e-isometry with € =

In the following we will denote by capitalize letters (for example P) points of U and by small
letter the corresponding points in V' (for example p = f(P)).

Figure 12: Example of an e-isometry f : U — V which is e-strong and for which U is not
convex: f is affine between U; and V; (where V = V] U V,) and we have d(e¢) <1 — ¢ for all
e €[0,1].

6.2 The Ellipse’s Lemma

Lemma 3 Let € €]0,1] and f be an e-isometry defined on a connected compact surface
U C E? onto a compact V C E2. Let P and Q be two points of U, p = f(P) and ¢ = f(Q).

RR n° 4615



26

Morvan & Thibert

1. If[p,q) CV (orif f ise-strong), then f(Cy(P,Q)) is included in the ellipse of foci p and

q and of semi-magjor axis’s length a = 1< BL. In particular, for everym € f(Cu(P,Q))

1—e
we have e
pgy/€
d(m,[p,q]) < T,

where Cy (P, Q) denotes a geodesic of U linking P and Q.

. If [P,Q] C U (or if f is e-strong), then f=Y(Cu(p,q)) is included in the ellipse of

oci P and Q and of semi-major axis’s length a = 1fe—PQ. In particular, for every
1—e 2
M e f1(Cy(p,q)) we have

d(M,[P,Q]) <

PQy/e
1—¢’

where Cy(p, q) denotes a geodesic of V linking p and q.

f_l([p7q]) F([P, Q1)

Figure 13: Illustration of the Ellipse’s Lemma in the particular case where Cy (p,q) = [p, q]
and Cy(P,Q) = [P, Q]

Figure 14: Exemple of the deformation of a geodesic with an e-isometry f: in that case ¢
belongs to the boundary of the ellipse and d(i, [p, q]) = /e = ”lq—_‘/f.

Proof of lemma 3:
We only prove the first part (the proof of the second part is similar). Let M € Cy(P,Q)
and m = f(M). Then:

mp+mq < Ly(m,p) + Ly (m,q)

< (1 + 6)(LU(]M7 P) + LU(Mv Q))
(1 +€)LU(P7Q)
pq.

Al
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This imply that m belongs to an ellipse centered in p and ¢ and that

2 1—¢ 1—¢€

dm. [p, q)) < 22 (”6)2—1 _ Ve

6.3 Comparison between two surfaces in the convex case

The following Proposition allows us to compare the two unfoldings in the particular case in
which the e-isometry is e-strong.

Proposition 5 Let f : U — V be a direct e-isometry e-strong (where U and V are two
smooth compact connected surfaces of E* and € € [0,1[). If there exist two points p and q
of V such that pq is equal to the diameter diam(V) of V and V is star-set in both points p
and g, then there exists a rigid motion d of E* such that

6t10us(d(V),U) < diam(V') /e @

Corollary 4 Let f : U — V be a direct e-isometry (where U and V' are two smooth compact
convex surfaces of E* and e € [0,1]). Then there exists a rigid motion d of E* such that

8Haus(d(V),U) < diam(V) /e —'1-('_2\/@_406

1—¢€)?

Definition 5 The surface d(V') is said to be well-positionned with respect to U.

P A; v R
P @Q
q
d(A)

Figure 15: In this exemple, the triangle d(A) is well-positionned with respect to S
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-
m|+
s

=

P \'1/ Q

2

V= fU

~

Figure 16: Exemple of an e-isometry f (with € = %) and 8gqus(d(U), V) = f(Dd(I) =
ir=+B= e

6.3.1 Exemple

The example of Figure 16 deals with an e-isometry f between two triangles. The motion d
associated to f leads to an error which is O(y/€). The error of Proposition 5 is not optimal,
but it is also O(y/e).

6.3.2 Proof of Proposition 5

Let m be a point of V and let denote by h the orthogonal projection of m onto the line (p, q)
(in fact, h € [p, q] otherwise [p, q] would not be the diameter of V). Let us put P = f~!(p),
Q=7f"Yq), M = f~'(m) and H = f~1(h). Up to a direct rigid motion of the plane we can
suppose that the two line segments [p,q] and [P, Q] have the same middle point and that

they are parallel. Therefore, we have pP = qQ < M and we can have the following
coordinates:
diam(V diam(V
p= (20 ), g = (P ) tm = () and M = (X, Vi)

We suppose here that y,, < 0.
Case 1: Yy > 0.
From the two equations

. 2
pm? = (xm + LMS(V)) + 92

. 2
gm? = (xm — L";(V)) + 92,
we get:

pm? — qm?
~ 2diam(V)’
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F~Hlp,ml) £ ([m, )
. FH(Ipql)
* M
H : .
Rl
Y R\ 7 ° = (lp, 4D
(a) Notations (b) Case 1
()]
S~y m]) F=1(fm, q))
Q M
P Q
M U (V7))
7 (Ip, m]) £ (e, )
(c) Case 2 (d) Case 3
Figure 17: Proof of Proposition 5
Similarly, we get:
pM? — qM?
~ 2diam(V) "’
Furthermore, we have:
3ediam(V)

lpM — pm| < |[PM — pm| +|PM — pM| < epm + pP <

and

RR n°® 4615
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Therefore:

XM_xm

and Xy —xp,
thus | X — |

Similarly, we get:

_ (pM*—pm®)—(qgM*—qm?)

IA

2diam (V)

[(pm+ dedinm(v))? —pmz] - [(qm— dediom(v) )? —qmz]

2diam (V)

3e(pm+qm)

IA IV

D) )
_ 3e(pm+qm)

2 bl
Selpmdam) < 3ediam (V).

3e(ph 4+ qh) _ 3ediam(V)

| Xm —2n| < =

2

2

Let H = (X;,Y}) be the orthogonal projection of M onto (P, Q). Then we have:

X — Xg|

Furthermore, thanks to the Ellipse’s Lemma (Lemma 3), we have that:

diam(V)\/E‘
1—¢

HH < diam(V) \/<%)2 +

Then

Furthermore

Yo —Yg|=[Yu| <

<|Xg —zn| + |z — X
= X1 = 2] + | — X
Sediom(V) | 3ediam(V)

A |

9ediam (V)
— s -

(1—¢)?’

[Yar — Y| = |mh — MH| < ||mh — MH|| + |MH — MH|| < ediam(V) + HH.

Therefore

mM < \/(XM - xm)z + (YM - ym)2

< diam(V)\/Qe2 + (6 + (%)2 +

= diom(V)Ve |tk + e + 2,82

< diam(V)yfe Y2/ cHa0e

(1—e)?

Case 2: Yy < 0 and (PQ,PM) > .

1 ([m.q))

and 1(f (I, q)) <
thus MP <

and

mp <

mq < diam (V)

l—e — 1—e
2¢e diam(V)
1—€2

(1+€)MPS 2ed

iam(V) .

1—e¢

INRIA



Unfolding 31

That is why we get:

2ediam(V') 4 2¢ diam(V) € diam(V')

M < P+ PM <
mM < mp+ pP + < T —e —e + 5 s

and

mM < 4.5ediam(V ><diam(V)\/E \/1+2\/E+406.

R (1— e

Case 3: Yy <0 and (m,m) <0.

Since f is direct, then M is included in the part bounded by [P, Q] and f !([p,q]). Thus
lemma 3 implies that M belongs to the ellipse associated to foci P and @ and of semi-major
axis’s length @ = £ PQ and that

PQve _ diam(V)ye
1—e = (1—¢)? °

Since f is direct and Y3s < 0 then m is included in the part bounded by [p, ¢] and f([P, Q]).
Thus lemma 3 implies that

Y| <

< PIVE_ diam(V) 2
™=1—€ 1—e

In fact we have:

d(M, f~H(Ip,q])) > pzd(m,[p.a)) = {=,
and d(M,f Y(p,q) <5 sd“z;"(gV :
thus Yu|+ & < dmm(v)‘[
and Yo = gml = Vsl ym

dmm(V)\f:_ diam(V)e/e

(1—¢)2 (1—€)(1+€)
diam(V)\/E(1+2e—62)
(1—e)*(1+e) )

Ym | Yme
|Yar| + + 5

IN

Therefore

mM < /(Ko 2P Vot~ )?
oy \ 2
< diam(V)yfoer + (Y2

(T—02(ito)

2
= O foc(1 eyt + (1262

%\/1 + 13€ + 4¢t

< diam(V)y/fe YTV 1212:{;';406.

IA
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6.3.3 Proof of Theorem 3.2

By using Corollary 3, we know that there exists an e-isometry f : u(S) — (T') between the
two unfoldings. Since u(T) and u(S) are convex, f is e-strong. Therefore we conclude by
using Corollary 4.

6.4 Comparison between two surfaces in the general case

We want to compare two surfaces of the plane U and V' when there exists an e-isometry
f : U — V. Unfortunatly, f is not e-strong in general. However, in the particular case where
U=ULU;, V=UL,Vand fqy, : Ui — V; is e-strong, Proposition 6 tells us that we can
compare U and V. First we need a definition and a notation:

Definition 6 Let V be a triangle mesh.
e The fatness of a triangle A of V is the real number:
A(A)

a2’

Oa =

e The fatness of V is:

Oy = _min Oa.
A triangle of v

Notation 1 Let V be a triangle mesh of the plane B2, f : U — V be a strong e-isometry
(where U is a surface of B* and € € [0,1]) and Ay a triangle V.

For every point m € V, let denote by Ny, > 0 the smallest integer such that there exist
(N, — 1) triangles As,...,AN,, such that m € Ay,, and for every i € {1,..N,, — 1} A; and
A;y1 have a common edge. We put:

Ny (A1) = sup Ny,
meV

Proposition 6 Let f : U — V be an e-isometry, V be a triangle mesh. If for every triangle
A of V f: f~YA) — A is e-strong, then there exists a rigid motion d of the plane such

that:
diam(V)+/€ (2 L 44+ K(e)) ’

8Haus(d(U),V) < NV(AI)K(e) 1< 0y

where diam(V') is the diameter of V', Oy its fatness and K(e) = 7‘W.

6.4.1 Proof of Proposition 6

Let m € V, Ay,...,An,, be triangles as in Notation 1. We put 7; = f~!(A;). By using
Proposition 5, we suppose that A; is well-positionned with respect to 7; and that there
exist rigid motions d; (7 € {2, .., N,,}) such that d;(A;) is well-positionned with respect to
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dp, (An)

Figure 18: Visualisation of the rigid motion d,, (here we put n = N,,)

T;. We put d; i+1 = diq1 0 d;l and denote by 6,1 the angle of the rigid motion d; ;41. For
every i € {2,..N,,,} we know that d;_1,; o...0d;2(A;) is well-positionned with respect to
7;. We put

d= de = defl’Nm o0...0 d1,2.

We know that d(Ay,,) is well-positionned with respect to 7y,,. It means that we have :

d(m)f(m) < K(e) diam(An,,) Ve < K(e) diam(V) Ve.

The idea of the proof is the following : we fix a point of the plane. Therefore each rigid
motion d;_1; is linked to a unique translation b;. We bound each 8; and b; and then will be
able to bound md(m).

We need the two following Lemmas to conclude :

Lemma 4 For every i € {2,..,N,,}, we get

. 10:] _ K(e) Ve
smT < m

Lemma 5 '
md(m) < (N — 1)K(€)d+i(v>\/€ (2 L4 +0if(€)> _
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End of proof of Proposition 6 :
By using lemma 5, we have :
mf t(m) < md(m)+d(m)f*(m)
< (N, — 1) Kldiem(V)ve (2 + 4+;§<f>) + K(e)diam(V)\/e
< N, K(e)dila:(v)\/z (2 + 4+0I‘(/(e)) )

Proof of Lemma, 4:

Let A;_; and A; be two triangles of V with a common edge [p, g]. We put P = f~!(p) and
Q = f~'(q)- Suppose that na, > na,_,. If K(€)na, e < PQ—Q, the worst case is obtained for
an angle 6; satisfying :

0 K(©manF _ 2K(nanE _ K(OVE _ K(OVe
MR TTE S Tpi-e Soa(l-o (-6

Proof of Lemma 5:

We suppose that the origin is in A;. At each rigid motion d;_1,; we associate the complex
fonction g;(2) = €%z + b;. We associate the fonction g(z) = e?z + b to the rigid motion d.
We have

16]

md(m) = |m — g(m)| = |ei9m —-—m+b < |m||ei9 — 1| + |b| = 2|m/|sin > + 0]

Since |m| < diam(V'), we just have to bound |b| and sin ‘éﬂ

Since
N
0=">6,
=2

we have :

N,

. 164 K(e) /e
- < < - 1)

sin 2‘ < ;:2 sin 5= < (Nm 1)(1 — o 6y

We first notice that : N

bl < [bal.
=2

For every 4, we denote by p* a point which is a vertex of both triangles A,_; and A,. We
put P' = f=1(p%), pi =di—2,i—10... 0 da,1(p") and py = d;_1,:(p}). We have :

bs| = [ph — € pi| < |ph — pi| + |pille™ — 1] = |ph — pi| + || sin 2
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However , ] ) _
[ps — pi| < 2K (e)diam(V)\/e,
and  [pi| < |P* = 0]+ |p; — P'| < diam(U) + K (e)nv v/e.
Therefore
il < 2K (e)diam(V)y/e + (diam(U) + K (e)ny V/e) g s
K(e)diam(V)+/e 24+ K(e
< % (2 + 0v( )) ’
and

Ib] < (N — 1)K(6)diai(v)‘ﬁ (2 4+ 2 +01‘f(6)>

Consequently, we have :

md(m) < (Np, — 1)%’7@5 (2+ 4+91V<(e)> _

6.4.2 End of the proof of theorem 2

Thanks to Corollary 3, we know that there exists an €,-isometry f,, : u(U) — u(T},) between
the unfoldings of two developable surfaces T;, and S. Unfortunatly we need f, to be strong
(so as to be able to compare both unfoldings) and we want the Hausdorff distance between
both unfoldings to be bounded by quantities which do not depend on u(T5,).

Therefore, the idea of this part is to build a triangle mesh Uz C u(S) such that for every
triangle A of Ug (fna)™' : T — A is a strong é,-isometry (where Up is close to u(S) if 3
is small, € is small and 7 = f,(A)) .

Just notice that the triangle mesh Ug does not depend on the triangles of the triangle mesh
uw(T,) (if not, we would not have the result of convergence we expect, because the error
between two unfoldings grows up with the number of triangles, see Proposition 6).

Proposition 7 Let f : U — V be an e-isometry (where U and V are two connected compact
surfaces of B* and € €]0,0.2]). Let Ug be a triangle mesh included in U such that

4 6Haus(Ua Uﬂ) < 2/3:
i d(UﬂvaU) Z ﬂ:

e its height ng is strictly less than ﬂ—(f/?).

Then
Kg\/e+ 20
(1—2¢)* °

where Kz is a constant which only depends on Ug.

6Haus(U7 V) S
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Remark 12

1. If 3 is small enough, there always exists a triangular mesh Up satisfying the assump-
tions of Proposition 7. Indeed, if we put

Us = {m € U,d(m,0U) > 8} and Uy = {m € U,d(m,dU) > 2},

we notice that (if 8 is small enough) Uy, Uss and Ug \ Usp are connected surfaces.
Therefore, we can build a closed polygonal line I'g C f]; \ 6’;; We triangulate the
compact surface of E? whose boundary is T's such that the height ns of Vj is strictly
less than 5(1_\/—;) This triangular mesh is Ug.

2. The triangular mesh Ug can be built so as to have the angles of the triangles larger
than 26.56 degres. Therefore the fatness g, of Up is larger than 0.2. (the construction
can be as follows : we can build I'g such that the angles at every vertex is more than
60 degres. Then, by using Chew’s algorithm [17] we can triangulate Ug such that its
minimal angle is greater than 26.56 degres).

Proof of Proposition 7

We put Vz = f(Up).

The idea of the proof is the following : we are going to compare V3 and Ug thanks to
Proposition 6. Then we will be able to compare U and V.

Lemma 6 Let A be triangle of Ug.
Then (fia) ™' : f(A) = Ais an ( < )—strong isometry.

1—e

Proof of Lemma 6:
The fact that f : Us — Vj is an e-isometry implies that f~ : V5 — Ug is an <

€
1—¢

Let [a, b] be an edge of Us. Using the last assumption of Proposition 7, we have:

)—isometry.

d([a, ], 00) > g > TV 5 2bVE

l—e = 1—¢€

Just suppose that the shortest path Cy(f(a), f(b)) intersets the boundary V. Then it
means that f~1(Cy(f(a), f(b))) intersects the boundary OU. By using the Ellipse’s Lemma,
(Lemma 3), we have

bye

a
< —r
(fa.),00) < TV,

which is not possible. Therefore the shortest path Cy (f(a), f(b)) is the line [f(a), f(b)]. O

Kg €
<
Sttaus (U, Vi) < (1—2ep\1-¢

where Kg only depends on the diameter and the fatness of Ug.

Lemma 7
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Proof of Lemma 7:
Thanks to Lemma 6, we can apply Proposition 6. Therefore, we get:

‘Kﬁ €
ll ‘/ < .
6Haus( B ﬁ) = (1 26)3 1—¢€

Proof of Proposition 7:
Let v be a point of V. There exists a point vg € V3 such that f~1(v)f1(vs) < 23. Therefore

vs < T f )1 (w8) €

By using lemma 7, we have there exists a point uginUg such that

K’g €

< .
ST T 2ep3 1=

Therefore

< 203 N Kpg € <K5\/€+2,8.
“1—-€e (1—-2¢3V1—¢— (1—2¢)*

d(v,U) < vvg +vgug

Similarly, for every point u € U, we have

Kg € <K'g\/g+2ﬂ
(1—eBPV1—€e~ (1-2¢)* °

du,V) <28+

Proof of Theorem 2:

Using Corollary 3, we know that for every n, there exist an €,-isometry f, : u(S) — (7).
Since the normals of T}, tend to the normals of S and the height of T}, tends to 0, we have
that lim €, =0.

n—oo

Let v > 0. Let 8 €]0, 7] and Up be a triangle mesh which satisfies the two first assumptions
of Proposition 7 (Ug exists, see Remark 12). Then there exists ng > 0 such that for every

n > no, the height of T, is less than 2 (\1/;_;"), (Iff ﬁ < 1 and 2(1_17%)4 < 1. Therefore, by

using Proposition 7:

6Haus(dn(u(Tn))7u(S)) < +

N2
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7 Proof of Theorem 3

Let a €]0,1]. We denote by 2y the point of S? of coordinates (0,0,1). We define the points
2,..,2% on sphere S? by:

2t -3 2t -3
Vie{l,..,n+1} 25 = (acosﬂ( Zn ),asinﬂ( zn ),\/1—a2>.

Remark that 2, , = 27.
Step 1:
We are going to build points wg,..,w% on S so as to get:

, — ™ — ™
Vie{l,.,n} zfzowd = - and w20z, = -

Thus, if we define T/ as being the triangulated mesh

z¥ for 0 <i<m,

w for 1 <7 < n,
z¥zowi for 1 <¢ < m,
w§zgzgy, for 1 <i <,

whose vertices are {

and whose faces are {

we get the following property:

— —_— ™
j— [e4 [e7 (o4 [e7 j— j—
ara(20) = E (zi 2ows + w§ ZOZH-l) = 2n; = 2.

=1

n
1=

Let us build the point wf{:
let (z,0, 2) be the coordinates of w$. We have to solve the following equation:

wi € S,
(E)=< >0,
wzozy = 7.
Let:
a:acosf, b=1-+1-a2, CZQCOSE\/I—\/I—az,
n n
and

(a2+b2)? ’
_ ((12—b2)(62—a2—bz)—2ab6\/2a2+2b2—c2
22 = (aZ+b7)2 -

{ = (a2 —b2)(c®—a?—b%)+2abc/2a2+2b2 —c2
1=

A simple calculation leads to:

x=v1-22

wy solution of (E) < {
2=z 0u Z = 29.
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There are two solutions. We take z = z9, which is linked to the farthest point from zg. Let
us construct the points wg,..,w?. For every i € {2,..,n} let w¥ be the point of coordinates

2m(i — 1 2m(i — 1

(xgl cos M7 $z‘)1 sin M7 Zwa> X
n n !

Remark that if r is the rotation of angle 2= and of axis (Oz), we get

i a\ _ Lo [
4(21 2WY) = 234 20w

. T
Vi € {17 cy N — 1} r"(wlazozza) = w?+12021-a+2-

Step 2:
We are going to build new points uf,..,us on the sphere S? satisfying:

—_

Vie {1,..n} wizgug =T — w20 and ufzY wi, =T — wi_ 2% %0
Thus, by adding to the triangulated mesh T.%:

the points u; for 1 <4 <,

and the faces witeiyui for 1<i <,
udzd wyy for 1. <i <n (avec 25y = 27),

we obtain:
Vi€ {1,.n} arn(2) = 27.

Let us construct the point u{:
Let P denote the plane determined by the points O, zg and z,. We want to show that

—_

Juf € PNS?, wf/zgu‘f =7 — Zpzywy.
We define the application 3 by:

g: NP —E

z = WSz,

There exists 2 € P N'S? close to 25, such that the triangulated mesh K whose vertices are
20, 25, wf, wg and Z and whose faces are zpz§w{, zozSws, wz$z and w§ 2§z is a subset
of the boundary of a strictly convex set of E3.

Thus  ax(z2) < 27.
Since  ax(z2) = 28(2) + 220 25w,

we get  B(2) < T — w25 2.
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Let Z denote the point of coordinates (0,0, —1).

B(Z) > 7 — w2z

& cos(w§25'2) < — cos(w§ 2§ zp)
o _ cos(wl/z\zz) 1
cos(wi 25 20)
. . cos(w® 223
Since lim _ cos(wiiz5z) =

)

a=0  cos(w¥ 2g z) 3
we have 3ag €]0,1], Va €]0,a9] B(2) > 7 — wiz$z.

Since 3 continuous, we get:
e € DNS?,  wizgud = fud) =7 — 2025w

Furthermore, we know that the abscissa and the ordinate of u{ are positive. Thanks to the
symmetry with respect to the plane P, we get:

u§Zswg = T — w§ 252G
We know that for a €]0, ap], u§ is well-defined. We construct the points u§,..,u%: if r always

@
denotes the rotation of angle 2% and of axis (Oz), we define those points by:

Vie {1,.n} r(uf) =ul,.
We clearly have:

g QO QW) — o0 o a . . o«

Vi€ {1,.n) r'(wl ufzs) = wiud 28, with zip0a = 28,
5 .- rl(uazawa)_ua P with we . = w2

122 W2 ) = Uip1%42Wipo fro = W5

The triangulated mesh T satisfies the conditions of Theorem 3.

8 Conclusion and perspectives

The fact that two surfaces are close from one another (in the Hausdorff sense) does not
imply that we can compare their Gauss curvature. In particular, the fact of having a
developable triangle mesh closely inscribed in a smooth surface does not allow to conclude
on the “unfoldness” of the smooth surface.

However, in the case in which both surfaces are developable, the unfolding of the triangle
mesh gives a “good approximation” of the unfolding of the smooth surface if the normals of
both surfaces are close enough and if both surfaces are close enough.

In this paper, we do not care about the construction of the triangle mesh. Results
do not depend on a precise construction. However, it would be interesting to construct a
developable triangle mesh from a set of sample points which are on a smooth surface.
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Furthermore, we can wonder whether the approximation of the total Gauss curvature of
a smooth surface depends on the fatness of a triangle mesh inscribed in the smooth surface.
An interesting question could be to find an analogous result with an assumption on the
straightness of the triangle. Another interesting question concerns the convergence (or the
approximation) of the discrete pointwise Gauss curvature. What other definition can we
take for the discrete pointwise Gauss curvature of a triangle mesh? What assumptions do
we have to make on a sequence of triangle meshes, so as to get results of convergence?

RR n° 4615



42 Morvan & Thibert

References

[1] M. Berger, B. Gostiaux, Géométrie différentielle : variétés, courbes et surfaces (Second
edition, Presses Universitaires de France, Paris, 1992).

[2] U. Brehm, W. Kiihnel, Smooth approximation of polyhedral surfaces regarding curva-
tures, Geom. Dedicata 12 no. 4 (1982) 435-461.

[3] J. Cheeger, W. Miiller, R. Schrader, On the curvature of piecewise flat spaces, Com-
munications in mathematical Physics 92 (1984) 405-454.

[4] M. Desbrun, M. Meyer, P. Schroder, A. H. Barr, Discrete differential-geometry opera-
tors in nd, submitted (2000).
http://citeseer.nj.nec.com/desbrun00discrete.html

[5] Mathieu desbrun, Mark Meyer and Pierre Alliez, Intrinsec Parameterizations of surfaces
meshes, eurographics 2002.

[6] M. P. Do Carmo, Differential geometry of curves and surfaces (Translated from the
Portuguese, Prentice-Hall Inc., Englewood Cliffs, N.J., 1976).

[7] H. Federer, Curvature measures, Trans. Amer. Math. Soc 93 (1959) 418-491.

[8] J. Fu, Convergence of curvatures in secant approximations, J. Differential Geometry 37
(1993) 177-190.

[9] S. Levy, T. Munzner, M. Phillips, Geomview.
http://www.geomview.org/

[10] B. Hamman, Curvature approximation for triangulated surfaces, Computing Suppl. 8
(1993) 139-153 .

[11] Bruno Lévy, Sylvain Petitjean, Nicolas Ray and Jérome Maillot, Least square conformal
maps for automatic texture atlas generation.

[12] J. Milnor, Morse theory (Princeton University Press, Princeton, New Jersey, 1963).
[13] F. Morgan, Geometric measure theory (Acad. Press, INC 1987).

[14] J.M. Morvan, B. Thibert, On the Approximation of the Area Of A Surface, rapport de
recherche INRTA N 4375, février 2002.

[15] J.M. Morvan, B. Thibert, On the Approximation of the Normal Vector Field of a
Smooth Surface with the normals of a Triangulated Mesh, preprint.

[16] A. Sheffer and E. de Sturler, Parameterization of Faceted Surfaces for Meshing Using
Angle Based Flattening, Engineering with Computers, 17 (3), 326-337, 2001.

INRIA



Unfolding

43

[17] Jonathan Richard Shewchuk, Delaunay Refinement Algorithms for Triangular Mesh

Generation, 2001.

[18] M. Spivak, A comprehensive introduction to differential geometry, Vol. III (Second

edition, Publish or Perish Inc., Wilmington, Del., 1979).

[19] F. E. Wolter, Cut locus and medial axis in global shape interrogation and representation,

MIT Design Laboratory Memorandum 92-2 and MIT Sea Grant Report, 1992.

Contents

1

2

Introduction

Definitions

2.1 Smooth surfaces . . . . . ... .. . e

2.2 Trianglemeshes . . . . . . . . . .. L
2.2.1 Generalities . . . . . . ...
2.2.2 Triangle mesh close to a smooth surface . . . ... ... ... .....
2.2.3 Gauss curvature of a trianglemesh . . . . . .. ... 0000

2.3 Flat (or developable) surfaces . . . . . ... .. ... ... ..

2.4 Hausdorff distance between two subsets of B3 . . . . . ... ... ... ...,

Unfolding of a developable surface

3.1 Half “lampion” of Schwarz . . . . ... ... ... .. .
3.1.1 Comparaison of two half “lampion” of Schwarz . . ... .. ... ...
3.1.2 Two developable triangle mesh with the same vertices . . . .. .. ..

3.2 Approximation of the unfolding in the convex case . . .. .. ... ... ...

3.3 Convergence of the unfolding in the general case . . . ... ... ... ....

Some remarks on the approximation by developable meshes

Comparison of shortest paths

51 Onetrianglecase . . . . . . . . . e
5.1.1 Proof of Proposition 3 . . . . . .. . ... ...

5.2  Proof of Proposition 2 and its Corollaries . . . .. ... ... ... ......

Direct e-isometry of the plane

6.1 Definitions. . . . . . . . . . L e e e e e e

6.2 The Ellipse’s Lemma, . . . . . . . . .. .. . e

6.3 Comparison between two surfaces in the convex case . . .. ... ... ....
6.3.1 Exemple. . . . . . . .
6.3.2 Proof of Proposition 5 . . . . . .. .. ... oL o o
6.3.3 Proof of Theorem 3.2 . . . . . . . . . . . . . ...

RR n° 4615



44 Morvan & Thibert

6.4 Comparison between two surfaces in the general case . . . . . . ... ... .. 32
6.4.1 Proof of Proposition 6 . . . . . .. ... ... L. 32

6.4.2 End of the proof of theorem 2 . . . . . . . .. ... ... ... ..., 35

7 Proof of Theorem 3 38
8 Conclusion and perspectives 40

INRIA



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



