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Abstract: Within the framework of the Koiter’s linear elastic shell theory, we study the
limit model of a plane arch whose mid-surface is periodically waved.

The magnitude and the period of the wavings are of the same order. To achieve the asymp-
totic analysis, we consider a mixed formulation, for which we perform a two-scale homog-
enization technique. We prove the convergence of the displacements, the rotation of the
normal and the membrane strain.

From the limit formulation, we derive an effective model for critically wrinkled arches. It
has a plane effective mid-surface, but exhibits a coupling between the rotation of the normal
and the membrane strain.
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Un modéle effectif pour une arche critiquement oscillante

Résumé : Dans le cadre de la théorie de Koiter des coques minces élastiques, nous étudions
le modéle limite pour une arche élastique linéaire plane dont la surface moyenne subit des
oscillations périodiques, 'amplitude et 1 a fréquence des oscillations étant de méme ordre.
Pour ce faire, nous devons d’abord troquer la formulation directe usuelle contre une for-
mulation mixte, permettant de donner un sens & des modéles seulement lipschitziens en
forme moyenne. L’homogénéisation par 1 a méthode de convergence & deux échelles est alors
appliquée & ce modéle mixte. On prouve la convergence des d éplacements globaux, de la
rotation de la normale et du tenseur de déformation membranaire.

Des équations limites, nous construisons un modéle effectif d’arche oscillante en surface
moyenne. Bien qu e de forme moyenne apparente plane, ce modéle contient un couplage non
classique entre la rotation de la normale et le tenseur de déformation membranaire.

Mots-clés : coque mince, élasticité linéaire, formulation mixte, homogénéisation & deux
échelles
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1 Introduction

The aim of the present paper is the introduction, with a rigorous mathematical analysis, of
an effective model for critically wrinkled arch structures.

In many industrial areas such as automotive or aerospace, elastic shell structures play a
central role. In few words, a shell is a three-dimensional structure of small thickness. The
importance of the potential applications, as well as an original and exciting mathematical
modelling, combining differential geometry and continuum mechanics has led to the emer-
gence of a fast growing discipline, the shell theory. A huge amount of literature is nowadays
dedicated to the modelling, mathematical and numerical analysis, optimal design and active
control, of shells. Among many others, starting from the seminal works of Koiter [1], some
recent references are [2]-[3]-[4]-|5]-[6]-|7] and [8].

Generally, classical shells are considered with a smooth mid-surface and a bounded slowly

varying curvature. Some authors have investigated the case of rapidly oscillating thickness,
e.g. Kohn and Vogelius for plates in [9]. In the cited reference, the authors obtained a model
of plate for a critical rate of oscillations, precisely when the magnitude and period of these
are comparable.
In the present paper, we study the case where the mid-surface of the shell is waved instead
of its thickness. To our knowledge, only very few authors have investigated this approach.
In the situation where the magnitude is one order or more smaller than the period, the
so-called moderately and slightly wrinkled cases, we refer to the works of [10] and [11]. A
related work for rods has been studied in [12].

We consider a one-dimensional shell structure, that is an elastic arch. The mid-surface
of the arch is waved periodically, and the magnitude and period are of the same order.
We justify the need for a mixed formulation, necessary to go further in the asymptotic
analysis of the waved arch. Then, to achieve the asymptotic analysis, we use the two-scale
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4 A. HABBAL

homogenization method. The mixed formulation for the arches has been introduced by [13].
For a general introduction to the mixed formulation of variational problems, we refer to [14].
The two-scale homogenization technique, introduced by Nguetseng [15] and Allaire [16] is a
simple and powerful tool to deal with periodic homogenization. We refer to these papers for
the definition and an extensive study of the properties of the two-scale convergence.

2 Classical modelling of an elastic arch

An arch structure is an infinite three-dimensional cylindrical body of small thickness. We
denote by L its width at the ground. Then, its geometrical description is the following :

Let be a function ¢ : [0,L] — R such that ¢(0) = ¢(L) = 0.
The function ¢ is assumed to have bounded derivatives up to the third order i.e. ¢ €
waeo([0, L))
The surface w of the arch is defined by :

w = {(z,9,2) € R® such that  €]0,L[ z=¢(z) y€R}

Let now be a small positive parameter e (the thickness). Then, the three-dimensional
arch structure €. is defined by

Q. = {MeR M = m + tii(m) wherem €wandtE€]—e/2,+e/2[}

where 7(m) denotes the unit normal vector to w. The thickness parameter e is assumed
to be small enough, compared to the curvature 1/R of w, so that any point of 2. belongs
to one and only one normal to w. The relative ratio e/ R is sometimes used as a parameter
to classify shells as thin, shallow or thick [5].

The arch is now loaded, with a load assumed to be invariant with respect to the cylinder
axis (the direction Oy for instance). From the Kirchoff-Love thin shell theory, [17], within
the linear elasticity framework, the problem reduces to a one-dimensional problem, set over
the generic curve z = ¢(x) (Figure 1).

In the following, some definitions needed for the statement of the arch equations are given.

-,

e The local basis (t(m),7(m)) at a given point m € w of coordinates (z, ¢(z)) is

L /()
- - 5(=) 5(z)
t(m) = t(x) = , fi(m) = ii(x) =
¢ (z) 1
S(e) ()

INRIA
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Figure 1: Description of the arch geometry.

where #(x),7i(z) are respectively the unit tangent and normal vectors at the point
xz, ¢ = d¢/dr is the derivative of ¢ with respect to the space variable z, and

S(x) = V149 ().
e The local displacement vector #(m) of a point m is given by

i(m) = d(z) = w(2)t(z) + un(2)ii(x)

where u; and u,, are respectively the tangent and normal displacements.

From now on, the local displacement variable u will be denoted by u = (u¢, u,).

Let @ =10, L[ and denote by V' the space of admissible displacements :

V= HY(Q) x H(Q) arch clamped at both ends (1)

V = H}(Q) x (H2(Q) N HL(Q)) arch simply supported at both ends (2)
where H} () and HZ(2) are the usual Sobolev spaces.
The elastic energy functional is defined by

L
a(u, v) = / [CT(@)T(v) + DEKWK(®) S@)ds, forallu,veV  (3)
0

where C = FE.e, D = E.M are mechanical constants, £ is the Young modulus, e the
constant thickness and M the second moment of area of the cross-section.
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6 A. HABBAL

F(v)=  <v; + HUn, is the membrane strain
Kw)= $6'(v), is the bending strain
6(v) = —+%vl, + Jve, s the rotation of the normal @
% = —2—;’, is the curvature.
The mechanical stress distribution is given by :
o()(z,t) = E(T(v)(xz) + tK(v)(x)) z €[0,L], t € [—e/2,+€e/2]. (5)

In order to give a sense to the elastic energy functional, the derivatives of ¢ up to the
third order (appearing in the term K (v)) must be bounded, whence the assumption that
¢ € W3>(Q).

Now, if we denote by f = (f:, f») the density of the load, then the equilibrium equation
is given in its variational form, by

find v € V such that a(u, v) = L(v), forallveV, (6)

where the compliance L(v) is generally of the form

L) = /0 (F5)S(z)da.

It is proved in [18] that the symmetric bilinear mapping af(.,.) is continuous, V-elliptic.
Then, assumed that f € V', the dual space of V, there exists one and only one solution
u € V satisfying equation (6).

3 The arch is waved. A first analysis

We consider a plane beam, seen as a particular arch with a mid-surface given by ¢, = 0.
The plane mid-surface is periodically waved into a function

de(z) = €"p(x/e€), z € Q.

The period of the waving is given by the real positive number e which is intended to go
to zero. The amplitude is represented by €”, the positive number r denoting the relative
period /amplitude rate.

If we denote by Y =]0, 1] the usual periodic unit-cell, then the function ¢ is a Y-periodic
function which is smooth enough to yield a mid-surface ¢. of global W3°°(Q) regularity.
From now on, the useful notation ¢ stands for the derivative of the function ¢ with respect

INRIA



An effective model for critically wrinkled arches 7

to the microscopic variable y = z/e.
Now, we have a curved arch whose geometric description strongly depends on € :

Se(@) = 1+ (e 19(y))? (7)
1 _ r—2 ¢
R - ¢ ©)
(i) — —€T73;?3 + 6772 (9)

The membrane strain I'(v), the rotation of the normal #(v) and the bending strain K (v)
also depend on €, and so is the solution to the waved arch equations (6), which we denote by
ue. Our main goal is to study the convergence of the sequence of displacements (u.) when €
goes to zero and to state the limit or effective equation satisfied by the limit displacement.
We are particularly interested in the cases where effective equations still model -waved- shells.

From a simple look at the leading terms in (7)-(8)-(9) one naturally expects the following
classification :

(a) 0 <7 <1: onehas Sc — 400 as € — 0. Here, we intend to use an infinite length of
material. In the limit case r = 0, one expects a two dimensional laminated composite
behavior. The shell theory is no more valid.

(b) 1 £ r < 2: one has RL — 400 as € — 0. In this case, a Budiansky-Sanders limit
model seems out of reach. However, at the rate r = 1 numerical experiments exhibit
non-negligible effects : the plane beam displacement is affected by the waving at a
macroscopic scale.

!
() 2< 7 < 3: one has (RL) — +00 as € — 0. At the rate r = 2 numerical experiments

show only negligible first order effects.

(d) 3 < r : one has a strong convergence to zero of the sequence (¢.) in the W3 ()
norm. Since the displacement solution is a smooth function of the shape, see [8] for
instance, we get a strong convergence (in the H'! norm of displacements) of the waved
model to the simple plane beam.

The first case (a) is out of the scope of the present paper, which focuses on situations
where the limit model is a shell one.
The last case (d) is in contrast trivial since the displacements are infinitely differentiable
with respect to the arch shapes.
Considering -in the cited reference- the equation satisfied by the derivative of the displace-
ments with respect to the mid-surface at the point ¢, = 0 which is a plane beam, it is easy
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8 A. HABBAL

to show that this derivative is identically equal to zero itself. Hence, we get a direct proof
of the following first order expansion :

u(ge) = u(dy) + o) (10)

The expansion above implies that we have a strong convergence of the local waved arch’s
displacements to the plane beam ones.

We shall see in the next section that both the cases (¢) and (b) with 1 <r < 2 also fit
in this situation.
Thus the case r = 1 could be seen legitimately as a critical waving rate, and all the mathe-
matical analysis done in sections 4.2 and 5 is related to this critical case.

Now, the numerical tests are clearly in contradiction with the behavior (i.e. divergence
to infinity) of the main geometric component in shell theory, namely the curvature and its
derivative. This suggests that the classical arch model is not adequate to an asymptotic
analysis :

One should relaz the dependence on the curvature, and get rid of those oscillations only due
to the representation of the displacements in the local basis, which is itself rapidly varying.

This is exactly what the mixed formulation presented in the next section is dedicated to.

4 Two-scale asymptotic analysis via a mixed formulation

In the present section, we recall a mixed formulation framework for elastic arches, introduced
by Lods [13], on which we perform an asymptotic analysis of the mixed formulation for waved
arches by means of the two-scale homogenization technique.

4.1 Recall of the mixed formulation for elastic arches

We start by remarking that any virtual displacement vector ¥’ over a generic arch structure
1 € W3°°() can be written in the local basis of tangent-normal unit vectors (£(v), 7(¢))
as well as in the global (&1, €3) one :

T = B(,v)é + (1, v)é = v1H) + v2ii(¥) (11)

The key-point of the mixed formulation is the following identity, which eliminates the cur-
vature term. It relates the rotation of the normal 6(¢,v) and the membrane strain I'(y, v)
given by the formulas (4) to the global components (8(1,v),v(%,v)) of the displacement :

INRIA
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Lemma 4.1 Using the notations above, we have the following :

O.1) = 5o (W8 (.0) =7 ($,0) (12)
(00) = e () + 4/ (.0)
or, in an equivalent form :
§(0) = 0, v) + T, ) (13)

’yl(wv ’U) = _0(¢7 7}) + wlr(wv U)
The equalities hold in L*(f).
See [13] for the proof.

In the following, we introduce or recall some useful notations and functional spaces :

vm = (B,7,0,p) €V where V,,, = H}(Q) x H}(Q) x H} () x L*(Q)
m = (01,¢) € Qm where Q,, = L*(Q) x L*(Q)

Next, we define the bilinear mappings :

b (V5 Vmy gm) = [o(B —¥'0 —p)qs + (Y + 60 — ' p)goda

and -with obvious notations-
am(; o) @ Vi xV,, = R

1
am(¥; vy, v2) = C [ u'u?S)dz + D [, W01192/dm
The continuous bilinear mapping b,, expresses via a duality viewpoint that the relations
(13) are seen as constraints, while a., is simply a reformulation of the elastic energy of the
arch formerly given by (3).

(14)

The right-hand side modeling the external forces is written (in the global coordinates
system) as :

L5 vm) = / (F1B+ f27)S(W)da (15)

Now, we are ready to set up the mixed formulation :

Find (wm,pm) € Vi X @, such that :

{ vvm € Vm am(% um7 vm) + bm(¢1 Uma pm) Lm(¢7 UM) (16)
qu € Qm bm('l,b7 Uy qm) = 0.
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10 A. HABBAL

The existence and uniqueness of (tm,Pm) € Vin X Q. solution to the mixed problem
above is proved in Lods [13] by application of the Brezzi’s theorem [14]. To this end, the
following assumptions, also known as the BBL conditions, are shown to hold :

(Ha) The continuous bilinear mapping a, (¥; ., .) is elliptic on the kernel of b, that is the
space
V¥ = {vym € Vi, such that Ygm € Qm b (V; Vm, ¢m) = 0.} (17)

(Hb) The continuous bilinear mapping b,,(v; ., .) satisfies the condition :

inf sup bm (V5 Um, qm) > 0.

ImEQmM 2y, €Vipy
llam||=1 [|v,,||=1

The equivalence of the two problems (16) and (6) holds when the mid-surface ¢ € W3>°(Q).
In the case of Lipschitzian arches i.e. ¥ € W1°°(), then the mixed formulation yields a
generalized model for arch structures.

From now on, we shall consider exclusively the generalized Lipschitzian arch model. We
shall omit the subscript “m” standing for "mixed" in the present section.

In the next section, we use the two properties (Ha) and (Hb) to get a priori estimates of the
mixed solution for the waved arch. These estimates are used as a preamble to the two-scale
homogenization technique. Then, we derive a limit mixed problem for which we prove that
corresponding (Ha) and (Hb) hold.

4.2 A Two-scale limit for the mixed problem
First, we recall a few results from the two-scale homogenization [16].
We denote by C3° (Y) the space of infinitely differentiable functions in R which are

Y —periodic. The space D(€%;Cg (Y)) denotes the space of infinitely differentiable func-
tions of compact support in Q with values in C;O(Y).

Definition 4.1 A sequence (u.) of L?(Q) is said to two-scale converge if there exists a
subsequence still denoted by u., and a function ug(z;y) € L2(Q x Y') such that

lim | we(x)v(z;z/e)dx = /Q Yuo(m;y)'u(x;y)dxdy (18)

e—0 Jo
for any v(z;y) € D(2;CE(Y)).

We shall denote by u.—uo when u. two-scale converges to ug-

We shall also use the standard notation (v) = [, v(;y)dy which stands for the mean-
value of a Y —periodic function v.
We have the following :

INRIA
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(P1) Bounded sequences of L?(Q) two-scale converge ;
(P2) If ue—ug in L2(Q2 x Y) then ue — (ug) in L*(Q) weakly ;

(P3) Bounded sequences (u.) of H(Q2) two-scale converge :
there exists u € H'(Q2) and uwy € L*(Q; Hy(Y)/R) such that ue — u in H'(Q) weakly
and ul—u' + 3.

Now, let us first rapidly conclude in the case where the wavings are of the form
b(z) = €o(afe), > 1.

We shall denote by (u€,p®) and (uP, p?) the respective solutions in V' x @ of the mixed
problem (16) set for ¢ = ¢, and for ¢ = ¢9 = 0 (i.e. the plane beam).

It is then proved in [19] that under the assumptions :

e, $o € WH(9)
[|@ellwt.= is uniformly bounded w.r.t. e,

[|pe — dol|1(0) — O with € — 0, (19)
L(¢; .) — L(¢o; .) with e — 0 in the dual space V'
then one has the strong convergences :
4 — uP in V, (20)
p—p’inQ (21)

The latter assumptions obviously hold for our sequence of periodic functions ¢.(z) with
r > 1. Thus, the limit model is simply the plane beam one.
This result is an evidence which corroborates the criticality of the case r = 1.

From now on, we consider the waved mid-surfaces described by functions

Pe(z) = ed(z/e),

where € > 0 is the period as well as the magnitude of the waving, x € € is a macroscopic
space variable.

The function ¢ belongs to a set A defined by :
A ={yp e Wh(Y), ¢ isY — periodic, 9(0) = (1)} (22)

Thanks to the definition of A, the functions ¢, belong to the space W1->°(Q) and are ad-
missible generalized arch mid-surfaces.

RR n° 4546



12 A. HABBAL

The mechanical unknowns which describe the behavior of the loaded waving elastic arch
are now the mixed variables

u = (5677679€7N€) eV, p= (pi,pg) €Q

solution to the mixed problem :

(Vo = (8,7,0,n) €V

1 1!
| € lanns(oad+ Do g0 ds o

+ [o(B = (6)'0 — wpi + (v + 0 — (¢)' w)psda = [o(fiB + f57)S(pe)dx

( Vg = (q1,¢2) €Q  Jo((BY) = (6e)'0° — u)aqn + ((79)' + 0° — (¢e) 1°)g2 dxz = 0.

For the waved arch structures, it is natural to assume that the external forces f¢ =
(f5, f$) are periodic. For instance, this is the case of the pressure, self-weight and snow
loadings which are common loadings for arch structures.

We shall assume that the loading is of the form f¢(z) = f(z;z/€). The function f(z;y)
belongs to the space L?(£; C4(Y')) of measurable and square integrable functions, with val-
ues in the space of continuous Y —periodic functions.

For such functions f€ in LQ(Q;C#(Y)), one has : ||f€(x)||L2(Q) < ||f(:r;y)||L2(Qxy).

We recall that by convention ¢(z;y) denotes the derivative of a function ¢(z;y) with
respect to the microscopic variable y € Y.

Now, we are ready to state the following convergence theorem :

Theorem 4.1 Let u® = (8,70 1) € V and p¢ = (p§,p5) € Q be the unique solutions to
the waved arch problem (23). Then, we have

(i) There exist -unique- functions 3°, v°, 0° € HY(Q), u° € L2(Q xY) and B¢, e, 0. €
L2(2; HL(Y)/R) such that :

INRIA
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The functions 3¢,~¢ and 8¢ weakly converge in H}(Q) respectively to 3°, 4°, 6°, and
(B — (B + B
() = O + e

6y — () + 6.

L l‘l‘é NN MO

Moreover, the function u¢ weakly converges in L?(Q) to (8°)'.
(ii) There exists a unique function p°® € L2(2 x Y)? such that p—p°.

(ii) The functions 3°, +°, ° € Hy(Q), u° € L*(QxY) , Be, Ve, 0 € L*(; Hy(Y)/R)
and p° = (p?,p3) € L2(Q x Y)? are solution to the well-posed limit mized formulation

(VB3,7,0 € Hi(Q); Bi, m, 61 € L*(Q; HL(Y)/R) ; pe L*(QxY)

C foey BRSOy + D foy s l(0°) + 60" + )l dy
{ + Jouy (B + 51 =00 — wp + (' + 91 + 6 — du)pyda dy (25)

= Joxy (F1(@:9)8 + fo(2;9)7)S(6(y))dx dy

Va, e *(QxY) .
{ Jaxy (B + B — 6° — 1%)q1 + ((°) + 9 +6° — 6u°)q2 daxdy = 0.

Proof of the theorem.
The sequence (u€) is uniformly bounded w.r.t. € in 'V so that it two-scale converges :

Zeine has proved in [20] that the continuous bilinear mappings a(¢e; ., .) are uniformly
elliptic with respect to the parameter e > 0 over the spaces V¢ defined by (17), provided that
one has a uniform bound : ||¢.||1,cc < C. In our case, we have ||c|[1.00 = €||9]loo + [|€]]co
which ensures the needed uniform upper-bound.

From other part, since a(¢.; ., .) depends on ¢, through only its first derivative, the bilinear
mapping is also uniformly continuous. We conclude by the classical arguments of a priori
estimates for elliptic problems that :

RR n° 4546



14 A. HABBAL

[lue]] < Cllf(x)l|z2(@) < ClIf(@;9)||L2(axy) uniformly.
Since

ufI* = [1Belligg + [lvellzzy + 10l + el 22,

we apply the two-scale compactness result (P3) to get the weak convergence of the functions
in H} and the two-scale convergence in L*(Q x Y') of the derivatives.

The last point in the assertion (i) comes from the remark that since u® belongs to the space
V% we have : p. = (8.)' — (é¢)'6. ; Using property (P2) and noticing that (¢.) — (¢) = 0,

we have . .
fre = {(Bo) + B — ($)0o) = (B°)'.

The sequence (p©) is uniformly bounded w.r.t. € in Q so that it two-scale converges :

It is proved in [13] that the bilinear mapping b(de; .,.) enjoys the following property :
There exists a positive constant C' such that , for any given g € @Q, there exists a function
v € V such that

b(¢e; v, ¢) = llgll*  and [[o]] < C(l|¢e][1,00 + Dlall (26)

the constant C' > 0 being independent of ¢.. We shall denote by w*® the corresponding
function obtained thanks to the property above when we set ¢ = p°.
Now, from the equation (23)we have :

IpfIP? = b(de; w, p°) = —a(de; u,we) + L(de; w).
Then, using the uniform continuity of a(@c;-,.) and L(¢.;.) with respect to € we get :
[1p°]1* < {C@)u]] + | 1|20 v) HIwe]|

We replace now ||w€|| by its upper-bound given by (26) and simplify the inequality above
by ||p¢||- The proof ends by remarking that from above, ||u€|| is itself uniformly bounded.

Since the sequence (p¢) is bounded uniformly with respect to €, there exists a subse-
quence which two-scale converges to a limit p° € L2(Q2 x Y)2. The convergence of the whole
sequence comes from the uniqueness of the limit, and is proved below.

We pass to the two-scale limit in the mized equation (23) :

First, we choose test functions of the form :

v =(B(z) + ebi(z;z/€);v(x) + emr(z;2/€); 0(x) + €1 (z; 2/ €); (s ¢ /€))
ﬁ,%a € D(Q) ) u7ﬂ1771701 c D(Q7C;:”:O(Y)) (27)
g=(q(z;z/e), @2(x;2/€)) 1,92 € D(Q;CE(Y))

INRIA



An effective model for critically wrinkled arches 15

(Here, the usual notation D stands for the space of infinitely differentiable functions with
compact support, and a standard density argument of such spaces in L? and H} is used.)
Then, applying the definition of the two-scale convergence, we can pass to the limit in €
in each of the terms of equation (23).
As an illustrating example, considering the test function

w(aiy) = 5o (@) + 6i(ay)
we get )
/Q 0 w(z;z/e)de = /Q S5 0+ ebr(zz/0) dz + O (28)
so that ) ‘ .
-/Q(Ge)'w(a:;x/e)dx — em) [(6°) + 6.)(0' + 6,)]dx dy

for the bending term, and

[ =@ - wmds— [ () + 8. = 36 - i) audo dy
Q axy
for the first term of the duality functional.

The limit mixed formulation given by (25) is then straightforward.

The limit mized formulation is well-posed :

In order to make the expository as clear as possible, we again introduce adapted notations
and functional spaces :

W0 = (B,7,0,u) € VO where V0 = H}(Q)® x L2(Q x Y)
v = (Bi,m,01) €VE where V¢ = L*(Q; Hy(Y)/R)? (29)
v = (%) e VE where VH# = V0 x Ve
7 = (q1.)€Q¥ where Qf = L?*(QxY) x L>(2xY)
The space V¥ is endowed with the norm :
1P = 18172y + 11V 1220y + [16]172¢0) + 1|72 05y (30)
+||181||2L2(Q><Y) + ||’71||2L2(Qxy) + ||91||2L2(Q><Y)
while the space Q¥ is endowed with its natural L? norm.
The limit bilinear mappings are defined by :
bH(; ., ) : VExQH SR 31)

v (g5 v, q") = [, v (B +B1— 0 — war + (v + 51 + 0 — du)godz dy
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16 A. HABBAL

and (with obvious notations)

af(g; ., ) : VExVH SR

af(¢; (W)L, (v7)?) = Cfgxyul(:ti;y)uz(x;y)5(¢(y))dxdy . (32)
+ D fo.y W[(91)'+ 01)((6) + 63)]dw dy

We shall also need to define the kernel of b7 by
Vit = [pfl € VH such that Vgl € Q7 b (¢; v, ¢f) =0.}. (33)

The limit right-hand side is easily obtained as being :

LH(g; o) = / (fr(@:9)B + folw:y)1)S(6(y))da dy (34)

QxY

We denote by u = (8°,7°,6°, u°; Be,7e, bc) and p™ = p° = (p}, 1)
Then the limit equation reads in the classical mixed formulation

Find (uf,pf) € VH x Q such that :

{Yomery m@ut o + 4l ol pl) = LN o (35)

Vgt € QH b (g5 ut, ¢f1) = 0.

The continuity of the mappings a” (¢; ., .), L¥ (¢; .) and b¥(¢; ., .) over their respective
spaces is straightforward. In order to prove that the problem (35) above is well-posed, it is
enough to prove that the BBL conditions hold :

e (a) ellipticity of the limit mixed energy a® (¢; ., .) over the space V¢
e (b) the inf-sup condition for the limit bilinear mapping b (¢; ., .)

We shall use the generic element v = (3,+,0, u; B1,v1,61) of VH.

(a) the continuous bilinear mapping a” (¢; ., .) is elliptic over the space V¢ defined
by (33) :
First, remark that since 0, is Y —periodic, one has immediately
a (g0 o) > A/ u’dxdy + B 0" + 6,)*dxdy (36)
QxYy QxYy
> A p?drdy + B / (6")2dx + B (61)%dzdy (37)
QxY Q QxY
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An effective model for critically wrinkled arches 17

Secondly, since the function v belongs to the space V¢ we have :
(B) +Pr =6+ n (38)
(1) 471 =0+ op.

Now, using the identities above, the Poincaré inequality for 8 and the Y —periodicity of 1
and 7, it is an easy exercise, left to the reader, to derive the ellipticity of a (¢; ., .) in the
-induced- norm of V¢,

(b) The inf-sup condition :
A classical method to prove the inf-sup condition (Hb) is to explicitly construct for any
given ¢ € QF, a function v" € V¥ such that
b (g5 o™, ¢") =1l¢"|I* and |"]| < Cllg"]], (39)
the constant C' > 0 being independent of ¢.

Given any arbitrary function ¢ = (g1, ¢2) in Q, one has to yield a function v € V'
such that

a(w;y) = (B) + L — ¢0 —u (40)
@(;y) = () + 71+ 0 — op.
One could easily check that the following candidates work :

wMz3y) = — [ouy @@ y)dady

0(w) = 4(5 = I = 71) Joey @2(a: )y -
Bz) =[5 (ar(s;.) + (uls;.)))ds
(@) =[5 ({aa(s3.)) — 0(s) )ds
and,
Bu(zsy) = [ (qu(m;t) + plast) + d(t)6(x) — B'(x))dt + Constant )
42

n(z;y) = [Ja(2;t) — 0(2) + d(t)u(z;t) — v/ (z))dt + Constant

It is straightforward from this explicit construction that the upper-bound required in
(39) is fulfilled. Moreover, the constant C' can be chosen independent of the parameter ¢.
Q.E.D.

We have then established the existence and uniqueness of the limits u and p¥ solutions
to the limit mixed problem (35). As a consequence, we also have proved the convergence of
the whole sequences (u°) and (p©).
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18 A. HABBAL

5 An effective model for waved arches

The limit mixed formulation obtained in the previous section has the advantage to precisely
describe the two scales of behavior, the macroscopic and the microscopic (also called hidden
scale) one. For numerical purpose nevertheless, this advantage becomes a drawback, since
it implies a dramatical increasing in the complexity of the calculations.

Mainly for this reason, computational mechanicians are always interested in models where
one can get rid of the microscopic variable and functions (e.g. first order correctors). When
possible, one tries to obtain a so called effective or homogenized model which is set in the
macroscopic variable/functions only.

In the sequel, we build in three steps such an effective model for the present case of
periodically waved arches.

First step. In the limit equation (25), we make 3 =y =60 =pu =0 and 6; =0.
We obtain that for all g1, 1 € L*(Q; Hy(Y)/R),

/ (Br? + 192)dedy = 0. (43)
QxY

A simple integration by parts yields that the function p° does not depend on the microscopic
variable y :

Pl(z;y) = pi(z) pY(z;y) = pd(x)

Thus, thanks to the periodicity of the functions 31, 71 and ¢, the dual term b7 (¢; v, p)
reduces to :

b (g5 o', pH) = /Q ((BY — (B + (1) + 6 — {Gu))pld. (44)

Then we consider test functions ¢/’ which themselves do not depend on the variable 3.
Hence the dual equation in (25) reads :

Vai, g2 € L*(9) /Q((ﬂo)' — (1 Nar + ((1°) +6° = ($p°))gzdar. = 0. (45)

Remark that (1, 1 as well as 3., 7. have completely disappeared from equations (44) and
(45) above.

Second step. Now, we focus our attention on the bending term, namely :

. _ 1 0y/ ) I Y
Thending = /QXY S(qﬁ(y))[(a ) + 6.)(0 + 01)|dzdy (46)
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An effective model for critically wrinkled arches 19

First, by setting in (25) 8=~ =6 =u =0 and 8; = 11 = 0, we derive the equation :

dy S(6(y)) (47)

d (#{(90)' +6.}=0inQxY
y — 0.(x;y) is Y-periodic.

Now, we have to handle a classical homogenized equation for which, the cell equations tech-
nique can be used.

One defines the function wy € H#(Y) /R by:

dy S(6(y)) (48)

41 g4 =0y
y — wp(y) is Y-periodic.

Then, one can easily show that 8.(z;y) = (8°) (z)wg(y). Then, setting 6, (z;y) = 6'(x)zq(y)
where 2z € H}(Y)/R one gets

- oyg [ L w z
Ibendzng = L(a )0 /Y S(¢(y))(1+ G)dyd (49)

1
1 ig)dy = —, which red
(1+ wy)dy (S)’W ich reduces

1
Tt is also easy to get from equation (48) that fy m

the term Typending to :

]' 'nt
Thending = 5] /Q (6°)'0'da. (50)

The -nearly- effective equation for the waved arch model can then be stated as follows :
Find 3°,7°,0° € H} (), u° € L2 (2 x Y) and p° = (p?, ) € L?(Q) x L%(Q) such that

((VB,7,0 € H}(Q) ; Vu e L*(QxY)
C fory #OuS((y))dz dy + D% [ (6°)0dz

&+ Jo (B = (s + () + 6 — ($u))phda (51)
= Jo({f15()B + (f25(8))y)dx

V(ql,QQ) S L2(Q) X LQ(Q) )
[ Jo((BY) = u®Nan + ((1°) +6° = (¢u°))gedz = 0.

The Brezzi conditions for this mixed formulation are fulfilled. The proof is slightly the
same than the one of the limit problem (35). Hence, ( 8%, 7°, 6°; u%; p°) is the unique mixed
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20 A. HABBAL

solution of both equations (35) and (51).

Third step. Notice that (51) is only a semi-effective mixed formulation because o (x; y)shows.
As a matter of fact, one cannot expect that the mean-value {u°) be the effective unknown for
membrane strain, since in the problem above (<;3,LL0) cannot be expressed as a linear function
of the latter.

So, in order to go on in the homogenization process, we set 8 = v = § = 0 in equation
(51), which reduces to :

Ve IAQxY) C / oS (8(0))dady = / W0+ dpdudedy  (52)

XY

This equality in L%(2 x Y) proves that u° can be written :

Cul(z;9)S(6(y) = p3(z) + d(y)p3(x)

It is then legitimate to take test functions p € L?(Q x Y') of the same form :

with 11, 12 generic elements of the space L2(12).

Thus, the homogenized membrane strain x° is uniquely described by the pair (19, u3) €

L2(Q) x L%(Q) such that u°(z;y) = Wu?(x) + ng))ug(w)

Finally, using these new expressions for ; and ;°, we put them in the mixed formulation
(51) in order to get, this time, a completely effective equation.

We have the following result :

Theorem 5.1 The global displacements (3¢,7¢) € H}(Q), the rotation of the normal 6¢ €
HL(Q), the membrane strain p¢ € L*(Q) and the Lagrange multipliers (p$,ps) € L*() x
L?(Q) which are the solution to the mized waved arch problem (23) weakly converge in their

spaces respectively to (3°,7°) € HL(Q), 8° € HL(Q), uf = ((%)ug + (%),ug) € L?(Q) and
(p1,p3) € L*(Q) x L*(Q).

The limit, or effective, functions above are the unique solution of the following effective
mized formulation :
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An effective model for critically wrinkled arches 21

Find 3°, 7%, 6° € H} (), p® = (ud, u9)” € L*(Q)* and p° = (9}, p)) € L*(Q)* such
that

((V5,7,0 € Hy(Q) ; Vi = (n1, p2)" € L*(Q)?
C [o(APp®).pdz + D [, BE(6°)'0'dx

+ Jo((B) = AP} + () + 6 — AF .p)phda

< = UhS)8 + 125z 3
Y(q1,q2) € L*(Q) x L*(Q)
[ [o((B%) = AF .pu®)qr + ((7°) +6° — AT . puO)godz. = 0.
where the effective material properties are given by :
I 1
AP = and BY = — (54)
b, (9 )
<

The dot . denotes the canonical scalar product in R? and A¥, AY are the first and second
columns of the symmetric positive matriz AT, which is always definite except for the trivial
case of the non-waved plane beam.

Proof of the theorem.

We already know that the candidates B° 0, 6% p° and p?, uY (through the function

p = §u1 +3 ¢ 1)
to prove that the mixed formulation (53) has a unique solution, or in other words, that it
fulfills the BBL conditions. If so, we can conclude that the two problems (51) and (53) are
equivalent. Theorem 4.1 completes the proof.

are the unique functions which satisfy equation (51). It is then sufficient

Now, we claim that Brezzi conditions hold for the mixed formulation (53) above. In-
deed, the continuity of the involved bilinear (and linear) forms is straightforward. The
inf-sup condition for the dual bilinear mapping is also fulfilled. The proof is done by ex-
hibiting candidates that fulfill the property (39) -updated for our mixed problem-. It can be
easily shown that such candidates exist, using the same techniques than those of (41) (42).
As a hint, one should seek for candidates u?, Mz which are constant, solution to the simple
2 x 2 linear system : AZu® = ([, ¢1(2)dz, 0)7
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22 A. HABBAL

It remains to prove the ellipticity condition (over the relevant space, roughly speaking
the kernel space of the dual mapping). This is also straightforward as soon as we can state
that the matrix A” is symmetric positive definite. This property of AF is obtained through
the simple Cauchy-Schwarz inequality

. 2 .
/ o 1) < / 1 / @)
yVSVS) Iy SJy S
yielding that the matrix A has a positive determinant, which is equal to zero if and only if

the waving ¢ is itself equal to zero (thanks to the periodicity condition ¢(0) = ¢(1)). Q.E.D.

Remark 5.1 For the plane arch, the membrane strain and rotation of the normal are given

by
pt =67y 7 =-(") (55)
while we have shown that for the limit model of the waved arch, one has
pt =8 6°=-(")+A47.u° (56)

This coupling between the rotation and the membrane strain shows that the limit structure
is completely different from a plane beam with new effective mechanical constants (as comes
from the homogenization of a plane beam with periodic thickness).

As a conclusion, we emphasize that theorem 5.1 introduces a new elastic arch model, of

plane effective mid-surface but showing a coupling between bending and membrane effects.
It is still well suited to numerical implementation, using classical mixed finite element meth-
ods, like the one presented in [13] where the displacements are approximated by P1 polyno-
mials, the membrane strain and the Lagrange multipliers by piecewise constant polynomials
and the rotation of the normal by P3 Lagrange-Hermite polynomials. However, one should
be careful when developing finite element methods for this model. It is of course a shell of
parabolic type, which still exhibits inextensional fields which are known to be responsible
for numerical locking phenomena.
A possible development is the extension of the critical wrinkling to the general thin shells.
To this end, for standard mixed formulations, we unfortunately cannot get rid of the cur-
vature. But a similar study to ours should be possible for the case of axisymmetric models,
an important class of the hyperbolic shells [21].
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