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Abstract: We consider a system consisting of a planar random walk on a square
lattice, submitted to stochastic elementary local deformations. Both numerical and
theoretical results are reported. Depending on the deformation transition rates, and
specifically on a parameter n which breaks the symmetry between the left and right
orientation, the winding distribution of the walk is modified, and the system can be
in three different phases: folded, stretched and glassy. An explicit mapping is found,
leading to consider the system as a coupling of two exclusion processes: particles of
the first one move in a landscape defined by particles of the second one, and vice-
versa. This can be viewed as an inhomogeneous exclusion process. For all closed
or periodic initial sample paths, a convenient scaling permits to show a convergence
in law (or almost surely on a modified probability space) to a continuous curve,
the equation of which is given by a system of two non linear stochastic differential
equations. The deterministic part of this system is explicitly analyzed via elliptic
functions. In a similar way, by using a formal fluid limit approach, the dynamics of
the system is shown to be equivalent to a system of two coupled Burgers’ equations.
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Enroulement dynamique de marches aléatoires et
processus d’exclusion. Partie I : limite thermodynamique

Résumé : Nous considérons une marche aléatoire évoluant dans le plan et soumise &
des déformations stochastiques. Des résultats numériques et théoriques sont exposés.
Selon les taux de déformations, en particulier suivant la valeur d’un paramétre 7 res-
ponsable d’'une brisure de symétrie gauche-droite, la distribution des enroulements
de la marche est modifiée et le systéme présente trois phases différentes: enroulée,
tendue et une phase vitreuse. Une tranformation explicite est proposée, qui conduit
& considérer le systéme comme résultant de deux processus d’exclusion couplés: les
particules du premier se déplacent dans un environnement déterminé par la distribu-
tion des particules du second et vice-versa. Chaque composante peut alors étre vue
comme un modéle d’exclusion inhomogéne. Pour toute marche périodique fermée, un
changement d’échelle permet de montrer une convergence en loi (ou presque sire sur
un espace de probabilité agrandi) vers une courbe, dont ’équation est donnée par un
systéme d’équations différentielles stochastiques que nous analysons. La dynamique
est analysée par une approche formelle de type limite fluide, qui met en lumiére un
systéme d’équations de Burgers.

Mots-clés : Marche aléatoire, enroulement, processus d’exclusion, limite thermo-
dynamique, transition de phase, équation de Burgers.



Dynamical Windings of Random Walks and Exclusion Models 3

1 Introduction

Random walks are fundamental objects arising in probability. Also they are of pri-
mary importance in various fields of physics, especially with regard to polymers [1, 2]
and biology. For instance, planar random walks can be used as a representation of
DNA coding, since the sequence of the four different kinds of codons (A,G) for purines
and (T,C) for pyrimidines can be considered as a random walk on a square lattice:
as a rule, (G,C) code the upward and downward jumps, whereas (A, T) code the left
and right steps [6, 8]. It seems therefore interesting to consider random geometrical
objects as complex systems, and to submit them to some dynamical principles, the
goal being to develop methods and tools which hopefully might be used to tackle
more realistic models.

In this context we will analyze the evolution of an arbitrary sample path Cy of length
N, generated by a simple random walk in the square lattice Z2, and subject to local
transformations. This stochastic object has a rich structure, plays an important role
in probability theory and lends itself to sufficiently wide but non trivial results.

At time t = 0, Cp is given, and we assume it has been uniformly generated. This
means precisely that each successive jump (up, down, left and right) building Cx
is selected with the same probability 1/4. Eventually Cy can be constrained to
be closed or to have fixed extremities. Once the initial configuration is defined,
the system evolves according to the four local pattern transformations depicted in
Figure 1.1. Only a single point of the walk can be moved at a time, with the
constraint that no link be broken (i.e. the walk remains always connected).

Geometrically, these patterns can be expressed as

left bend M1, right bend M3,
vertical or horizontal fold M2,
straight (——) M4,
and the following local distortions can occur:
M1 — M3, with rate AT,
M3 — M1, with rate A™,

rotation of M2 of angle + 7, with rate vE.

RR n°® 4608



4 Guy Fayolle , Cyril Furtlehner
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Fig. 1.1: Pattern transition rates.

Hence we have defined a global Markovian continuous time evolution of the system,
with exponentially distributed jump times, the state space of the underlying Markov
chain being the set of 4" sample paths (or curves) Cy introduced above.

This model is somehow a kind of discrete analogue of the Rouse chain [11], which is
a popular model for polymer dynamics. There, each point of the chain is harmoni-
cally bound to its nearest neighbor, and move randomly in space. Some interesting
statements can be made concerning the winding properties of such chains in 2d [12].
In this respect, from a probabilistic point of view, we keep in mind that winding
variables are for Brownian curves, and they give rise to striking limit laws under
convenient scalings (see e.g. [3, 4, 5]).

The paper is organized as follows. Section 2 presents the basic numerical and qual-
itative results, which rely on ad hoc discrete event simulation experiments together
with a convenient graphical interface. In section 3, we propose several possible ways
of coding the system with the related probabilistic descriptions (this section can be
only glanced at without too much damage). The last part of the paper (section 4)
contains the main quantitative results: relationships to exclusions models, scaling
and thermodynamical limit, fluctuation analysis via theorems of central limit type.

INRIA



Dynamical Windings of Random Walks and Exclusion Models 5

2 Numerical experiments

2.1 Observations

We shall begin our study with several basic numerical observations. The model is
purely stochastic and hence well-suited for Monte-Carlo simulations. These have
been performed with the help of a graphical interface shown in Figure 2.2, which
facilitates the exploration of the relevant parameter range, together with the display
of the main regimes and phases of the system.

K dbrown
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Fig. 2.2: Platform for numerical experiments.

Several parameters have to be tuned: the number of steps NV; the relative position
of the extremities of the walk (D, Dy); the boundary conditions, which either can
be defined to let the end points move independently, or can be fixed or to tied by
some periodic boundary conditions; finally, the time constants associated with the
elementary transformations, 71 with 7, 79 and 73 with A™ and A~. Any walk fulfilling

RR n°® 4608



6 Guy Fayolle , Cyril Furtlehner

these conditions is randomly generated at time ¢ = 0 and then evolves stochastically,
with a movement depending on the rates and boundary conditions given above.
After each new event, time is incremented by an amount inversely proportional to
the number of all possible moves weighted by their respective rates. Interesting

(a) (b)
(c) (d)

Fig. 2.3: Picture of a random walk of N = 5000 steps, showing the phases of the
system for several values of 7. Each colored segment represents 1000 steps.
(a) 7 = 0 (the basic scale). (b) n =5 (scale=1). (c) n = 12.5 (scale = 1/6).
(d) » = 250 (scale =1/2).

things happen when we break the chiral symmetry by imposing a detuning between

INRIA



Dynamical Windings of Random Walks and Exclusion Models 7

AT and A7, in a proportion of order

AT — AT

Ui

For closed walks, four different situations can roughly be observed (see Figure 2.3).

(a) n < 1. The initial configuration belongs to the equilibrium set of typical
configurations, only fluctuations are altered by the finite value of 7.

(b) 1 £ n < 6. The system reaches an equilibrium which still corresponds to a
random walk, the fractal dimension remaining equal to two, but a macroscopic
circular drift is observed, yielding a sort of smoking ring.

(¢) 6 < n < 50. The smoking ring gets stretched, and the elementary links be-
comes aligned over long distance. Fractal dimension shrinks to one, with the
apparition of a long range order. Rotational invariance is broken.

(d) » 2 50. The system is not able to reach its equilibrium. This typical configura-
tion (out of equilibrium) exhibits an intricate hierarchical structure of bubbles.
Smaller bubbles get evaporated into bigger bubbles. Time constants associated
to these mechanisms grow exponentially with the size of the bubbles. There-
fore, the final configuration corresponding to one bubble is never reached in the
thermodynamic limit. We will refer to this non-equilibrium phase as a glassy
phase.

2.2 Brownian windings

Some macroscopic random variables of interest can be constructed in order to be
able to follow numerically the evolution of the system. First of all the total number
of patterns M1, M2, M3, M4 is a set a variables which can be used to distinguish
between a folded and a stretched phase of the system. All these number are expected
to be fairly distributed in the folded phase although in the stretched phase we expect
the pattern M4 to be in majority. In order to express mathematically the curling of
the system, we consider variables related to the winding properties of planar Brow-
nian curves, which are defined as follows: with each point in the plane is associated
its winding angle 0, scanned by the random walker around this point. A limit law for
this variable has been derived by Spitzer for Brownian curves. Actually, assuming
the length of the curve is set to 2/ = Na? when N — oo and a — 0 in the Brownian

RR n°® 4608



8 Guy Fayolle , Cyril Furtlehner

0
-2 1

(a) (b)

Fig. 2.4: Winding sectors defined for a closed random walk (a). Color gradient rep-
resenting sectors for a walk of N = 108 steps: in red and blue, respectively,
positive and negative winding sectors; in green, the null sector (b).

limit, the winding angle 6(£) of an arbitrary point has the asymptotic probability [3]
1 1 1
lim P (e(ﬁ) =2 °g£>
{—o00

2 Trl+a?
For a closed walk, the value taken by 6 are limited to 2nw, where n € Z represents
the winding number associated with the point under consideration.

For each n, the set of points with the same winding number n form a winding sector,
whose arithmetic area is a random variable denoted by S,(£). Under the above
mentioned Brownian limit for closed curves of length £, we have [9]

14

2mn?’

E[Sn(6)] =

In a similar way, the total algebraic area enclosed by the Brownian curve is defined
as

A(L) =) nSa(0),
neL
and its distribution is given by Lévy’s law [4]
s

lim P(A({) =2s) = ———.
P (A() = 2s0) 2 cosh?(7s)

INRIA
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Fig. 2.5: Evolution of the total algebraic area (a,b,c). First transition with conden-
sation in the first winding sector (a) N = 1000 steps. Unfolding transition

with metastable states for N = 2000 steps (b). Curves (c) and (d), drawn
in a logarithmic scale for N = 10°, represent respectively the slow dynamics

and the distribution of the S;,’s.

The variable S,,(£) is indeed enough for a complete characterization of the phases of

the system.
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Fig. 2.6: The limit arithmetic area of the first winding sector when 7 varies, rescaled
by N (a) and by N? (b). The dashed line in (b) is computed from part
4.3 giving the critical value 7. = 27 separating the folded phases from
stretched one. Scaling with N of time-constants for the transient regime
(c) for n = 10; the fit gives a value 2.01 for the exponent.

2.3 Slow dynamics
The study of winding sectors and of associated variables is especially well adapted to

describe the evolution of the system, since the presence of curls has a direct impact
on the S, distribution. A small but finite value of 7 < 1 will show itself by the

INRIA



Dynamical Windings of Random Walks and Exclusion Models 11

existence of a shift in the distribution of S,, together with an unbalancing between
positive and negative winding sectors. When 1 < 7 < 6, the distribution of S,
condenses into either S; or S_;. However, the behavior of S; or S_; with regard
to scaling factor does not change, and these variables still scale like N. The system
reaches its stationary state after a transient regime characterized by a single time
constant (Figure 2.5a). For 6 < n < 50 the system get stretched, an unfolding
transition occurs. S; or S_; scale now like N2, and the fact that the walk is taut get
reflected in the distribution of the motifs My, My, M3, My. When 5 2 50 we obtained
a glassy phase. This is related to the apparition of a hierarchy distribution of meta-
stable configurations. The system evolves slowly to the rate of bubbles evaporations,
small bubbles collapses and produce bubbles of bigger size. As a consequence, the
transitory regime is completely different. For small size systems (see Figure 2.5b), it
is observed that the total algebraic area increases by successive steps. These steps
correspond to intermediate metastable states, consisting of bubbles of increasing
size. The associated time constants behave roughly exponentially with the size of
these bubbles. When N — oo (see Figure 2.5¢), a continuous spectrum of time
constants is obtained and the convolution of these dynamical effect corresponding to
different scale end up in a slow dynamical grows. The total algebraic area increases
logarithmically with time. We observe also (see Figure 2.5d) that the distribution of
Sy, seems to have a limit characterized by the absence of negative (or positive) sectors,
i.e. strictly zero for negative (or positive) index n, together with a scaling exponent
around 1. Indeed this sequence of distributions seems to behave like n™!, instead of
n~2 for n = 0. Also the glassy transition is clearly of first order, with coexistence
of a liquid phase (part of the walk which remains folded and disordered) and a solid
glassy phase. The parameters corresponding to temperature and magnetization can
be defined by analogy with standard spin glasses. They can be tuned independently,
as we shall see later on, by letting vary 5 (which is roughly equivalent to the external
magnetic field) and «y (pertaining in some sense to the temperature).

3 Sequence coding and generators: two formal approaches

3.1 A group decomposition
The dynamics of the system is Markovian. Its description involves a configuration

space {a}, a probability measure P, and the generator G, of the evolution operator.
Since the elementary transformations are local, and associated with each point of the

RR n°® 4608



12 Guy Fayolle , Cyril Furtlehner

(a) (b)

(c) (d)
Fig. 2.7: First order glassy transition, with coexistence of a solid phase (on the edges)
and a liquid phase (at the center). The scale is divided by a factor of 2
in (c) and of 4 in (d). The blue gradient indicates that all windings are

negatives. A complete sequence of blue corresponds to an increase of 12
winding numbers.

random chain, G may be expressed as a sum of operators

N
Gag =Y 9ap(i),
=1

INRIA



Dynamical Windings of Random Walks and Exclusion Models 13

Here it is to be understood that each g(z) operates on a real space, endowed with the
base {wq, (1) @ Way (2)... ® way (N)} defined tensorially with respect to sites i, where
each «; stands for possible configurations at position i. Therefore, the sequence
{ai,...,an} will generically denote a given configuration of the system. Then g has
the following representation in the base of local operators

g(i) = )\+0+(%)(1—0 (@) + Ao ()1 - o™ (i)
v*(R() - RY3)) + 7~ (R’ — R'(i)),
3

where o (i),07 (i), R(i), R°(i) are the elementary operators corresponding to the
transformations given in the introduction. They enjoy the following properties:

o*(i)> = 0,
ot (oF (ot (i) = o™ (0),
of()R(i) = R(i)o=(i) = 0,
R3(i) = R(i).

The fact that the transformations are local is illustrated by the commutation property
h(i)h(i +2) = h(i + 2)h(3).

Many representations can be defined to encode system configurations. For example,
we could take the sequence

Qq = {Zl =T +z'y,z2,...,zN}, (ZZ S Z+ZZ)

formed by the affixes of the successive points in the plane, with the constraint that
each point is separated from its neighbors by a single link. Another possible choice
is

O ={v1 =2 — 21,02 = 23 — 22,..,UN-1 = 2N — 2N-1}, (vi € {1,4,~1,~i}),

the set of successive links, which corresponds to the tangent map to {2y. In this case,
the center of gravity, i.e. the average over all point positions z* = (21 + .. + zn)/N,
defines equivalent classes. Then taking the tangent map to €2; yields the sequence

Qo = {u1 = v — v1, U2, ..., UN—2 = UN-1 — UN-2},
which represents the patterns defined in introduction. In that case, the drift

v* = (v +---on-_1)/N

RR n°® 4608



14 Guy Fayolle , Cyril Furtlehner

depicts the separation between extremities, and may serve to define different equiva-
lent classes. We will see later that, depending on the boundary conditions , z* and v*
can be decoupled from the dynamics. In particular, this is true for periodic boundary
conditions. Indeed €29 should be the natural representation to express the dynam-
ics of the system, since elementary transformations are performed on the patterns
defined at each point of the chain. However, although any possible transition at a
given point depends solely on the pattern of the point (for example a AT-transition
at point 4 can take place only if the walk performs a left bend at that point), the
result of this transformation involves three successive patterns (for the event AT, the
pattern at ¢ becomes a right bend, and both adjacent patterns at 1 —1 and 7+ 1 are
modified). On the other hand, in the ; representation, although each transition is
conditioned by a pair of links, the result does modify only this pair.

We choose now 23 to express G properly. As a site ¢ of the chain has four pos-
sible configurations, depending on the orientation of the link w;, let us introduce
{wo(i),w () wa(%),ws(z)} the corresponding base in a four-dimensional space, and
consider ¢*#(i), a, 8 € {0,1,2,3}, the set of operators defined on this space by

¢°"ﬂwu = 0guWa-

In particular ¢®®(7) is the projection onto the state w, at site 7, the remainder of
the sequence being left unmodified. With this notation, the generator takes the form

qsa a(z)qsa—l—l a+1( )]
¢a+1 a+1 )¢a a( )]
¢a, ( )¢a+2 a+2(Z + 1)]
¢a, ( )¢o¢+2 c»z-f—2(Z + 1)]

g(d) = AT [¢the( (i+1

+ A [ (3)p* (i +1
bt e+ 1
o [ @ 4 ) -

¢a,a+1
¢a,a+1

' N’ e e

: (3.1)
and commutation rules write
[679(0), 6 ()] = 83 (69u9™ (i) — baw $°6))

The form (3.1) could be used to construct a transfer matrix representation [13]. For
the moment, one can simply remark that the Lie algebra L generated by the ¢*” is a
Zo-graded Lie algebra [20], so that it can be decomposed onto two Lie sub-algebras
denoted by Ly and L1, with the commutation relations

[Lo, Lo] C Lo,
[EO)‘CI] C £17
[[,1,51] C Eo.

INRIA



Dynamical Windings of Random Walks and Exclusion Models 15

This leads to introduce the following linear combinations

kP — Z “”’“ ¢a+q, (3_2)

€{0,1,2,3}

for p,q € {0,1,2,3}, with the commutation rules

. ! . !
!l 1Tpq TP q ! !
(KP4, kP = (e 5 TS )Kerp atd

where the sums p+ p’ and ¢+ ¢’ are taken modulo 4. One easily verifies that, when q
varies, k%9 and k%9 generate Ly, while k¢ and k37 generate £1. In addition, from
the very definition (3.2), the quantities

QO = E] K’O,O(j)7
Ql = Z] K’l’o(j)a
Qs = 3, 00,

do commute with the generator. Later, by means of a more intuitive representation,
we will be able to interpret the above formalism in terms of conservation of particles.

3.2 Chaos game representation

A way commonly used in DNA modeling ([15, 14| and references therein) in order to
visualize dynamics in the configuration space consists in encoding the random walk
as an array of integers «; € {0,1,2,3}, 7 € N, and to associate with each sequence a
complex number z, where

=1
Z T p(imay/2).

Graphically, this leads to the successive inclusion of disjoint square sectors repre-
senting the filtration defined by the random walk (see figure 3.8). To each random
walk of length N corresponds a square of area 4=V centered at the related point z.
There are exactly 4V elementary squares and it becomes possible to define a discrete
probability measure 7(z,t), constant on each such square, and whose evolution at
time t is given by the forward Kolmogorov’s equations

St = [ a9, ).

RR n°® 4608



16 Guy Fayolle , Cyril Furtlehner

33 3123 22 / 233 23%1223 222

Z}O = ‘% 11 2%0 23 0 22%1
43 ra 3 ZIELZ 2&3 2 213 2%2
00 0F—T—10 11 200 2051210 211

Fig. 3.8: Chaos Game representation of the first two links of the chain (left) and
change of scale (right) representing the next link. Arrows indicate the tran-
sitions 7 (center) and A (on the edges).

where g(z, ') denotes the kernel of the infinitesimal generator in the above represen-
tation. Let gy be the part of the operator which operates at the upper level of the
representation, that is on the first two links (see Figure 3.8), and let D the dilation
operator mapping z onto 2z. Then g writes

g=go+Dg D' +D*gD7 %+ ...
Moreover, as N — oo, g must satisfy the consistency relation
9=g0+DgD™",
which can be split into two parts
9= g1+ 92,

where

91 =go+D*¢1D7?,

g2 = DgoD ! + D?gsD 2.

It appears that g1, g2 can be easily diagonalized, since gg is diagonalizable and com-
mutes with D2goD~2 and all higher order terms. Hence g1, g2 can be endowed with
a simple tensorial structure which, in matrix form, reads

INRIA



Dynamical Windings of Random Walks and Exclusion Models 17

00 01 02 03 11 12 13 10 22 23 20 21 33 30 31 32

0] 00
[-AT] AT] 01
-] vl [vf] |02
=171 D] 03

]

Py = ] [-A7] 10

[-2F] [AT23
*] (-] [v7] |20
] [=17] 21

AT] [-AT] 30
(7] (] -] |3t
D] 43

The self similarity is revealed by the fact that each 4 x 4 block element becomes
16 x 16 when one takes an additional link, in such a way that P, is added to itself
in these blocks. The problem is intricate since g1 and g2 do not commute. When
vt = v, Py can be diagonalized and its eigenvalues are 0 (9 times degenerated),
—(AT+ A7) (4 times degenerated), —y (twice degenerated) and —2+ (simple). These
simple tensorial structure simply reflects the scale invariance in the chaos game
representation or the translation invariance in the initial representation. When N —
o0, it should be possible to exploit this symmetry to build an iterative map, aiming
at generating the invariant measure or the self-organized critical one in the glassy
phase. Before doing this, we will propose another formulation of the problem in
terms of particle hops with exclusion.

4 Coupled exclusion models and thermodynamic limit

4.1 The mapping

In the last section, we used a representation helping to visualize the configuration
space. There transitions between configurations were expressed as exchanges between
square domains. We may go a bit farther on, using the fact that mutations are always
either vertical or horizontal, and with opposite directions between both modified links
(see Figure 4.9). This suggests indeed to recode each link j, 7 =1,... , N by means
of two binary components s§ € {0,1} and sg’- € {0,1} thus establishing a bijection

RR n°® 4608



18 Guy Fayolle , Cyril Furtlehner

aj — (89, J) such that

In this scheme a transition on a link does touch only either of its components. Indeed
the infinitesimal generator is the sum of two terms: the first one acts on the sequence
{s¢}, with rates conditioned by the sequence {s?} and vice-versa. We have thus a
Markov process with state space

(5%,5") = (s, 80), o (55, 5h) )

a 2N-dimensional boolean vector. Then, for an arbitrary function f : (5%, S%) — C,
the generator decomposes into

N

G =) ha(d) + (i), (4.1)

i=1

where
hai)f (5", s”> Sty [F (6580, (0, 50), (L840, o (5,50 ) — £(5%,8)]
z+1 f ((S(llasl{)a ) (0a51+1 SNas )) f(sa Sb 7

holi)F(5°, 8%) X (4) m[f(sl,sl (2,0), (581, 1), - sN,sN>) £(s%,5")]
+ A, (0)stst, [f ((sl,s’;),...,(si,n, (5%01,0), - (sN,sI]’V)) — £(5%, "),

using the boolean notation § =1 — s. In order to express these generators in terms
of local operators, let us define the following pairs of operators (a;,a ) and (bj,bT)
they leave unchanged the sample path, but the first [resp. the second] component of
link j, and they are given by

def  a

(4.2)

INRIA



Dynamical Windings of Random Walks and Exclusion Models 19

In terms of these operators, we also have (for (a) species)

+
A 3|2

3 2 3 2 2
@ ® @ @G
-

7 1+1 7 +1

N
o
=
)
+
o
=
O MOKNOE
-~ -~.
=

3
i
3
O ] — [
; .
3
) t+1 i i+ 1

Fig. 4.9: Horizontal and vertical exchanges corresponding to transitions when link
1 has the value 0, according to the coding of section 3.2. Rules for other
transitions follow by rotational symmetry.

ha(8) = A7 (i) (1 — azal, Dalairs + A5 (@) (1 — aiv1a])a], as.

Transition rates can be computed by inspecting the different cases, which yields the
following expressions.

+/:\ _ <bzb bob £ , =bob bsb ot
Aa(8) = 585 1 AT + 878] 1 AT + 508707 +875] 477, (4.3)
+/\ _ zaza + a.a =a .a + aza )
Ay (4) = 5§50 A* + 57 Sg AT + 878t v + 878 T

The generator (4.1) represents two coupled systems of particles moving on a one-
dimensional lattice with exclusion (i.e. there is at most one particle of each species
per site [19]).
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3l 21
0
2
1
0 b
) 3 2 |=—s"=1
0 1 |=—st=0
1 2

(b)

©

Fig. 4.10: Correspondence between chaos game representation of the random walk
(a) and one-dimensional models of particle diffusion with exclusion. In
(b), the sequence {5} [resp. {s’}] determines the profile of the diffusion
[resp. the distribution of particles|, drawn for y* = A*; in figure (c) the
role of the particles has been exchanged.

These particles perform random elementary jumps to the left or to the right. Ob-
viously, both systems are interlaced: the jump rates A (i) of species (a) at site i
are conditioned by the states of particles of species b at site 7,7 + 1, and conversely
according to relations (4.3). Setting

AT+ A" dget AT =27
A E 22 and pE 2
2 2 ’
oy +
LA LR NPT AR (4.4)

(with similar definitions for A4, Ap) the sub-generator of species (a) rewrites

ha(i) = Xa(i)(a] — al,1)(ait1 — a)
+1a (%) [a;'r(aH—l —a;) + (a — a§+1)ai] + Va(i),
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where A, (7) and p4(7) denote respectively the diffusion coefficient and the drift (with
the same notation as in (4.4)). After a routine algebra, we obtain

2
) = A+ (=N (st —s)
) = ﬂ(1_3?_3?+1)+5(3?+1_3?)7

. 2

) = A (=N (st - D),

) = st + sty = 1) +6(sF = st). (45)

It is worth remarking A, and Ay are strictly positive except when v equals zero, in
which case they might be zero at certain points. The interaction term takes the form

Va(i) = 2Xa(2)sisi1 + 57 (pa(d) = pa(i — 1)),

where p4(7) can be interpreted as a potential. A convenient representation of the
system is to draw a one-dimensional profile from the sequence {s’} (positive or
negative slope depending on whether s equals 0 or 1), to sketch the probabilistic
inclination to turn left or right, as shown in Figures 4.10b, 4.10c.

In the particular case y* = A%, we get

Xa (i) =

N[

A HA) £ (s =5 =2,

3

M) = ST+ A F (58— DT =X,

N[

and the sub-generator of species (a) takes the form
he(i) = )\a;’ (ait1 + ai—1 — 2a;) + p(2s? — 1)((11 - aL_l) (@i + aiy1) + Va(i),
where V, (%) is a diagonal term,
Va(z) = Asi(sips + si-1)-

In this particular case, A represents explicitly the diffusion constant of an isolated
particle, with drift u, the sign of which is determined by s. V(i) is reminiscent of
the interaction between particles coming from the exclusion constraint.

The distribution of particles labeled (a), submitted to the diffusion defined this way,
is given by the sequence {s?} (0 or 1 particle depending on the individual site values
of 55). A complementary model is obtained by exchanging the roles of s® and s°.
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%@)/‘A
W)\\/

b)

(

Fig. 4.11: (a) Elementary transition due to the jump of a type (a) particle, and the
corresponding deformation of the profile defined by s® (b) (y* = A¥)

In addition, elementary transitions of the system correspond to jumps in the left
or right direction of particles (a) and (b). In the complementary formulation, these
transitions are materialized through modifications of the profile determined by s or
s® (see figure 4.11). Therefore, from this viewpoint, we can formulate the dynamic
of subsystem (b) in terms of a KPZ model [17], in which the noise is produced by
the distribution of particles (a). With this formulation, the conserved quantities
(pointed out earlier) can be obtained in a straightforward manner, since they simply
express conservation of particles. If boundary conditions are such that particles
cannot escape from the system, the population of both species is conserved. This
is for example the case when we impose periodic boundary conditions or also when
extremities of the chain are fixed.

Suppose we fix the total amount n, and ny of particles (a) and (b), this results then
on the random walk by the fact that ng + n3 = n, and ng + n1 = ny are fixed (n; is
the number of links 4). Since ng+n1 +n2 +ng = N it then easy to convince oneself
that this is equivalent to fix ng — ng and n; — ng, which is enough to determine the
respective positions of the initial and final points of the walk.

In addition, except when v = 0, we get an easy way to determine the irreducible
classes of the system. In fact, for closed systems with a fixed number of parti-
cles, once the population of each species is fixed, just start from the configuration
(11..1100..00) for both species where all particles have been disposed to the left.
Then, owing to possible consecutive jumps to the right, which for v # 0 are always
authorized, one can reach any arbitrary configuration. This shows that for closed
systems irreducible classes are indexed by the number of particles in each species,
which corresponds to the separation between extremities of the walk. On the other
hand, for open sample paths with free boundary conditions, irreducibility holds as
long as particles can both enter and leave the system. An interesting point is the
way stable configurations, which are numerically observed, are represented by means
of this exclusion process formulation. In agreement with the intuition, Figure 4.12
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() (d)

Fig. 4.12: (a) Stable configuration for closed chains. (b) Corresponding represen-
tation in terms of exclusion models. (c) Glassy state with N = 5000.
(d) Corresponding KPZ landscape with the density of trapped particles
represented in white.

depicts a stable situation where particles are trapped in a well. As this remains
true with the complementary representation (see the lower part of Figure 4.12b), the
following iterative scheme could be used to generate the global invariant measure:
let particles (a) evolve assuming the dynamics of particles (b) is frozen; then, once
this conditional stationary regime is reached, switch to particles (b) conditioned by
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particles (a), etc. Translated mathematically, we proposed the following iterative
scheme in order to capture the invariant measure

X = Tim E($°(0) | S°(0) = Y™, 8°(0) = X7,
—00
Y = lim E(S°(2) | 8°() = X7, 5°(0) = V™).
—00
Numerically, the sequences of random variables X™ and Y™ seemingly converge for

n < 50 to the stationary variables $%(oc) and S°(00).

Up to an abuse of notation, we shall often identify the random process with any of
its sample paths. For instance we shall simply write P(S¢ | S?) [resp. P(S® | §9)]
the conditional invariant measure of particles (a) [resp. (b)] when the dynamics of
particles (b) is frozen. Then the iterative scheme can be reformulated as

Poa(8%) = ) P(S*| 5")Qn(S")
{st}

Qn—H(Sb) = Z P(Sb | Sa)Pn(Sa)
{5}

where P, [resp. Qn] represents the probability measure of the S® [resp. S°] after n
steps. If this iteration converges, the joint probability for the invariant measure will
be given by

P(5%5%) = P(5° | $")Q(S°) = P(S" | $*)P(5%)

in case these two expressions coincide.

4.2 Conditional equilibrium
4.2.1 The case of a stretched walk

Let us have a look to a special case which can be solved exactly. It will provide some
hints about scaling of the parameters when N — oc.

Consider a random walk with fixed extremities, and consisting only of links oriented
either to the north or to the east, i.e (o; € {0,1},2 = 1...N). Here folds do not
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—_——

Fig. 4.13: Stretched random walk and asymmetric exclusion process.

exist (see figure (4.13)), so that s® = 0 everywhere and solely transitions A* take
place. It turns out that the invariant measure has the product-form

P(ai,... ,an) = PayPay---Pay -

Indeed, introducing the occupation rate of particles (a) ¢; = p1(1) = 1 — po(i), we
have the balance equations

AT = @)gir1 = A (1 — i) (4.7)
Setting
Ti = & )
1—g
we obtain a geometric series
N
T; = To (i—Jr) = 7pexp [z log %] . (4.8)

In (4.8), the ratio

n_A A
N M+ rx XN

already introduced in (2.1) and (4.4), gives the typical scale n. ~ %, above which we
obtain straight aligned patterns. Here 7y is a normalizing constant, which permits
to fix the expected value Dy of the particle density

1 N
v = ﬁ Z ﬂ{cw:l} )
=1
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that is

T3

1Y 1 Y
Dy = E(v) ZWZQi:N21+Ti'
=1 =1

Letting N — oo, we analyze the limiting process under the scaling,

def . N/},
= lim —- 4.9
n= lim —=, (4.9)

where 7, up to some abuse in the notation, is now a parameter independent of .
This is tantamount to assume that g is implicitly a function of N.

Fixing ¢ = i/N and taking the expansion with respect to n/N in (4.8), we get the
limit equation

r(z) = ro exp(—2nz), (4.10)

which implies in turn

1
1 1 1470
Dy = dz |1 — =—1o )
0 /0 I ( 1+ 7 exp(—2nx)> 21 & 1+ 7o exp(—27)

Consequently,

sinh(nDy)

st . S |
sinhn(1 — Dy)

The integral of the particle density, taken as a function of z, is shown in Figure 4.13
and is given by

z 1 1 147
hz)= [ du(1- =-1
= [} (1 Tmmeram) 0 et

This asymmetric exclusion model can be solved under more general conditions, in
particular with open boundaries, using matrix methods [21]. The above simple ex-
ample confirms the observed fact that the correct scaling parameter is indeed 7, and
also somehow explains why the chain remains Brownian when 5 < 1.
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4.2.2 The general case

Once the sequence {s°} is given, particles (a) form a unidimensional exclusion process
in an inhomogeneous environment. Its transition rates to the right or to the left at
position ¢ have been given in (4.3).

Our basic claim is that the reasoning of section 4.2.1 still holds for a closed system
where the number of particles is kept constant. Exactly this means that, as long
as there is no current in the system, conditional detailed balance equations of type
(4.7) are still valid at steady state, just replacing AT by AE ().

We present no proof of this fact (which could likely be obtained by coupling argu-
ments), and write brutally the equilibrium equations

@)1 =Pl = A (gt (1 —¢fy), i=1...N,

where sites N +1 and 1 are identified for periodic boundary conditions, and ¢ [resp.
qé’] is the random variable equal to the conditional probability of having one particle
of type (a) [resp. (b)] in position 4 given the sequence {s°} [resp. {s%}], that is

¢ =E[s{ | S"], ¢} =E[s} |5 (4.11)
Setting
def q‘~‘
’[‘;’7’ - 1 _Z qzaﬂ
we obtain
A (7)
loglrt,] — log[r#] = log (A; @)' (112)

By using (4.3), an easy algebra based on the boolean character of the 52-’ yields

RO A—p (v = 86)(A+n)
Fp Bl b e (o Gy

with a similar equation for type b particles. In addition we observe that the con-
straints

>

log (4.13)

>~
~—

a _..a b _.b
T™+1=T1, TN31=T1
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for periodic boundary conditions, will be automatically fulfilled as long as the system
of particles (b) is globally neutral (i.e. particles and holes have the same cardinality),
in which case

4.3 Closed curves: weak convergence for large N

We will now combine the stationary product forms obtained for each particle species,
according to the iterative scheme proposed at the end of section 4.1. Throughout
this section, the dependence on N of the random variables gy, q,ﬁ, given by (4.11), is
kept implicit for the sake of shortness in the notation.

Introduce {w?,i > 0} and {w?,i > 0}, two families of independent and identically
distributed Bernoulli random variables with parameter 1/2 and values {1, —1}. With-
out further comment, we assume that (5%, S%), {w?,i > 0}, {w?,i > 0} are defined
on the same probability space.

Lemma 4.1. Let ap, k > 1, denote a sequence of complex numbers satisfying the
condition supy, |ag| < 00.

There exists a probability space such that

N

N
1 1
N Z agsy = N Z or(gh + ofwl) + O(N7?)  a.s.,
’“;1 ’“;1 (4.14)
1 1 _
N Z st = N Z ar(gd + abwd) + O(N7?)  a.s.,
k=1 k=1
where
op =/l —qf), op=1/d(1—¢q}), VE>1. (4.15)

Proof. The starting point is the straightforward decomposition of the probability
measure P(S%, S°) as

P(8%,8% = P(5%| S°)P(8%) = P(S° | §4)P(S8%).
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Considering the invariant measure of the process (S%(t), S®(t)), we claim the condi-
tional probabilities P(S®|S%) and P(S® | §%) coincide with the equilibrium proba-
bilities obtained in the last section for each particle species. In the present situation,
this is tantamount to writing the equation

N
P(s*| 8% = ][ (staf + 531 — a)),

=1

where the ¢f’s depend implicitly of S®. To analyze more precisely the coupling
between the two families, we introduce the Laplace transforms

o) < E[exp{%éaksﬁ}] =E [ﬁ [1+gi(e™ — 1)]].

k=1

Then
1 & 1 O 1
ot(@) = E[exp{ & o anat + 15 > adatt1 - ) + 0 ) .
k=1 k=1

On the other hand, starting from the equality

1 - 1 N N a
E [exp{ﬁ Z ar(gf + a?w?)}] =E [exp{ﬁ Z gy + Z log cosh %H ;
k=1 k=1 k=1

with regard to the (a) species, we observe that the value of o given in (4.15) gives
the matching

E[exp{%éaksﬁ}] _ [Eexp{%fjak(qg+agwg)+0($)}]. (4.16)

k=1

Since all random variables at stake are uniformly bounded, equation (4.16) yields at
once (4.14), but only in distribution. To conclude the proof of the lemma, we make
use of transfer and coupling theorems due to Skorohod and Dudley (see [16], theorem
4.30 and corollaries 6.11, 6.12), which allow to switch from equalities in distribution
to almost sure properties, since on the original probability space the right member
of system (4.14) is a measurable mapping of the left one. ]
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4.3.1 Fundamental scaling, thermodynamic limit and fluctuations

For any 7, 1 <i < N, we put ad libitum z =4/N,0 <z < 1.

Proposition 4.2. Under the fundamental scaling

)
0
v

the weak limits

p(z) = lim ggy and p’(z) = lim gzy (4.17)

exrist and satisfy the autonomous system of deterministic nonlinear differential equa-
tions

W) — s @)1 - @) (@) - 3): "
b(y '
WD) — a1 - @) (@) - ).

In addition, the assumed closure of the original random walk imposes the relations

fo dx—fo 5”:%7
p@+n=pm» (4.19)
P +1) = p(a).

Proof. Taking the expansion with respect to N in equations (4.12) and (4.13), and
using lemma 4.1, we get after some algebra

k—
TR 2n b, b 1
log E =N Z 2q] + 2ajwj -1+ O(ﬁ) a.s.,
J—k . (4.20)
7"2 2n 1
logﬁ :—WZ(QQJ + 20w —1)+O(ﬁ) a.s.
j=1
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Since N is a parameter and x rather stands for a variable, it is be convenient to
introduce the following functions of z

s oA RV B IR e}

and similarly for the (b) species.

To omit some tedious technicalities, we will only sketch the remaining lines of the
proof.

First, it is not difficult to see that by restricting the expansion in (4.16) up to terms
of order N~!, and using the definition of Ths r,’;, we come to the simplified system

'

S

-1
riexp| 23 (2¢) — 1)]

1
qp = = -I-O(—) a.s.,

k—1
1+Ti‘exp[%nz 2q]—1]

1
3 J= (4.21)
r} exp [—%” (2q8 — 1)]
j=1 1
q,’; = = + O(N) a.s

1+7bexp [—QW" (2¢f — 1)]
\ j=1

In a second step, it can be shown from (4.21), as in a purely deterministic context,
that the quantities ¢%(z), ¢% (z), form Cauchy sequences, hence converging, for all
0 <z < 1. To see that the deterministic limits (4.17) exist and satisfy (4.18) is
straightforward by approximating discrete sums by Riemann’s integrals. This yields
the differential system

52 loe 721 = 2n(2pu(a) ~ 1),
0 b(x
% [log P ,(Ob().’E)] = 277(2911(:5) - 1))

which has similarities with the famous Lotka-Volterra equations, where z plays here
the role of the time. It is worth noting that (4.10) is immediately revisited, taking
merely p°(z) = 0 (i.e. the density of particles (b) is kept constant). |
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It is also tempting to get some insight into fluctuations around the above deter-
ministic limit. This will be achieved by establishing the forthcoming central limit
theorem.

Proposition 4.3. Under the fundamental scaling, the weak limits

¢%(z) = lim \/NM ¢'(z) = lim \/NM, (4.22)

N-—co ol(zx) N oy ()

erist and satisfy the system of stochastic differential equations
dg*(z) = 4n|o2(2)g" (@)dz + ou(z)dW()], o

4.23

dg*(z) = — 4y |03 (z)g"(2)dz + ou(2)dW ()],

where

z) = V(@) (1 - p%(a)), op(a) = \/p”(iv)(l — (@)

Proof. Letting

Xy (2 \/—Zwk’ X} (@ \ﬁz%

we consider the two white noise processes

We(z) & Jim X3 (), Wo(z) ¥ lim X% (x).

N—oo
We call on a strong approximation theorem, which is a refinement of the invari-

ance principle (see [18]: it shows how to construct W%(z) and W’(z) on the same
probability space as X§, and X?v) in such a way that

vt =W =o().

log

Arguing as in the derivation of proposition 4.2, we can write
log N
=2 [ du wdW'(u) + O( 52,
%(0) o [ du ), ok o (%
)

lo gm —277/ du(2 -1)— A a?v(u)dWa(u) +O<]0gN),
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where the stochastic integrals are taken in the It sense (see [22]). Defining g% ()
and g% () by the equations

(@) = p'(2)+oi(z)gh (2),
av(@) = () + oj(2)gy(2),

then putting these expressions into (4.24) and differentiating (4.24) (details are omit-
ted), we are lead to (4.24. The proof of proposition 4.3 is completed. [

Remark Let us comment on the scaling of §. Contrary to the scaling of u, which
is naturally dictated by homogeneity (the sums in (4.20) remain meaningful after
dividing by N, when N — 00), it is a purely dynamical consideration which dictates
the scaling of 6. Indeed, 1 and ¢ are associated to time constants 7, and 75. The
quantity 7, represents the typical unit of time for a free particle (a) or (b) to drift
along the system over a finite distance, whereas 75 is a time-scale for rotations of
vertical or horizontal fold M2 of the chain, remembering that ¢ stands for the detun-
ing between 41 and «~ defined in section 1. Therefore either these time-scale are
coherent and § is rescaled, otherwise rotational motions of M2 occur at a shorter
time scale and a different analysis has to be conducted, since motifs M2 (which cor-
relate hole-particle pairs of species (a) and (b)) reach their equilibrium distribution
before particles have enough time to move along the system. Numerically we could
not perceive any specific effect related to §, so that we restricted ourselves to the
above fundamental scaling.

4.3.2 Second order phase transition

Here we focus on on the deterministic (4.18) part of the equations. Using the notation

def

va@) 2p%z) — 1, wz) L 2ph(a) - 1,

apart from the trivial solution v4(z) = vp(z) = 0, we obtain from (4.18)

Va(z) Ova(z) _ w(z) Ow(z)
1-v2(x) 0z  1—vi(z) Oz
or, after integration,
C
1-v2(z) = ——— 1
vy (z) —2(@)’ 0<C <1,
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since |vy| < 1 and |v| < 1. Plugging the last relation into (4.18) leads to

2
(242) = sl - 0 i .

the solution of which is the standard Jacobi elliptic function

1 sn(nz, V1 —C).

Vva(z) = m

Finding the constant C' is equivalent to compute the fundamental period of these
functions. Hence, denoting by X (C) the period of v4(z), we have solve

X(C) =1. (4.26)

From (4.25) we see that v,(z) is bounded by —v/1 — C and +/1 — C. Taking into
account the constraint ( f01 ve(z)dzr = 0), X(C) is exactly given by

dv
1-(1-0)W?’

X(C) = %F(g

4 1
V=04 VI

where F' is the standard elliptic integral of first kind.
X(C) is a decreasing function of C on |0, 1], reaching its minimum for C' = 1, so that

X(C) > X(1) = 27”

Thus appears is a critical value for n, namely

Ne = 2.

When 7, < 27, (4.26) cannot be fulfilled and we are left with the trivial solution.

When 7, > 2, it is straightforward to compute the arithmetic area S1(n) of the first
winding sector, since it is indeed the only non-vanishing sector. Setting

atw) = 5 [ doloalo) + o,

i) = [ dola(o) - o)l
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S1(n) is simply the area enclosed by the curve (hg(u), hy(u)) v € [0,1], which is given
by

1 (! oh. Ohyg
$1(n) = —/0 ]

or, after some algebra,

1 [1—{—1/
VI -0t v

Si(n) ]du,

1 vi=C v
o /0
keeping in mind that C is also a function of 5. The corresponding curve displayed

in figure 2.6.b matches pretty nicely all numerical observations, in particular with
regard to the critical value 7.

4.3.3 More about fluctuations for 7 < 7,
When 7 is under the threshold 7., the deterministic part becomes trivial, and we

are left with fluctuations. This corresponds basically to the observations shown in
Figures 2.3.a and 2.3.b. Inserting

in (4.23), and setting
9(z) = ¢*(z) +ig’(z), ~ W(z) = W(z) +iW"(x), (4.27)
we get a solution of the form

w .
g(z) = —2in / &) W (u),
0

which corresponds to

¢*(z) = % + L [/0$ (sin(n(u — z))dW*(u) + cos(n(u — 2))dWP(u)) + dW“(a:)] + o(

-

&z) = % + % [ /0 " (cos(n(u — 2))dW*(u) — sin(n(u — 2))dW"(u)) + de(a:)] + o(
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Hence we have derived an equivalent process, which up to order o(\/—lﬁ), describes

the curves numerically observed. Letting

( 1 [zN]
My (@) L S (2s8 — 1),

j=1

< .
W) = S — 1),

\ J=1

the so-called equivalence says precisely

1
dh(z) = b (¢ + =

<) o% (@)W (z) ~ 1 + o

— hY(z) = 2¢%(z) + m)

2
VN
and the same holds for th]’V (z). Introducing the complex function

hy(z) = hiy(z) + ihly (),

we have

dhy(z) = —%7/_[ /0 " ) gy () + dW(ac)] +o(\/iﬁ),

which, after integrating by parts, yields

() = ﬁ [ /0 " geinu=2) gy () — W) + o(j—ﬁ)

At this point it is possible to reconstruct the curves observed numerically, remem-
bering that the discrete displacements (dz;, dy;) in the plane are expressed in terms

of s¢ and si-’ as
_ b
dz; =1 — s} — s,
_ o0 b

dy; = s} — s;.
According to (4.27), we define

1—1

h(a:)— Tk_ ; z) = 5

INRIA



Dynamical Windings of Random Walks and Exclusion Models 37

Then we have
h(z) = /Oz 2explin(u — z)|dZ(u) — Z(z).

The above equation accounts for the windings of the Brownian curve observed in
figure 2.3.b. When 5 — 0, h(z) coincides with the standard planar Brownian motion
Z.

4.4 Burgers equations in the fluid limit

In this section with give a formal derivation of dynamical equations describing the
fluid limit, which includes the steady state solutions obtained in 4.3, without pre-
tending to a rigourous presentation.

We start from the heuristic assumption that the conditional independence of the sf
[resp. s?|, which is realized at time ¢ = 0 and at steady state, remains valid for
all fixed time ¢, up to order O(N~'). Exact proofs of this fact could be provided
by adapting (up to sharp technicalities) some lines of argument proposed e.g. in
[19, 10]), together with a mean field type approach for the convergence of the semi-
groups of the underlying Markov processes indexed by N.

Considering the stochastic variable expressing the current of particles (a) between
sites 7 and ¢ + 1 at time ¢

Pi(t) = Ad(6)si()50 (1) — A (i, 1) (D)5 (1),
wi(t) = N ()] (8)50(8) = Ny (3,1)s741 (D5 (1),

we define the conditional expectation
Ji(t) = Elpf(t) | S, JP(t) = E[p}(t) | §°).
On account of the particle conservation principle, we have locally
a a a a
aE[Si ()] + E g (t) — ¢i_1(t)] = 0. (4.28)

Then introducing the time dependent expectations ¢f(t) as functions of the sample
path S°

ai(t) = E[s¢(t) | S’ @i(t) = E[sp(¢) | 87, (4.29)
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we can write by (4.28)

N t
¥ 2 on(ak) —ak0)+ [ ar(RO-TL@) =0, @0

k;:

with again the condition supy, |ax| < oco. Expressing the almost conditional indepen-
dence of the s%’s, we have

Zaka[ (k, gk (D)1 = g (1) = A (kg (D - gE(1)] =

1 X 1
5 2 anli () +o()-
k=1

To be consistent with the procedure developed for the stationary regime case, we
substitute to the S? the so-called equivalent set {q,’; + azw,l;} into the expressions of
the rates given by

log A (i) = log A+ 2(s? + 2 — 25252, ) log %
i 0 1
+ N(l—s?—sfﬂ)i;(sg z+1)+O(N)

according to the fundamental scaling. This insures that A\l and A, remain perfectly
correlated. As for the the fluid limit, the procedure amounts simply to replace sﬁ-’ by
q? in AX(4), and to approximate all discrete sums in (4.30) by Riemann’s integrals,
for arbitrary «(z). This yields the continuity equation

op(z,t) _  0J%=,1)
ot or

(4.31)

where po(z,t) and J%(z,t) are the deterministic continuous counterparts of ¢f(¢) and
J(t). The current is now given by

Jo(z,1) = D |2mp" (1 — p*)(1 — 2") — W] exp(20°(1 — Mlog 1), (432

where we have introduced the diffusion constant

DY 1lim

N—>OON2,
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A being implicitly taken as a function of N. This scaling is confirmed numerically
(see figure 2.6.c). Actually, we observe that the parameter  controls the dynamics
of the system through the definition of an effective diffusion constant. For particles
(a), we have

D%z,t) ® Dexp [Zpb(m, £)(1 — p°(z, 1)) log }]

with the corresponding relation for particles (b)). In the particular case v — 0, this
constant vanishes, except at loci where the density of particles (b) has no fluctuations,
that is 02 = pP(1 — p®) = 0), in which case D%(z,t) = D, as to be expected from
the analysis of the stretched walk. When v = A, we obtain a dynamical system of
deterministic equations

op(z,t)  _9%p%(z,t) 914 a b
o = D=5 5 2D [p" (1= p")(1 - 20")] (s, 1),
opb(z,t)  0%p%(w,t) 0y b a
o - P g e == 20w,

These equations belong to Burgers’ class. When taking one of the two density species
(say (a)) to be a constant p, = 0 or p, = 1, the density of particles (b) is driven
by an ordinary Burgers equation, describing the evolution of a stretched walk. For
an arbitrary -y, the steady state solution of (4.31) is tantamount to let the current
vanish in (4.32), which after integration gives system (4.18) independent of v, as to
be expected.

5 Conclusion

The model of the discrete event system presented in this report turned out very
friendly for simulation runs. Although the dimension be small (curves in the Eu-
clidean plane), several basic phase-transition phenomena have been observed, among
which a glassy phase. As we stove to point out, there are many ways to describe this
system, which bring to light connections between various stochastic and algebraic
formalisms.

Nonetheless, in our opinion, the most efficient way toward concrete mathematical and
physical properties appears to be on the track of coupled exclusion processes. This
mapping allows also to address the continuous limit considered in the last section,
and this approach can be a method for coding numerical simulations. In this manner,
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we have been able to observe that when we alternatively freeze one of the subsystems,
letting the other one reach its equilibrium, the whole process attains its stationary
state, and moreover much quicker.

With regard to the dynamic, deeper investigations are needed in order to include
fluctuations directly into the equations, and to clarify the role of the parameter 6.
This would give a firm starting point to get an insight into slow dynamics and into the
non-linear excitations which are swarming in the glassy phase (metastable states).
Open boundary conditions and presence of currents would also be worth investigat-
ing. Actually, it could be most rewarding (and this not hopeless) to generalize the
model to higher dimensions and to find related concrete applications, for example in
biology (evolution of RNA and proteins).
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