-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A proof of GMP square root using the Coq assistant

Yves Bertot, Nicolas Magaud, Paul Zimmermann

» To cite this version:

Yves Bertot, Nicolas Magaud, Paul Zimmermann. A proof of GMP square root using the Coq assistant.
[Research Report] RR-4475, INRIA. 2002. inria-00072113

HAL 1d: inria-00072113
https://hal.inria.fr /inria-00072113
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50452654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072113
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4475--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A proof of GMP sguare root using the Coq assistant

Yves Bertot — Nicolas Magaud — Paul Zimmermann

N° 4475
June 2002

THEME 2

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

A proof of GMP square root using the Coq assistant

Yves Bertot*, Nicolas Magaud' , Paul Zimmermann?

Théme 2 — Génie logiciel
et calcul symbolique
Projets Lemme et Spaces

Rapport de recherche n® 4475 — June 2002 — 28 pages

Abstract: We present a formal proof (at the implementation level) of an efficient algorithm
proposed in [Zim99] to compute square roots of arbitrarily large integers. This program,
which is part of the GNU Multiple Precision Arithmetic Library (GMP), is completely
proven within the CoQ system. Proofs are developed using the CORRECTNESS tool to deal
with imperative features of the program. The formalization is rather large (more than 13000
lines) and requires some advanced techniques for proof management and reuse.

Key-words: arbitrary large numbers, formal methods, GMP, Coq

* Yves.Bertot@sophia.inria.fr
 Nicolas.Magaud@sophia.inria.fr
i Paul.Zimmermann@Iloria.fr

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Preuve de la racine carrée de GMP dans ’assistant Coq

Résumé : Nous présentons une preuve formelle (au niveau de I"implantation) d’un pro-
grammme de calcul efficace de la racine carrée pour les grands entiers [Zim99]. Ce pro-
gramme, qui fait partie de la bibliothéque de calcul en précision arbitraire GMP, est entié-
rement prouvé correct dans le systéme C0Q. Les preuves sont réalisées en utilisant 1’outil
CORRECTNESS pour gérer les traits impératifs du programme. Le développement est assez
gros (plus de 13 000 lignes) and requiert 'utilisation de techniques avancées de maintenance
et de réutilisation des preuves.

Mots-clés : arithmétique en précision arbitraire, méthodes formelles, GMP, Coq

GMP square root in Coq 3

1 Introduction

Computing efficiently with multiple-precision integers requires different algorithms for differ-
ent precisions. Usually, naive schoolboy algorithms are used for small precision, and faster
algorithms for larger precision. We consider here a fast algorithm computing the square root
of an integer, which is efficient for both small and large precisions. This algorithm, presented
at the abstract level in [Zim99], was implemented in the GMP library from version 4, and
gave a speedup of about two with respect to the previous implementation.

We had two motivations in trying to prove the GMP square root implementation. Firstly,
only the abstract (mathematical) level was proven to be correct, thus an implementation
mistake was still possible; secondly, memory management of multiple-precision numbers
provides challenging problems that were thus far not considered —to our best knowledge—
with proof assistant techniques.

The Coq proof assistant was chosen since the theory of inductive constructions is well
suited to proving recursive programs, as the square root implementation we consider here.

The main goal of this work is to show we can build a formal proof of a real program
working on multiple-precision integers (here the square root publicly available with GMP)
within a theorem prover such as CoqQ.

In the next paragraphs, we briefly present the GMP library and the CoQ theorem prover.

1.1 GMP

The GNU Multiple Precision Arithmetic Library (GMP) [Gra02] is a library dealing with
arithmetic operations on multiple-precision integers, rational and floating-point numbers.
All its operations can be performed on arbitrarily large numbers and are designed to be as
fast as possible. It is recognized as one of the best libraries to date.

This library has several layers. In addition to the high-level arithmetic functions on
floating point numbers, it has a low-level function class. Functions belonging to this class
have a name starting with the prefix mpn, and deal with non-negative integers represented
as arrays of machine words (called limbs within GMP). For efficiency sake, most of them are
directly written in assembly language (for instance mpn__add_n on x86 platforms). However
the two functions we study in this paper, namely mpn_sqrtrem and mpn_dq_sqrtrem, are
written in C.

1.2 Coq

CoQq [Coq02] is a type-theoretic proof assistant. Its underlying logic is the calculus of induc-
tive constructions [PM93] which is a typed A-calculus with dependent types and capabilities
for inductive definitions. Thanks to the Curry-Howard correspondence, building a proof p
of a statement A can be viewed as building a term 5 of type A. The main advantage of
such a system is that proof terms can be typechecked automatically. It means once proved,
a theorem can be automatically verified via type-checking its purported proof term.

RR n° 4475

4 Bertot € Magaud & Zimmermann

This framework is well-suited to develop proofs of reliable software. In the following sec-
tions, our goal is to show how we take advantage of COQ capabilities to carry out formal
descriptions of arithmetic programs.

1.3 Outline

In section 2, we first recall the basic technique to compute square roots and informally de-
scribe the algorithm we shall consider in this paper. We then study the algorithm at three
different levels of abstraction. In section 3, we present the highest level of abstraction we
consider to study the algorithm. In section 4, we show how to build a function extracting
square roots. In section 5, we prove the correctness of the actual imperative implementation
of the program. In section 6, we describe some related studies about formal proofs of arith-
metic programs. In the conclusion, we sum up our contributions and give some guidelines
for future work.

2 Square root extraction algorithms

We assume here that N is a nonnegative integer. An integer square root algorithm takes as
input a nonnegative integer N and returns S and R, such that S = [v/N| and R = N — §2.
We call S the integer square root of N and R the corresponding remainder.

2.1 The schoolboy method

We recall the method formerly taught at school. As an example, we extract the square root
of 7421. The hand-computing technique uses a division-like scheme.

7421 | 86

1021 | 166 - 6 =996
25

We list the steps of the extraction of a square root:
1. We split the input into blocks of two digits, here n = 100n’+n" (n' = 74 and n” = 21).

2. We compute the square root of the two most significant digits n’. Here we have n’ = 74;
this gives s/ = 8 with ' = 10 as the remainder, we place 8 in the top right part of the
figure and 10 below 74.

3. We lower the next two most significant digits n” next to the remainder. This yields
100" + 7", here 1021.

4. We search for a digit z such that the expression p defined by p = (2s' - 10+ z) - z is
the greatest number less than or equal to 1007’ + n'. This gives x = 6.

INRIA

GMP square root in Coq 5

5. We subtract p from 1007" + n”, this yields the final remainder r” = 25. The square
root is 10s’ + x, i.e. 86.

If we consider the formula (a + b)2 — a? = (2a + b)b, the fourth step of this algorithm is a
way to subtract from the input the value of (a + b)? when one has already subtracted a?.

The schoolboy method is a particular case of the algorithm we study in this paper (see
section 3 with L = % and 8 = 10).

2.2 The actual algorithm we study

The algorithm whose implementation mpn_dq_sqrtrem is proved in this paper uses one of
the most common programming paradigms: the divide-and-conquer approach. It can be
seen as an extension of the schoolboy method to the case where we consider blocks of 2n
digits, instead of 2 digits. It can also be seen as a discrete version of Newton’s method. The
usual Newton iteration for the square root of a is:

a—zi 1 a
==(z .
2%y, 2 Tk

Tyl = T +

Instead of computing with floating-point numbers, which requires recomputing a full division
a/zy, at each step, the discrete version inductively updates the value of the remainder a —z3.
This algorithm can be used with any fast algorithms for multiplication and division, with
a complexity of $K(n) in the Karatsuba range and 6] (n) in the Fast-Fourier-Transform
range [Zur94].

The algorithm [Zim99] takes as input a number N, splits it into two parts (N’ and N").
It performs a recursive call on the most significant part N’. This yields a square root S’
and a remainder R’. It recombines the remainder R’ with the most significant half of N
and divides by 25’. This yields an approximation for the square root. It then computes the
associated remainder. The sign of this remainder determines whether the number computed
so far is exactly the square root or an overestimation of one unit. That the overestimation
is at most of one unit is one of the important mathematical properties of this algorithm. If
needed, the algorithm finally corrects the square root and the remainder accordingly. We
sketch its behaviour on the input 2703.

2703 | 52— 51
203 | 20/10=2
-1

102

1. We split the input into two halves n' = 27 and n"” = 03.

2. We compute the square root and remainder for n’ = 27; it yields s’ = 5 and 1’ = 2.
We place 2 below 27.

RR n° 4475

6 Bertot € Magaud & Zimmermann

3. We lower one digit from n”, i.e. 0, and divide the number obtained, 20, by twice s’
(28" = 10). This yields ¢ = 2 and r” = 0. Hence the estimation of the square root is
108’ + q = 52.

4. We determine the remainder of the square root extraction. For this, we subtract g?
from 107" + 3 (3 is the least significant digit of n’’. This gives 3 — 2?2 = —1 and we
know that 2703 = 522 + (—1). The remainder is a negative number. From this we
deduce we overestimated the square root.

5. Finally, we subtract one from the estimated square root. We get 51 and the remainder
is increased accordingly by 2-52 — 1 to 102.

Below, we build a formal proof of the function mpn _dq_sqrtrem. Firstly we prove it at
the propositional level, just considering which computations should be performed. Secondly,
we build a functional program which actually computes the square root. Finally, we make
a proof of the implementation at a very precise level of details.

3 Logical description of the algorithm

The first step of this study consists in proving the algorithm at a very abstract level. We
start by describing how the algorithm works. All properties stated in this section have been
formally proven using the CoQ system. In this section, we assume the algorithm simply
works on plain integers Z. At this level, we do not bother with memory management or
overflow issues. Such an algorithm can be specified as follows. It takes an integer NV > 0 as
input and returns two integers S and R such that:

N=5%+R,
SqrtremProp(N,S,R) : ¢ 0< S,
0<R<28.

The property R < 25 ensures that N < (S + 1)2, thus S = [VN].

We have two distinct parts to the algorithm: the “core” algorithm, which has a nor-
malization condition, and a wrapper. The core algorithm only computes square roots for a
given range of values. The second part of the algorithm is simply a wrapper which checks
whether this normalization condition holds for the input V. If it holds, it directly computes
the square root via the core algorithm; otherwise, it first transforms the input NV into a
normalized number N,,. It then calls the core algorithm; this yields a square root S, and
a remainder R,,. It finally “denormalizes”’ these numbers into the actual square root S and
remainder R for N.

3.1 The core algorithm

Let 3 be the basis, i.e. one more than the largest integer that can be encoded in a word.

INRIA

GMP square root in Coq 7

The core algorithm takes as input a number N € N. This number is supposed to be

normalized, i.e.:
2n

< N<p™,
4 = <8

The first step of the algorithm is to decompose the input number into a lower part (least
significant limbs) and a higher part (most significant limbs), corresponding to a division by
(2L%1. The actual divisor can be thought of in a more abstract manner and we just consider
two integers H and L, where L plays the role of lZ]. The integers H and L simply need
to satisfy the following conditions:

H>L (1)
L>0 (2)

and
HL = p". (3)

We shall see later that H should also be even. The integers H and L will play a significant
role throughout this description of the algorithm. The normalization condition for N can
be expressed in terms of H and L as follows:

(H4L>2 <N < (HL)*.

In fact we prefer the following equivalent formulation, more adapted to our formal treatment
of the proof:

N < (HL)* < 4N. (4)

Computation steps. We now describe, step by step, the computations performed by the
algorithm. We first break N down in two parts N’ and N, where N’ simply is the most
significant part and N” the least significant part:

N=N'L?+ N", 0< N" < I2

The square root of N’ is computed using a recursive application of the same algo-
rithm and this returns values S’ and R’ for the square root and remainder of N’ such
that SqrtremProp(N’, S’, R') holds, that is:

(N'=8?+R) A (>0 A (0<R <28
In the next step, N is broken down in two smaller parts N; and Ny:

N"=N,L+N,, with0<Ny,N; <L,

RR n° 4475

8 Bertot € Magaud & Zimmermann

and R'L + N; is divided by 2S’. This yields a quotient @ and a remainder R":
R'L+ N, =Q(25") + R", 0<R"<(29).
All these computations lead to the following result:
N = NIL?4+ N, L+ N,
= (S?+R)L*>+ N,L+ N,
S'L)? + (R'L+ N,)L+ N,
S'L)? + (258'Q + R")L + N,
S'L+ Q)%+ (R'L+ Ny — Q). (5)

= (
=
=

These equations suggest that (S'L + Q) might be the integer square root of N. We shall
see that this number is very close to the actual square root. Actually it is either the square

root or an overestimation by at most one. Central properties to establish this result are the
facts L < 2S5 and Q < L.

A lower bound on the recursive square root S’. The normalization property, the
equation defining N’ and N”, and the bound on N ensure the following inequalities:

H?L? < 4(N'L*+ N") < 4(N' + 1)L~
Assume H is even. We can consider H' = % and simplify the above inequality into
H? <N'+1

which is equivalent to
H? <4N'.

Moreover, it is trivial to deduce that N’ is necessarily smaller than H?2, so that the pre-
conditions for a recursive call of the algorithm are satisfied. Since S’ is the square root of
N’ and L < H, this yields a useful inequality for S’:

L<2s". (6)

An upper bound on the quotient (). The number @ is constructed by a division so that
25'Q + R” = R'L + N; and R’ is obtained through the recursive square root computation,
so that R’ < 25’. Since N1 < L <25’ we obtain

25'Q+ R" < 25'(L +1).
Knowing that R is positive, this gives

Q<L. (7)

INRIA

GMP square root in Coq 9

No underestimation of the square root. We show here that S’ L+ @ is not an underes-
timation of the square root. It suffices to prove that S’ L+ Q+1 is an overestimation, in other
words N < (S'L+Q+1)%. This is equivalent to the property that N —(S'L+Q)? < 2(S"L+Q)
and using equation (5), to the inequality :

R'L+ Ny —Q*<2(S'L+Q).

We know that R < 25" —1 and Ny < L, because R"” and Ny are remainders of divisions
by 25’ and L. From this we can derive the following inequality:

R'L+ Ny <(28'—1)L+L=2S'L

All this combined with the fact that @ is positive fits in the following sequence of compar-

isons:
R'L+Ny—Q?<R'L+Ny<2S'L<2SL+Q).

A limit on overestimation. The candidate S’'L+ @ may still be an overestimation. If so,
then S’L + @ — 1 is another candidate for the square root and the corresponding remainder
is

R'L+Ny—Q>+2(S'L+Q)—1. (8)
We will simply show that this expression is always nonnegative. First the lower bound (6)
on 25" and the upper bound (7) on @ yield the sequence of inequalities

Q-1<L<29.

So we know separately @ —1 < 258 and Q —1 < L. If Q > 1, we deduce the following
inequality:
(Q—-1)?<28'L,

which also holds for @ = 0 since S’ and L are positive integers. This inequality can be
rewritten as follows:
0<2(8'L+Q)—Q*—1.

As Ny, L, and R" are non-negative, we can add R”L + Ny to the right hand side, which
shows that the corrected remainder (8) is non-negative.

Altogether, the last two paragraphs express that the square root is either S'L + @ or
S'L+Q—1. To tell which is the right value, we only need to compute the sign of the remainder
R"L + Ny — Q2. If this remainder is non-negative, we already know that R"L + Ny — Q? <
2(S'L+Q), and both constraints on the remainder are fulfilled. If the remainder is negative,
then we add 2(S'L + Q) — 1 to it, which necessarily yields a non-negative value. It remains
to check that this new value is smaller or equal to 2(S’L 4+ @ — 1); this is immediate since
this value is obtained by adding a strictly negative value to 2(S'L + Q) — 1.

RR n° 4475

10 Bertot € Magaud & Zimmermann

Relating H, L, and the basis 3. With respect to the basis 3, the normalization condition
imposes
IBQTL

< N<p™,
4 - <8

The numbers H and L simply made it possible to abstract away from the basis during the
abstract reasoning phase. However, we have to understand how these numbers are produced
and how the constraints put on them can be interpreted as constraints on the basis.
First, we need HL = 3" and L < H. Taking L = ' and H = "~ with [< 5 works,
for example
=15l L=, H=p"

For recursive calls, this ensures that the length of the number decreases at each call, except
when n = 1. Concretely, this means that this algorithm requires another algorithm to
compute the square root of integers N with %2 < N < (2. Such a function is actually
provided in the GMP library. We haven’t certified this function and have simply assumed
that it satisfies the specification SqrtremProp.

The last constraint that we have seen in our abstract proof is that H should be even. If
n = 2 this leads to the constraint that § should be even. On the other hand, if 3 is even,
we are sure that H = 8" is too. In practice, this means that this algorithm could be used
to compute square roots for numbers written in arbitrary even bases, for instance basis 10.

The assumption H even helped to show L < 2S5’ which in turn implied @ < L, and
both inequalities were used to show that the corrected remainder (8) is always nonnegative,
therefore at most one correction is needed.

Our algorithm simply does not work if H is odd. Assume H odd. The above bounds (6)
and (7) only fail when L = H =25'+ 1 and Q = L+ 1, with input $L* + ;L3 + 1L? — L.
Consider for example H = L = 3, and N = 33. The first square root and remainders are
(7,—16), then the corrected ones are (6, —3), thus two corrections are required in that case.

Formal proof development. The description of the algorithm justification is as close as
possible without going into unruly details to the formal proof we have done in the computer.
A major difference is the order of reasoning steps. When performing proofs on the computer,
it is customary to reason in backward manner: start from the goal proposition, propose a
new formulation that is strong enough to imply the initial goal, but simpler, and break down
into pieces until all can be verified automatically by the computer.

Aside from this difference, we have followed the same abstraction steps: the basis 3 does
not appear in the main proof and everything is expressed in terms of the various intermediate
results of computations, N, N', §', R, Ny, Q, etc. The main proof fits in a 600 line long
script that can be replayed step by step on the computer to see the evolution of the results.
Proofs can usually be broken down in several files and our proof uses two other auxiliary
files adding general facts about integer arithmetic (about 150 lines) and the power function
(about 150 lines). We have used the PcoqQ [ABPRO01] proof development tool to perform this
proof, thus benefiting from its capabilities to render mathematical formulas with traditional
mathematical notations, especially for the square and power functions, that use superscripts.

INRIA

GMP square root in Coq 11

3.2 The wrapper

The user interface function to compute square roots does not have a precondition imposing
that the input should be normalized or its length should be even. In practice all numbers
are given with their length, that is we receive both a number N as input and a number n
such that 0 < N < g".

If N satisfies the normalization condition, i.e., if n is even and ’GT" < N < g™, its square
root can be computed via the core algorithm. Otherwise, a wrapping procedure transforms
N into a suitable input for the core algorithm, performs the computation with the core
algorithm, and then interprets the result to yield the required value.

From now on, we assume that the basis is an even power of 2 and we define b to be the
number of bits per limb, that is 3 = 2°. Let 2c or 2¢ + 1 be the number of leading zero bits
in the input’s most significant limb and let ¢t = [2]. If n is even and ¢ = 0, then the input
is normalized and can be passed directly to the core algorithm. The results do not need
further treatment.

If n is odd or ¢ > 0, then we build a new number N; = 22¢3%=" N. This new number is
normalized with respect to 3%!. Please note that 2t — n is either 0 or 1.

Let k = ¢+ (2t — n)b/2. We have N; = 22*N. As N is a normalized number with
respect to /%, we can compute two numbers S; and R; such that

N12512+R1, S1 >0, 0< R <285;. (9)
Writing S; = 2S5 + 5o with 0 < 59 < 2%, we have:

512 < 22k N < (Sl + 1)2
(285 +509)2 < 22PN < (2885 + 59 + 1)2
22682 <22k < (2FS + 2F)2
22kG2 < 22kN < 22R(§ 4 1)2.

Dividing by 22* leads to S < N < (S + 1)2, thus S is the integer square root of N. From
it, we easily prove 0 < R < 2S5.

4 Functional description of the core algorithm

The abstract description of the algorithms given in the previous sections only makes it
possible to express that the relations linking all intermediate values ensure that the final
results satisfy the specification. However, they do not describe a program and, in particular,
they leave the possibility for errors with respect to the required properties of the input for
each function or recursive call. For a complete description of the algorithm, we need to show
that this algorithm can actually be represented by a function in the programming language
that is embedded in our formal framework’s language.

This functional description is going to rely heavily on dependent types in two manners,
to ensure that each function is called with input satisfying the conditions required for their
good behavior and termination.

RR n° 4475

12 Bertot € Magaud & Zimmermann

First, dependent types are used to express the restrictions on the input for functions. This
is done by giving extra arguments to functions, that are used as certificates that the data
satisfies the required properties. For instance, we use a function decompose that receives a
value of type N, which should be greater than 1. To express this, we say that the function
decompose has a type with the following form:

In:N(1<n)—...

This type indicates that the function takes two arguments, where the first one is a natural
number n and the second argument is a certificate ensuring that n is greater than 1. The
proposition 1 < n actually is the type of the certificate, and this means that the type
of the second argument depends on the first argument. This is why we say that we use
dependent types. The proof assistant that we have used is based on this notion of dependent
types: it belongs to the family of type theory based proof systems. The trick of type
theory is to consider that types can be read alternatively as data types or as propositions.
Correspondingly, elements of the types can be viewed as data structures or as proofs. In
this sense, most theorems make it possible to transform certificates for some requirements
into certificates for other requirements. In practice, the II and — notations given above
correspond exactly to the quantifier V and the implication, respectively, when one considers
logical statements. For this reason, we shall always use the V symbol to express that a
function takes an argument as input, such that the output or later arguments have a type
depending on this argument.

Functions computing data can also produce certificates attached to the data. For in-
stance, the decompose function produces a pair of natural numbers, h and [, such that:

h+l=n AN h<n A 0<I<h.

Obviously, these properties can only be satisfied if 1 < n. This explains why the decompose
function needs such an input certificate. Altogether, the type of the decompose function
could be read as the following one:!

decompose: [In: N.(1 <n) 5 {h:N&{{:N|l+h=nAh<nA0O<IAl<h}}.

For the abstract description of the algorithm we have used two numbers H and L. This
description imposes only simple constraints on these two numbers, and their relation to the
actual basis for computation does not appear in the formal proof. Actually, we are going
to express that H and L are powers of the basis and we are going to use the decompose
function given above to produce these two numbers. The core algorithm is thus going to
accept only numbers that are normalized with respect to an even power of the basis. To
make notation more convenient, we define the property IsNormalized as follows:

(IsNormalized n v) =n < v < 4n.

'We actually use a different formulation that would be too long to describe here.

INRIA

GMP square root in Coq 13

To express that the number n needs to be normalized with respect to some even power of
the basis, we simply say that there exists an h such that the property (IsNormalized n 32")
holds. In simpler terms, h is half of the number of digits of the input and the predicted
number of digits for the output.

The number of digits is also needed in the algorithm, so that the function representing
the core algorithm has the following type:

Yh:N. Vn : Z. (IsNormalized n 3**) — {s: Z & {r : Z | (SqrtremProp n s r)}}.

This is the type of a function taking three arguments: a natural number h an integer n as
regular data, and a certificate ensuring that h and n are consistent in some sense. The result
is a compound result again containing three pieces of data: two integers s and r and a proof
that these integers satisfy the specification that we have studied in the previous section.

To simplify the notation in the rest of this paper, we define an abbreviation for a fragment
of this type:

(sart_F_type h) = Vn:Z. (IsNormalized n f*") —
{s:Z & {r : Z | (SqrtremProp n s r)}}.

Regular data arguments and proof arguments are passed from one function to another
with the help of pattern matching constructs. For instance, the call to the decompose
function in our functional description appears in a fragment with the following shape

Cases (Zle_lt_dec h 1) of
(left H h_le 1) = ...
| (vight H 1 It h) =
Cases (decompose h ?) of
(0,1, Hegh, H_h' _lt_h,H_O_Ilt_I,H [_le_h)=...

This represents a call to the function decompose on the value h; its second argument,
which should be a certificate that h is greater than 1, is left undescribed: the proof system
constructs a proof obligation that will be proven later by the programmer. In this case, this
proof is trivial to provide, since it has to be constructed under the assumption H 1 It h
that was provided by the test function Zle_1t_dec: this function not only compares h and
1, it also returns certificates and H 1 It h is a certificate that can be used as a proof
that 1 < h. Thus, the proof can be directly H 1 It h here. In other cases, more complex
proofs may need to be constructed. In turn, the results of decompose can be viewed as two
natural numbers A’ and [, a proof that A’ + 1 = h, a proof that h' < h, a proof that 0 < [
and a proof that [< h'.

To describe recursive functions, proof arguments also need to be provided to ensure that
the function terminates. In practice, a recursive function of type A — B can be described
by a function of type

Ve:A(Vy: A(Ryz)— B)— B,

RR n° 4475

14 Bertot € Magaud & Zimmermann

where R is a well-founded relation, that is, a relation that has no infinite decreasing chain.
This function has two arguments, and the second argument corresponds to recursive calls.
Its type expresses that recursive calls can only be made on values that are smaller than the
initial argument (where R is the relation . ..is smaller than ...”). The absence of infinite
chains then ensures that the recursive function is eventually going to terminate. For our
core algorithm, we use N as the input type instead of A and the natural strict order < on
N as the well-founded relation. The recursive algorithm is then represented by the function
sqrt_F with the following type

Vh :nat. (Vh':nat. i’ <h — (sqrt_F_type h')) — (sqrt_F_type h).

So recursive calls of the algorithm can only happen on values h' that are smaller than the
input value h, but we have already seen that the decompose function given above will make
it possible to produce such values, with the relevant certificate, when h is large enough.

The main structure of the sqrt_F function is given by the following expression:

Ah, sqrt,n, Hnorm.
Cases (le_lt_dec h 1) of
(left Hhle) = (normalized _base_caseh ? n ?7)
| (right H1lth) =
Cases (decompose h ?) of
(W', 1,Hegh, H_KW' _It_h,H _O_It_I,H 1 _le_h) =
Cases (divn % 7 ?) of
(', n", Hdiv) =
Cases (div n” B ? ?) of
(n1, ng, Hdiv') =
Cases (sqrt h' 7 n’ ?)of
(', (', Hsqrtrem)) =
Cases (div r'3! +ng 28’ 7 ?) of
(¢, r", Hdivy) =
Cases (Z_le_gt_dec 0 (r"3' +ng — ¢?)) of
(left H_0_le_R) = (s'8' +q,(r"B + no — ¢, 7))
| (right HtR) =
(r

('B'+q—1,(r"B +no— > +2(s'B +¢) — 1, 7)

All the question marks in this text correspond to proof obligations that can be verified with
the proof assistant in the same manner as for regular theorems. Notice that the recursive
call to the algorithm is represented by the expression (sgrt ' ?n’?). This recursive call itself
requires two proof obligations, one to ensure that A’ is strictly smaller than h and the other
to ensure that n’ is normalized with respect to 82"".

INRIA

GMP square root in Coq 15

5 The actual imperative program

In the previous two sections, we do not consider memory management issues. Actually, the
traditional point of view in functional programming is that memory should be managed au-
tomatically with the help of a garbage collector, so that all notions of memory are abstracted
away and the user has no control on how efficiently the memory is actually managed. This
is unfortunate in our case, because the actual implementation is designed in a very careful
way to optimize memory consumption. This care means opportunities for errors and a good
opportunity for formal verification.

The main characteristic of this implementation is that it works in-place. The input
number requires 2n limbs of memory storage, and the square root and remainder also require
2n 4+ O(1) limbs altogether, however the algorithm makes sure that only 3n limbs are used
to store all intermediate results. As a consequence, the input is actually destroyed during
the computation and the remainder is actually stored in the lower part of the input. The
exact place where the remainder is kept is important for the algorithm’s correct operation.

5.1 The C procedure

We give in Fig. 1 the exact C code of the procedure as it can be found in GMP 4.0.1
[Gra02]. The careful reader will notice the similarity with the algorithm described in the
previous section and also some important differences. First, the number that is called h
in the previous sections is called n here. Then there is no need to compute the numbers
H = " or L = ' or the numbers N’, N, Ny, and Ny, since all these numbers already
lie at some place in memory. If N is the number using 2n limbs and whose least significant
limb is at location n,, then N’ is the number of length 2h whose least significant limb is
at location m, + 2l, N has length [and sits at location n, + ! and Ny sits at location n,,
without requiring any extra computation. Similarly, if one computes the square root of N’
so that the remainder R’ is placed in memory at location n, + 2 (with length k) and Ny is
at location n, + ! (with length), then without any computation one obtains R'L + Ny at
location n, + I, with length h 4+ = n. This trick is used at line 14 for R'L + N; and at line
21 for R"L + N.

Secondly, most binary operations on large numbers actually take 4 arguments: two argu-
ments indicate where the lowest limb of the input numbers lie in memory (these arguments
are pointers), one argument indicates where the lowest limb of the output will lie after the
computation, and the last argument indicates the (common) length of the arguments. For
instance mpn_sub_n is the function used to subtract a number of n limbs from another
number of n limbs and the result is a number of n limbs. Operations like subtraction and
addition may provoke an underflow or an overflow, usually corresponding to an extra bit
that is the value returned by the function.

The square root function may itself incur an overflow. If one computes the square root
of a number that fits in 2n limbs, the square root itself is sure to fit in n limbs; however,
one only knows that the remainder is smaller or equal to twice the root, and for this reason

RR n° 4475

16

Bertot € Magaud & Zimmermann

30
31}

int mpn_dq_sqrtrem (mp_ptr sp, mp_ptr np, mp_size_t n) {

mp_limb_t q; /% carry out of {sp, n} */
int ¢, b; /* carry out of remainder */
mp_size_t 1, h;

ASSERT (np[2*n-1] >= MP_LIMB_T_HIGHBIT/2);

if (n == 1) return mpn_sqrtrem2(sp, np, np);
l1=n/2;
h=n-1;
q = mpn_dq_sqrtrem (sp + 1, np + 2 * 1, h);

if (q) mpn_sub_n (np + 2 * 1, np + 2 * 1, sp + 1, h);
q += mpn_divrem (sp, O, np + 1, n, sp + 1, h);

c = spl0] & 1;

mpn_rshift (sp, sp, 1, 1);

sp[1-1]1 |= q << (BITS_PER_MP_LIMB - 1);

q >>=1;

if (¢) ¢ =mpn_add n (np + 1, np + 1, sp + 1, h);
mpn_sqr_n (np + n, sp, 1);

b =q + mpn_sub_n (np, np, np + n, 2 * 1);
c-=(Q1==h) ?7b : mpn_sub_1 (np + 2 * 1, np+2*1, 1, b);
q =mpn_add_1 (sp + 1, sp + 1, h, q);

if (c < 0) {
¢ += mpn_addmul_1 (np, sp, n, 2) + 2 % q;
¢ -= mpn_sub_1 (np, np, n, 1);
q -= mpn_sub_1 (sp, sp, n, 1);
}

return c;

Figure 1: The mpn_dq_sqrtrem function as distributed with GMP 4.0.1 (only line breaks
have been edited from the actual code).

INRIA

GMP square root in Coq 17

it may not fit in n limbs and have a one-bit overflow. This one-bit overflow is the value
returned by the function.

Third, there is no division of R'L + N7 by 25’ as in §3.1. Such a division would require
computing first the number 25’ and finding a place in memory to store this intermediate
value. Rather, a first step is to divide by S’ (line 14) and then to divide the quotient by 2
(line 16), updating the remainder if the quotient is odd (line 19). Dividing by S’ is a bit
tricky because of the way R’ is stored in memory. The whole process appears between lines
13 and 19 (included), and we will describe it more carefully in section 5.4.1.

5.2 CORRECTNESS: developing formal proofs of imperative programs

CORRECTNESS [Fil99, Fil01] is a tool designed to carry out proofs of imperative programs
within the CoQ proof assistant. It takes as input a program written in a ML-like language
with imperative features and its specification as a logical formula, annotated in a Floyd-
Hoare style. For this algorithm, ML-like semantics are close enough to the behavior of the
C programming language and we have used this tool in our study. The tool produces a
collection of verification conditions, for which the user is required to provide proofs. These
proofs can then be verified using CoQ.

In our model of the C program, memory is represented as a global array m of size bound.
Its indices range from 0 to bound — 1. We replaced pointers by indices in this memory array
and lengths are computed as regular natural numbers. Each cell in the array is supposed
to represent a word in memory (a limb in GMP parlance). For our formalization, we have
introduced a type modZ with the following definition:

modZ={v:Z|0<v< g}

Thus, memory cells can only be used to store bounded nonnegative integers and we also
provide a function modZ to_Z to inject elements of modZ in Z.

5.2.1 Interpreting memory segments

We start by defining an interpretation function: m,pos,l +— {pos,i},,. It is intended to
return the actual integer encoded in a memory segment. It takes three parameters as input:
the array denoting the memory m, the position pos where the segment starts, and its length
[. Here, pos and [are natural numbers, so that we can easily perform case analysis and
induction on them within the CoQ system. The interpretation function is defined by the
two equations:

{pOS, O}m = 0,
{pos,l+1},, = modZ _to_Z(m[pos])+ B{pos + 1,1} m.

This function is useful to describe formally the basic operations of the GMP library and
to connect variables used in §3 to values stored in memory.

RR n° 4475

18 Bertot € Magaud & Zimmermann

The property that placing two numbers ¢ and b side-by-side in memory is enough to
compute a new number of the form af3' + b is described in our formal development by the
following theorem, which we prove by induction on I:

Impnumber _decompose : Ym, h, 1, p. {p, }m + B{p+ 1, A} m = {p, 1 + h}m.

5.2.2 Describing basic GMP functions

CORRECTNESS provides means to declare signatures (or interfaces) for functions without
defining them. For instance the subtraction function mpn_sub_ncan be described as follows:

Global Variable mpn_sub_n:

fun (pos, : nat)(pos, : nat)(posy : nat)(l : nat)

returns _ :unit

reads m

writes m, b

post {pos,, 1} m = (1b- B' + {posa,}ma) — {poss, l} ma
end.

In other words, mpn_sub_n takes as input pos,, pos,, posy, and [, returns nothing and may
have some side-effects on the memory m and the boolean reference rb. The input numbers
are stored in {pos,, !} (first argument) and {poss,!} (second argument), and the output is
stored in {pos,,[}. In this description there is no pre-condition?. A minimal post-condition
states that it subtracts the number laying in the initial memory (denoted by m@) at position
posp and of length [from the number also laying in the initial memory m@ at position pos,
and of length [. Tt writes the result in m at position pos, with the exception of the borrow
(0 or 1) that is stored in the global variable rb. That variable will actually be set when the
second argument is larger than the first, so the result should be negative. The result is made
positive again by adding rb - 8! to it, this is compatible with the way negative numbers are
usually represented in computer arithmetic.?
As a result, the expression from line 21 is transformed from:

b = q + mpn_sub_n (np, np, np + n, 2 * 1);
to

mpn_sub_n (np, np, np + n, 2 * 1);
b = q + (bool_to_Z rb);

2In fact, the intervals [posq,posq + I[and [posp, posy, + I[should either not overlap, or be identical, and
there are similar conditions on the interval [posr,pos, + [[.

3 The way we handle the borrow is a bit strange. A better solution would have been to return the borrow,
as is done in the C code. Our approach prevents us from describing directly algebraic expressions in which
appears a call to a function. The main reason for this apparent weakness is an early problem with the
CoORRECTNESS tool at the time we started our experience. The C-like approach can also be implemented,
but the proof development has grown quite large and changing the formalization does not seem worth the
effort.

INRIA

GMP square root in Coq 19

In other words, an expression containing a function returning a value in the C code is
transformed according to the following principles:

o first we execute the steps involving side-effects,

e then we evaluate a side-effect-free expression.*

In the function’s post-condition, m@ stands for the memory before the execution of
mpn_sub_n whereas m represents the memory after the computation. The post-condition
to the mpn_sub _n function as given above is not complete, as it should also express where
side-effects do not occur. This will be seen in a later section (see §5.3).

5.2.3 Proof reuse

Most of the theorems we established at the logical description are reused in the proof of the
implementation. Reusing a proof means connecting memory segments with integer variables
through the interpretation function m,p,! — {p,{}n. For instance, Theorem QleL that
states @ < L actually has the following statement:

VN,L,H,H',N',N" 8" R',N1,Nog,Q,R".

H=2H" A 0<L A L<H A (Zdivprop N L2 N'N") A
(Zdivprop N L N1 Ny) A (Zdivprop R'L+ N; 25" Q R") A
(SqrtremProp N’ S’ R') A (IsNormalized N (HL)?)

= Q@< L.

All values, N, N', ...appear at some point in the memory, sometimes as a combination
of a memory segment and a borrow or a carry multiplied by a power of the basis. For this
reason, it is possible to instantiate this theorem with some of these values, for instance in a
command like the following, that appears in our formal development:

Apply QleL with

N = {npy,2n}m, L := ' H := " N’ := {n,, + 21, 2h}.m,
N = {nP072l}mo Ny = {npo +lvl}m0 No = {npovl}mo
S = {8py + I, A}y R := 101 B + {npy + 20, A},

R" := o8 + {npy + 1, h}m,-

In this example, three different states of the memory are considered. The state myg
corresponds to the initial state of the memory when the function is called, m; corresponds
to the memory after the recursive call to the square root function, ms corresponds to the
state after the division of R'L + Ny by 2S’. The various premises of Theorem QleL are
proven with the help of the specifications of the GMP functions, like mpn_sub_n.

4 This approach has at least one advantage, in that it makes the order in which functions with side-effects
are called explicit. It happens that the ML-like language that is taken as model in CORRECTNESS evaluates
algebraic expressions in a right-to-left order, while the C language specifies that these expressions should be
evaluated in a left-to-right order so that our decomposition could be meaningful.

RR n° 4475

20 Bertot € Magaud & Zimmermann

5.3 Memory management issues

In the specification of functions that have side-effects, we must not only express that they
produce an output that satisfies the intended meaning, but also that they are well-behaved:
they don’t attempt to access or update outside of the available memory and they leave
memory outside the output segments unchanged.

5.3.1 Bounds checking

The memory has been declared as an array of size bound. This means any access in the
array at an index smaller than 0 or greater than or equal to bound is illegal. This needs to
be adapted when functions are supposed to access memory segments.

In our mpn_sub_n example, this leads to the following requirements:

posg + I < bound, posy + 1 < bound, pos, + 1 < bound.

Moreover pos,, posy, and pos, have been declared of type N, so that the condition no access
under 0 is automatically satisfied. Still these conditions are added among the pre-conditions
of mpn_sub_n, and similar pre-conditions are provided for our formal description of all
other GMP functions.

For the mpn_dq_ sqrtrem function itself, we take as pre-conditions the following inequal-
ities:

np + 2n < bound, sp +n < bound.

Then all the other operations operate at segments of the form {n, + I,h}, {n, + 2I,h}
{np+1,n} or {sp+1, h}, etc. The upper bounds for these segments are n,+1+h, n,+2l+h,
np+1+n, sp+1+hrespectively. If we provide the information that [+h = n and [< n, then
verifying that the segments lie below bound can be performed by an automatic procedure
for linear arithmetic in inequalities, like the Omega decision procedure provided in CoqQ. We
have developed a small tactic called SolveBounds that makes sure all relevant information is
provided before calling the Omega tactic. With this tactic, we have been able to get rid of
all bounds checking.

5.3.2 Segments overlap

Most of GMP functions require that segments representing inputs and outputs should either
be exactly the same or not overlap with each other. In our example mpn_sub_n, it means
we have to add the following preconditions:

POS, = POSy V PoS, + 1 < pos, V pos, + 1 < pos,

Pos, = posy V pos, + 1 < posy V posy + 1 < pos,

POSq = Posy V posq + 1 < posy V posy, + 1 < pos,

All these constraints can also be solved automatically by calling the above-mentioned tactic
SolveBounds.

INRIA

21

GMP square root in Coq

np

T T
I NN NN

Computing the square root of N’

(

NN EEEEEEEE)

Dividing RL+N1by S

[
[
{

Dividing by 2

R

Computing Q

T A A AT
I NSNS EEE NN

T A A AT
IS EEE NN

Subtracting Q 4rom R'L+N 0

(

Figure 2: Memory use of the algorithm: horizontal stripes denote input for the following
operation, criss-crossed patterns denote output from the previous operation, slanted stripes

denote memory that is not used at that time.

RR n° 4475

22 Bertot € Magaud & Zimmermann

5.3.3 Stability of memory areas

Another aspect of memory management is that functions leave most of the memory un-
changed. The segment of memory that receives the output is modified, of course, but
side-effects should be limited to that area. For instance, this property is essential to express
that the value Nj is stored unchanged in memory until the time when Q2 is subtracted from
R"L + Ny.

The issue of checking stability of memory areas arises in formal proofs. In hand-written
proofs, this is implicit, areas for which we have no information, are considered unchanged.

For our example mpn_sub_n, we must add the following postcondition, where the nota-
tion m[p] describes the value in memory at index p:

Vp :nat 0 < p < bound = p < pos, V pos, + 1 < p = m[p] = mQ[p)].

This kind of condition makes it possible to transform a proof of equality between values in
two different states of memory into a collection of comparisons. These comparisons are, once
again, easy to get rid of with the help of our SolveBounds tactic. Fig. 2 gives a summary of
the location and possible destruction of each value as one iteration of the recursive function
executes.

5.4 Modular specification of the program

To make the proof more manageable, we actually encoded the text of the function in several
sub-parts, where each sub-part was given its own set of pre- and post-conditions. This
organization made it possible to share the proof work among proof developers and to limit
the amount of useless facts given in the context of each proof obligation.

There are four parts, corresponding to the main phases of the computation:

e recursive call to mpn_dq_sqrtrem,

e dividing by 257,

e squaring @ and subtracting it,

e correcting the result if the remainder is negative.

For the recursive call, the same phenomenon as for the functional description appears. The
recursive definition is well formed if we exhibit a well-founded relation and show that some
expression built with the parameters to the call decreases for this well-founded relation.

5.4.1 Dividing by 25’

The division by 25’ is performed in several steps to avoid multiplying S’ by 2 and storing
25" into memory. The first step consists in subtracting S’ from R’ if R’ happens to be larger
than H. This subtraction is described by the operation at line 13, but there is a trick with
the borrow: The computation that is actually performed is (R’ — H) — S’, since only the

INRIA

GMP square root in Coq 23

number R’ — H is stored at {n, + 2, h}. This subtraction is bound to return a borrow,
because R’ < 25’ < H + 5'. For this reason, the value stored at {n, + 2I,h} after the
subtraction is:

R-H-S+H=R -5

In this case (R’ > H), it is actually the number (R’ — S')L + N that is divided by S’.
This yields a quotient Qg and a remainder Ry and we have the following equation:

(Rl — SI>L + Ny = Q()S' + Ry,

which is equivalent to
R'L+ N, = (L+Qo)S' + Ry.

The actual division of (R’ — S")L+ Ny by S’ is done with the function mpn _divrem. This
function is actually specified to perform only divisions by “normalized” numbers, with most
significant bit set to 1. In this case, the numbers of limbs needed to represent the quotient
can be known in advance: it is the difference between the number of dividend limbs and
the number of divisor limbs. However, there may be an overflow of at most 1 bit. For our
purpose this bit is added to ¢, in line 14. So ¢ may be a value between 0 and 2 and, after
line 14, the quotient of R'L + N7 by S’ is g8’ + {s,,}.

The computation on line 15 just saves the parity bit of)y. Lines 16 to 18 perform the
actual division of the quotient by 2, and we have 0 < ¢ < 1 after. This division is done
using bit shifts to the right, as is customary in computers using binary representation. In
our formalization, we have avoided the burden of explaining why shifts could be interpreted
as arithmetical operations and we have assumed that mpn_ rshift performs a division by a
power of 2, without further proof. For the same reason, we have replaced the operation

sp[1-1] |= q << (BITS_PER_MP_LIMB - 1)

by an addition of g if ¢ is odd (then it is necessarily 1), and 0 otherwise.

If the quotient Qo was odd, then the remainder has to be corrected by adding back S’
to Ry. This correction is done on line 19. It may return an overflow that is stored in the
local variable c.

5.4.2 Subtracting the square of)

@ is represented by the number ¢3' + {s,,l} at line 20, where the square of {s,,!} is
computed. This is actually enough to compute the square of @), because we know @ < L.
From this, we can deduce that either g or {s,,!} is zero and the double product in the
development of the square is always 0. This property is used at lines 21 and 22, where
R"L + Ny is represented by c¢3™ + {n,,n} before line 21 and Q? is represented by ¢3%* +
{ny + n,2l}. On line 21, the computation being performed is only {n,,2(} — Q2. When
h # 1, then an extra subtraction of the borrow needs to be done on the most significant limb
of {n,,n} with an update of ¢ accordingly. As a result, the value R"L + Ny — Q2 is actually
represented by ¢8" + {n,,n} after line 22, where —1 < ¢ < 1.

RR n° 4475

24 Bertot € Magaud & Zimmermann

Before line 23, it is not true that {s,,n} contains the number S’L + Q. Actually, @ is
represented (since line 18) by ¢3'+{s,, [}, so that the number {s,,n} actually is S'L+Q—qL.
This is corrected on line 23.

5.4.3 Correcting the result

After line 23, the value R”L + Ny — Q? can be found in the memory state as ¢8™ + {n,,n}.
If this value is negative, only ¢ can make it negative, therefore testing c¢ is enough to find
out whether a correction is necessary.

The value S'L+Q is represented in memory by ¢3™+{n,,n}, so the correction performed
on the remainder in lines 26 and 27 also includes adding 2¢ to ¢. The subtraction in line
28 corresponds to the correction on the square root to compute S'L + @Q — 1. The borrow
returned by this subtraction is removed from ¢, but this is useless: ¢ will be forgotten
when the function terminates (and anyway, we already know that the ultimate value of this
variable is 0).

5.5 Overview of the proof development

Improving the system. We have noticed that the tactic Omega requires more and more
computation time to solve a goal when the context gets larger. To tackle this efficiency
problem, we designed a new tool Gomega. It is intended to reduce the size of the context
before applying a decision procedure such as Omega. The user has to give explicitly as
parameters all the hypotheses required by the decision procedure to solve the goals. It
is useful in the sense that it allows the user to clear the context from every assumption
which is not related to memory management when proving legal array accesses for instance.
Combined with a dependency analysis tool, such a tactic can be used to determine the
minimum conditions that need to be verified for a statement to hold. It forces the user to
say which assumptions are relevant to solve the goal.

Overall view. For the formal development, the files describing the algorithm at the logical
level contain 2700 lines of formal code, the functional description contains 500 lines, and the
proof of the imperative code contains 10000 lines of code. Verifying the proofs takes about
ten minutes on a Pentium IIT 1 GHz (with 2 processors) and 1 GByte of memory. C0oQ uses
at most 300 MBytes of memory.

6 Related work

Other researchers have worked on the formalization of arithmetic operations in theorem
provers. However, most of the momentum has been provided around floating-point arith-
metic and the IEEE-754 standard [Har99, Rus99, Min95, DRT01, Jac01l]. The work on
floating-point algorithms has more to cope with the mere correctness of the algorithms,
where the intricacies of rounding errors need to be taken into account. When considering

INRIA

GMP square root in Coq 25

integer arithmetic, there is little fear of misinterpreting the specifications since there is no
rounding problem. As a result, integer based algorithms have been less studied. This work
shows that powerful integer-based algorithms also deserve formal study. They may also be
of use for the formal verification of floating-point arithmetic, as the IEEE standard suggests
that floating-point number operations should be performed with the input numbers as “face
values” before ultimately rounding the results.

We should also mention the work of Didier Bondyfalat [Bon02] who carried out a proof
of the GMP division function used by our algorithm, although the level of abstraction is
higher.

7 Conclusion

This paper describes an efficient implementation for the computation of square roots of large
numbers, and its formal study using a proof assistant. The benefits of this work are a precise
formal description of a program that is recognized as one of the most efficient to date, a
precise description of the conditions under which this algorithm will operate correctly, and
a stronger guarantee that the program will always operate as specified. We believe this is
one of the first formal studies of state-of-the-art algorithms, where the formalization covers
even the details of memory usage and pointer arithmetic.

The algorithm we proved is a discrete variant of Newton’s method, with an inductive
computation of the remainder. On the mathematical side, the major result is the fact that
only one correction is needed after the division. At the implementation level, the memory
usage is nearly optimal, since no additional memory is required in the recursive function,
except the local variables of fixed total size which are allocated on the stack. Our work
nevertheless pointed out some possible optimizations that will be studied later.

The organization of the formalization work contains three levels of abstraction. The
first level of abstraction only takes care of the mathematical relationship between numbers.
The second level takes care of describing the combination of basic computations, ensuring
that all functions are used in their domain of applicability and that the main recursion will
always terminate. The third level of abstraction gets much closer to the implementation
and expresses how carries, borrows, and memory segments are handled. We believe other
formalization attempts will benefit by following a similar pattern of study.

All specifications and proof developments are available on the World Wide Web (see
http://www-sop.inria.fr/lemme/A0C/SQRT/index.html).

Acknowledgments. Thanks to the INRIA sponsored AOC project, and especially to
Laurent Théry and Didier Bondyfalat. Thanks also to the CoQ team, especially to Jean-
Christophe Filliatre.

RR n° 4475

26

Bertot € Magaud & Zimmermann

References

[ABPRO1] Ahmed Amerkad, Yves Bertot, Loic Pottier, and Laurence Rideau. Mathematics

[Bon02]

[Coq02]

[DRTO1]

[Fi199]

[Filo1]

[Gra02]

[Har99|

[Jac01]

[Min95]

[PM93]

and Proof Presentation in Pcoq. In Proof Transformations, Proof Presentations
and Complezity of Proofs (PTP’01), 2001. Sienna, Italy, also available as INRIA
RR-4313.

Didier Bondyfalat. Certification d’un algorithme de division pour les grands
entiers. Unpublished, 2002.

Coq development team, INRIA and LRI The Coq Proof Assis-
tant Reference Manual, January 2002. Version 7.2, available from
http://coq.inria.fr/doc/main html.

Marc Daumas, Laurence Rideau, and Laurent Théry. A Generic Library for
Foating-Point Numbers and Its Application to Exact Computing. In Theorem
Proving in Higher Order Logics: 14th International Conference, number 2152 in
LNCS. Springer-Verlag, September 2001.

Jean-Christophe Fillidtre. Preuve de programmes impératifs en théorie des types.
PhD thesis, Université Paris-Sud, July 1999.

J.-C. Fillidtre. Verification of Non-Functional Programs using Interpretations in
Type Theory. Journal of Functional Programming, 2001. English translation
of [Fil99]. To appear.

Torbjorn Granlund. The GNU Multiple Precision Arithmetic Library, 2002. Edi-
tion 4.0.1.

John Harrison. A machine-checked theory of floating point arithmetic. In The-
orem Proving in Higher Order Logics: 12th International Conference, number
1690 in LNCS. Springer-Verlag, September 1999.

Christian Jacobi. Formal verification of a theory of IEEE rounding. In Richard J.
Boulton and Paul B. Jackson, editors, TPHOLs 2001: Supplemental Proceedings,
2001. Informatics Research Report EDI-INF-RR-0046, Univ. Edinburgh, UK.

Paul S. Miner. Defining the IEEE-854 Floating-Point Standard in PVS. NASA
Technical Memorandum 110167, NASA Langley Research Center, Hampton, Vir-
ginia, June 1995.

Christine Paulin-Mohring. Inductive Definitions in the System Coq - Rules and
Properties. In M. Bezem and J.-F. Groote, editors, Proceedings of the confer-
ence Typed Lambda Calculi and Applications, number 664 in Lecture Notes in
Computer Science, 1993. LIP research report 92-49.

INRIA

GMP square root in Coq 27

[Rus99] David M. Russinoff. A Mechanically Checked Proof of IEEE Compliance of AMD
K5 Floating Point Square-Root Microcode. Formal Methods In System Design,
14(1):75-125, January 1999.

[Zim99] Paul Zimmermann. Karatsuba square root. Technical Report 3805, INRIA,
november 1999.

[Zur94] Dan Zuras. More on squaring and multiplying large integers. IEEE Transactions
on Computers, 43(8):899-908, 1994.

RR n° 4475

28 Bertot € Magaud & Zimmermann

Contents
1 Introduction 3
1.1 GMP . . e 3
1.2 COoq - v v e e e 3
1.3 Outline e 4
2 Square root extraction algorithms 4
2.1 The schoolboy method 4
2.2 The actual algorithm westudy 5
3 Logical description of the algorithm 6
3.1 The core algorithm 6
3.2 The wrapper i e e 11
4 Functional description of the core algorithm 11
5 The actual imperative program 15
5.1 The Cprocedure e 15
5.2 CORRECTNESS: developing formal proofs of imperative programs 17
5.2.1 Interpreting memory segments 17
5.2.2 Describing basic GMP functions 18
523 Proofreuse 19
5.3 Memory management issues Lo 20
5.3.1 Bounds checking o oo 20
5.3.2 Segmentsoverlap 20
5.3.3 Stability of memory areas oo oL 22
5.4 Modular specification of the program 0. 22
54.1 Dividing by 25" 22
5.4.2 Subtracting the squareof @ 23
5.4.3 Correctingtheresult oL 24
5.5 Overview of the proof development 24
6 Related work 24
7 Conclusion 25

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

