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Abstract: Active queue management schemes like RED (Random Early Detection) have been sug-
gested when multiple TCP sessions are multiplexed through a bottleneck buffer. The idea is to detect
congestion before the buffer overflows and packets are lost. When the queue length reaches a certain
threshold RED schemes drop/mark incoming packets with a probability that increases as the queue
size increases. The objectives are an equitable distribution of packet loss, reduced delay and delay
variation and improved network utilization.

Here we model multiple connections maintained in the congestion avoidance regime by the RED
mechanism. The window sizes of each TCP session evolve like independent dynamical systems cou-
pled by the queue length at the buffer. We introduce a mean-field approximation to one such RED
system as the number of flows tends to infinity. The deterministic limiting system is described by a
transport equation. The numerical solution of the limiting system is found to provide a good descrip-
tion of the evolution of the distribution of the window sizes, the average queue size, the average loss
rate per connection and the total throughput. TCP with RED or tail-drop may exhibit limit cycles and
this causes unnecessary packet delay variation and variable loss rates. The root cause of these limit
cycles is the hysteresis due to the round trip time delay in reacting to a packet loss.
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Un Modèle de Champ Moyen pour Plusieurs Connexions TCP se
Partageant une File d’Attente RED

Résumé : Des schémas de gestion active tels que RED (Random Early Detection) ont été proposés
pour les files d’attente en amont d’une ressource partagée entre un ensemble de sessions contrôlées
par TCP. Ces schémas sont fondés sur la détection du franchissement de certains seuils de congestion
qui anticipent la perte de paquets due au débordement de la file d’attente. Lorsque le remplissage de
cette dernière dépasse un seuil, RED détruit ou marque tout nouveau paquet arrivant dans la file avec
une probabilité qui augmente avec le niveau du seuil. L’objectif est de distribuer de manière équitable
les pertes de paquets, de réduire les délais et leurs variations et d’améliorer l’utilisation du réseau.

Dans cet article, nous étudions l’effet de RED sur un ensemble de sessions TCP, toutes dans la
phase d’évitement de congestion. Les fenêtres de chacune des sessions évoluent comme des systèmes
dynamiques qui ne sont couplés que par le niveau de la file d’attente partagée. Nous introduisons une
approximation de champ moyen en faisant tendre le nombre des sessions vers l’infini. Le système
limite est régi par une équation de transport déterministe. La solution numérique de ce système
limite fournit une bonne description de l’évolution de la distribution des fenêtres, ainsi que de celle
la moyenne de la file d’attente, du taux de perte moyen par session et du débit total. Que ce soit avec
RED ou avec les pertes par débordement, TCP est sujet à des cycles limites qui peuvent causer des
oscillations des délais et des taux de pertes. Ces cycles limites sont dûs à un phénomène d’hystérésis:
pour toute session TCP, le délai de réaction à une perte de paquet est en effet de l’ordre d’un RTT.

Mots-clés : TCP, RED, champ moyen, système dynamique, équation de transport.



A Mean-Field Model for Multiple TCP Connections with RED 3

1 Introduction

Active Queue Management and in particular Random Early Detection (RED) schemes have been
proposed to improve on the basic tail drop mechanism. In RED, an arriving packet is killed with a
probability which increases with the queue size. The original RED scheme (see ([6]) proposed a linear
increase in loss rate from 0 at queue size Qmin to pmax at Qmax and 1 for a queue size greater than
Qmax. Other RED schemes have been suggested in [2] and [9].

Early detection of incipient congestion causes some connections to reduce their transmission rate
(due to a packet loss) long before buffer overflow, one hopes there will be a high utilization of the
network with an equitable distribution of packet loss since those connections with large windows
have a higher chance of incurring losses.

In the present paper, we study the interaction of a large number N of TCP/IP connections con-
trolled by TCP Reno, which are are all routed through a bottleneck queue in a router implementing
RED. An important feature is that there is a delay of one round trip time between the time the packet
is killed and the time when the buffer receives the reduced rate. During this delay time packets con-
tinue to arrive at the old rate. This has been seen ([2]) to result in hysterisis effects that include buffer
oscillations. These oscillations appear as limit cycles in our theoretical model.

Section 2 contains the model notation and the main assumptions. In Subsection 3.1 we construct
the model describing the evolution of the window sizes and the queue size. In Subsection 3.2 we
reformulate the description of the window sizes as a random measure or random histogram which
is coupled to the queue at the buffer. In Subsection 3.3 we show that this model converges, when
the number of sessions N tends to infinity, to a deterministic transport equation (3.10) and (3.11)
describing the evolution of the deterministic histogram of window sizes coupled with a deterministic
fluid queue size.

Such mean field limits have long been discussed in the statistical physics literature (see [4]) and
recently in the queueing literature [8]. Our mean field limit is a transport equation which has also
appeared in the context of cell biology where one wishes to model the distribution of the sizes of a
population of cells which have linear growth followed by cell mitosis which occurs with a probability
depending on the size of the cell (see [5]).

Our model is identical to that in [9] (which only discusses RED) but we keep the histogram of
the window sizes as our state descriptor while [9] only keeps the mean of this histogram. Taking
the mean window size collapses our equations to Equation (1) in [9] under the hypothesis that the
window distributions at any time t and one round trip time before t are uncorrelated (see (3.12)). A
similar model describing the evolution of the mean window size is given in [10] (see Equation (1)
there). Also see ([11]). Our model and our analysis of the mean field limit of the histogram of the
window size is similar to that in [1] except the later does not include acknowledgement delay and
does not discuss RED. It should be emphasized that our model handles both tail-drop or RED (and a
combination of both) in the same framework. Our model can easily be adapted to describe Explicit
Congestion Notification (ECN) since it can handle high marking rates where one would expect a
strong correlation between present and recent window sizes.

To approximate the performance of a given (finite speed) router with a given number of connec-
tions using our mean field model we simply define L to be the router’s link rate divided by the number
of active connections. With this normalization our mean field model provides a good fit to the trace of
queue sizes obtained from Opnet simulations. For some parameter choices the mean field system (and
the Opnet trace) stabilizes as is shown in Figures 3 and 2 respectively in Section 5 but by increasing
the round trip time delays the mean field system (and the Opnet trace) become unstable as in Figures
5. This phenomenon was investigated in [9] and it results from an amplification of perturbations due
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4 François Baccelli, David R. McDonald & Julien Reynier

to feedback delay. When the system is stable we can give a closed form expression for the window
size histogram (see (4.18)). The window distribution provides QoS results like the proportion of time
a connection has a throughput less than any particular value. It also provides a means of calculating
the proportion of connections in timeout due to successive packet losses or due to a packet loss when
the congestion window is less than four packets (see (3) for a closed form expression).

A rigorous proof of the convergence and the existence of the mean field limit along the lines of
[8] is beyond the scope of this paper. We only give a plausibility argument for the resulting equations.

2 Notation and Assumptions

We study the interaction of N TCP/IP connections controlled by TCP Reno, which are routed through
a bottleneck queue in a router. Hence each of the connections implements a window flow control
which limits the number of packets from this connection allowed into the network during one Round
Trip Time (RTT). The link rate of the router is NL packets per second.

We assume the packets from all active connections join the queue Q(t) at the bottleneck buffer
and we denote by QN (t) the average queue per flow so the length of the queue at time t is Q(t) =
NQN (t). We assume the scheduling to be FIFO.

We imagine the source writes its current window size and the current RTT in each packet it sends
and we define

• Wn(t) the window size written in a packet from connection n arriving at the server at time t;

• Rn(t) the RTT written in a packet from connection n arriving at the server at time t (this RTT
is the sum of the propagation delay plus the queueing delay in the router).

Let W(t) = (W1(t), · · · ,WN (t)) represent the state (the window sizes) of all connections at time t.
Throughout the paper, we will approximate the real system by saying the throughput at time t is the
window size at time t divided by the RTT at this time.

Under TCP Reno, established connections execute congestion avoidance where the window size
of each connection increases by one packet each time a packet makes a round trip, i.e. each Rn as
long as no losses or timeouts occur. During this phase the rate the window of connection n increases is
approximately 1/Rn packets per second. The only thing restraining the growth of transmission rates
is a loss or timeout.

In the present paper, we will neglect slow start and a negociated maximum window size although
the mean field method can easily be adapted to take these features into account by enlarging the state
space to be a multivariate histogram describing the joint distribution of the window size with, say, the
slow start threshholds. We will also assume there are no transmission losses. Hence the only losses
or explicit congestion notifications (ECN) are generated by active buffer management or by tail-drop.
When a loss or ECN occurs the window is reduced by half.

We will assume the buffer has size B packets and that once this buffer space is exhausted arriving
packets are dropped. Such tail-drops come in addition to the RED mechanism. Here we take the drop
probability of RED (of an incoming packet before being processed) to be a function F(Q(t)) which
is zero for Q(t) below Qmin but rises to pmax at Qmax and further to 1 when Q(t) reaches B. If the
number of active connections is N we can reformulate this drop probability as F (QN (t)), where F
is a distribution function which is zero below qmin = Qmin/N but rises to pmax at qmax = Qmax/N
and further to 1 when QN (t) reaches B where B = B/N . Of course the tail-drop scheme can be
considered as the limiting case when F (q) = 0 for q < B and F (q) = 1 for q ≥ B.

INRIA



A Mean-Field Model for Multiple TCP Connections with RED 5

As we shall see, the model takes into account that delay of one round trip time between the time
the packet is killed and the time when the buffer receives the reduced rate, and leads to oscillations for
some values of the parameters. The best F would minimize the dispersion of the window sizes and
eliminate oscillations of the queue length (thus reducing packet delay variation).

3 The N -particle system and mean-field limit

3.1 The N -Particle Markov process

We assume window reductions at connection n occur according to a Poisson process with stochastic
intensity

Wn(t − Rn(t))

Rn(t)
F (QN (t − Rn(t)))

(we can assume Wn(t) = 0 for t < 0). This makes the loss rate proportional to the transmission rate
one RTT in the past multiplied by the RED loss rate one RTT in the past and thus imitates reality. We
could describe the RED mechanism of using a moving exponential weighted average of past queue
sizes to determine the drop rate. In this case the stochastic intensity would be given by

Wn(t − Rn(t))

Rn(t)
F

(∫ t−Rn(t)

−∞

QN (s) exp(−β(t − Rn(t) − s)))ds

)

where exp(−β) is the exponential averaging coefficient.
Let {Nn(t);n = 1, . . . , N} be N independent Poisson processes with intensity 1 and let

Λn(t) =

∫ t

0

Wn(s − Rn(s))

Rn(s)
F (QN (s − Rn(s)))ds

be the stochastic intensity for the Poisson point process of losses of connection n. Hence the losses of
connection n occur according to the time changed Poisson process Nn(Λn(t)).

When no loss occurs the window size increases linearly at rate 1/Rn(t) so the window size is
increased by approximately 1/Wn(t − Rn(t)) each time an acknowledgement returns to the source.
But when a packet was lost at time t − Rn(t), the source does not increase the window size this
amount, and in addition it cuts the current size by half. Hence the evolution of the window size is
described by the following stochastic differential equation:

dWn(t) =
1

Rn(t)
dt −

(
1

Wn((t − Rn(t))−)
+ Wn(t−)/2

)
dNn(Λn(t)), (3.1)

with Wn(0) = wn(0), n = 1, . . . , N specified. Note that t− means the left limiting value at t. Also
note that we would incorporate a negociated maximum queue size wmax by modifying the above drift
term to χ{Wn(t) ≤ wmax} · 1/Rn(t) where χ denotes the indicator function.

As a rough approximation, because of the FIFO assumption, Rn should satisfy Rn(t) = Tn +
QN (t − Rn(t))/L, where Tn is the propagation delay from source n to the destination and back.
Note that Wn(t−) is completely determined by Fn(t), the past one RTT ago generated by {Wn(s −
Rn(s)), Nn(Λn(s)), 0 ≤ s ≤ t−}.

It will be easier to approximate the above dynamical system by a fluid model, where the queue, the
windows and the thresholds to evolve as a differential system. We assume packets have equal mean
sizes of 1 data unit. When there are no losses, the rate at which source n pours fluid into the buffer
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6 François Baccelli, David R. McDonald & Julien Reynier

is Wn(t)/Rn(t). A loss at time t − Rn(t) means the source stops sending packets until Wn(t)/2
packets are acknowledged, i.e. until the window size has been reduced by half. As far as the queue
is concerned, it sees an throughput of Wn(t)/Rn(t) for roughly half an RTT since packets in the
system continue to arrive at the old rate. This is followed by a zero throughput for the remaining half
of the RTT. Hence the average throughput for an RTT following a loss is Wn(t)/(2Rn(t)). Since
the window size is halved when a loss is detected, according to our convention, the throughput over
the RTT following a loss is Wn(t)/(2Rn(t)), i.e. equal to that of the real system. Hence the rate of
change of the fluid buffer is given by

N
dQN (t)

dt
=

N∑

n=1

Wn(t)

Rn(t)
(1 − F (QN (t))) − NL

+

(
N∑

n=1

Wn(t)

Rn(t)
(1 − F (QN (t))) − NL

)−

χ{QN (t) = 0}

since the proportion F (QN (t)) of the fluid is lost. The second term prevents the queue size from
becoming negative. In effect the queue can stick at 0 until a sufficient number of connections increase
their window size. Dividing by N gives

dQN (t)

dt
=

1

N

N∑

n=1

Wn(t)

Rn(t)
(1 − F (QN (t)) − L

+

(
1

N

N∑

n=1

Wn(t)

Rn(t)
(1 − F (QN (t))) − L

)−

χ{QN (t) = 0}, (3.2)

with QN (0) = q(0). Note that under ECN there is no loss associated with marking so the term
(1 − F (QN (t)) in (3.2) disappears.

3.2 Reformulation in terms of a measure-valued process

At this point we make the simplifying assumption that all connections have a constant transmission
time Tn = T .

Consequently R(t) = T +QN (t−R(t))/L. In order to study the limiting behavior of the system
(3.1), (3.2) as the number of connections N goes to infinity, we reformulate the system in terms of its
empirical process (see Dawson [4]). For any Borel set A ⊂ Ŝ define

MN (t, A) :=
1

N

N∑

n=1

χA(Wn(t)) (3.3)

to be the associated probability-measure-valued process.
The process MN (t) ≡ MN (t, ·) belongs to the state space M1(IR

+), the set of probability mea-
sures on IR+ = [0,∞) furnished with the topology of weak convergence. Given an initial dis-
tribution µ(A) = 1

N

∑N
n=1 χA(wn(0)) in M1(IR

+) and an initial value of QN (0) = q(0) speci-
fies the canonical process (M,Q) with marginals (MN (t, ·), QN (t)) on the set of trajectories Ω =
C([0,∞),M1(IR

+) × IR+), the space of continuous functions from [0,∞) into M1(IR
+) × IR+.

Let Pµ,q(0) denote the induced probability measure on Ω. We shall also need a joint measure-valued
process

MN (s,B; t, A) :=
1

N

N∑

n=1

χB(Wn(s))χA(Wn(t)).

INRIA



A Mean-Field Model for Multiple TCP Connections with RED 7

It will be clear from context if MN denotes the joint or marginal process.
Since the dynamical systems specified by (3.1), (3.2) are exchangeable in the Wn(t) (we can

relabel the connections without changing the evolution of the system) it follows that (3.1), (3.2) can
be reformulated in terms of (MN (t), QN (t)). The dynamics of MN (t) are described through a set of
equations satisfied by the scalar product

〈g,MN (t)〉 =

∫ ∞

0
g(w)MN (t, dw)

where g ∈ G and G = {g ∈ C1
b (IR+) : g(0) = 0} with C1

b (IR+) the space of bounded functions with
bounded derivatives. G is chosen to avoid singular behaviour associated with connections disappearing
from the system.

Reformulating (3.2) we get

QN (t) − QN (0)

=

∫ t

0

[
〈w,MN (t)〉(1 − F (QN (s))

R(s)
− L

+

(
〈w,MN (s)〉1 − F (QN (s))

R(s)
− L

)−

χ{QN (s) = 0}
]

ds

=

∫ t

0

[
〈w,MN (t)〉 1

R(s)
(ds − dKN (s)) − Lds

+

(
〈w,MN (s)〉 1

R(s)
(ds − dKN (s)) − Lds

)−

χ{QN (s) = 0}
]

, (3.4)

where KN (t) =
∫ t
0 F (QN (s))ds is the cumulative loss or kill rate.

We can also reformulate (3.1):

〈g,MN (t)〉 − 〈g,MN (0)〉

=
1

N

N∑

n=1

∫ t

0

[
dg

dw
(Wn(s))

1

R(s)
ds

+

(
− dg

dw
(Wn(s−))

1

Wn((s − R(s))−)
+ g(Wn(s−)/2) − g(Wn(s−))

)
dNn(Λn(s))

]

=
1

N

N∑

n=1

∫ t

0

[
dg

dw
(Wn(s))

1

R(s)
ds

+

(
− dg

dw
(Wn(s))

1

Wn(s − R(s))
+ g(Wn(s)/2) − g(Wn(s))

)

·Wn(s − R(s))

R(s)
F (QN (s − R(s)))ds

]
+ EN (t)

where

EN (t) =

N∑

n=1

∫ t

0

(
− dg

dw
(Wn(s−))

1

Wn((s − R(s))−)
+ g(Wn(s−)/2) − g(Wn(s−))

)
dZn(Λn(s))

RR n° 4449



8 François Baccelli, David R. McDonald & Julien Reynier

and

Zn(t) − Zn(0) :=

∫ t

0

(
dNn(Λn(s)) − Wn(s − R(s))

R(s)
F (QN (s − R(s)))ds

)
.

Hence,

〈g,MN (t)〉 − 〈g,MN (0)〉

=

∫ t

0

[ 1

R(s)
(1 − F (QN (s − R(s)))〈dg(w)

dw
,MN (s)〉 (3.5)

+〈(g(w/2) − g(w))v,MN (s − R(s), dv; s, dw)〉 1

R(s)
F (QN (s − R(s)))

]
ds

+ EN (t)

=

∫ t

0

[ 1

R(s)
(1 − F (QN (s − R(s)))〈dg(w)

dw
,MN (s)〉ds

+〈(g(w/2) − g(w))v,MN (s − R(s), dv; s, dw)〉 1

R(s)
dKN (s − R(s))

]
(3.6)

+ EN (t).

3.3 The mean-field evolution equations

As the number of connections N becomes large a remarkable simplification occurs essentially because
of the law of large numbers. The error term EN (t) is a martingale with mean value 0 whose supremum
over any bounded interval of time converges to 0 in probability. This leaves behind a deterministic
system. Hence in the limit the histogram of the window sizes becomes deterministic as does the queue
size and the resulting deterministic mean field system is described in the following result.

Theorem 1 Suppose that as N → ∞, µN = MN (0) converges weakly to some µ(0) ∈ M1(IR
+)

and QN (0) converges to q(0). Then MN (t) → µ(t), QN (t) → q(t) and KN (t) → K(t) where
µ(t), q(t) and K(t) are continuous functions of t ∈ IR+ into M1(IR

+) and IR+ respectively and
K(t) =

∫ t
0 k(s)ds so F (QN (t)) → k(t) at points of continuity of F . Moreover, for any function

g ∈ G,

〈g, µ(t)〉 − 〈g, µ(0)〉

=

∫ t

0

[ 1

r(s)
(1 − k(s − r(s)))〈dg(w)

dw
, µ(s)〉

+〈(g(w/2) − g(w))v, µ(s − r(s), dv; s, dw)〉 1

r(s)
k(s − r(s))

]
ds (3.7)

=

∫ t

0

[ 1

r(s)
(1 − k(s − r(s)))〈dg(w)

dw
, µ(s, dw)〉 (3.8)

+ 〈(g(w)v, µ(s − r(s), dv; s, d(2w)) − µ(s − r(s), dv; s, dw))〉 1

r(s)
k(s − r(s))

]
ds

and

q(t) − q(0) (3.9)

=

∫ t

0

[
〈w, µ(s)〉 1

r(s)
(1 − k(s)) − L +

(
〈w, µ(s)〉 1

r(s)
(1 − k(0)) − L

)−

χ{q(s) = 0}
]

ds

INRIA



A Mean-Field Model for Multiple TCP Connections with RED 9

where r(t) = T + q(t − r(t))/L.

Note that these equations do permit solutions where q(t) reaches and sticks to the maximum boundary
B or qmax where F has a discontinuity. Tail-drop is the most obvious example. In this case QN (t)
jitters at and below this boundary and the loss rate F (QN (t) jitters between the values 0 and 1. Since
we have weak convergence of the cumulative loss rate

∫ t
0 F (QN (s)ds to the deterministic limiting

cumulative loss rate KN (t) =
∫ t
0 k(s)ds we may consider k(t) is effective loss rate at time t. These

equations also allow for the case when F (0+) 6= 0 and q(t) reaches and sticks to zero. Again the
queue will jitter and the effective loss rate is k(0).

µ(s, dv; t, dw) and q(t) satisfy equations (3.8) and (3.9) but these equations do not determine
µ(s, dv; t, dw) and q(t). We can consider a larger state space with states representing the trajectory
of the window histograms from one round trip time before t up to time t. The resulting system is
Markovian and µ(t − r(t), dv; t, dw) is given by the joint marginal distribution at times t − r(t) and
t. This enlarged system is useful for the proof of convergence but useless for practical purposes.

Finally note that the proof of the above theorem is incomplete so despite its plausibility it is really
still a conjecture.

The fluctuations observed in the Opnet simulations with increasing N as in Figures 2 (N = 200),
Figure 4 (N = 400 and N = 800) diminish to zero in the mean field limit as N increases. The
investigation of these fluctuations rescaled by a factor of

√
N as in [4] has not been done.

We can make simplifying approximations which give some insight into the solution. We make the
approximation

E (Wn(s − R(s))|Wn(s), QN (s − R(s))) ≈ Wn(s).

This is equivalent to assuming
∫

v
µ(s − r(s), v; s, dw)vdv = wµ(s, dw).

This is clearly inaccurate if the loss rate is very small for then the window size one RTT ago would
be one less than it is now. Moreover, when the loss rate is moderate, bigger windows are more likely
to have been twice as big on RTT ago and have suffered a loss since. Nevertheless, if the loss rate
is low and there is a stable fixed point for the system (3.8) and (3.9) then close to the fixed point the
expected value of the window size one RTT ago would be the current window size. Consequently, the
above approximation will yield a system with the same fixed point. This approximation is given by
the following simplified system.

Corollary 1 If the initial distribution µ(t, dw) has a continuous density then µ(t, dw) has a continu-
ous density p(t, w) differentiable in t which approximately satisfies the following equations :

∂p(t, w)

∂t
=

(
p(t, 2w)

2w

r(t)
2 − p(t, w)

w

r(t)

)
k(t − r(t))

− 1

r(t)
(1 − k(t − r(t)))

∂p(t, w)

∂w
(3.10)

and

dq(t)

dt
=

∫

w

w

r(t)
p(t, w)dw(1 − k(t)) − L

−
(∫

w

w

r(t)
p(t, w)dw(1 − k(0)) − L

)−

χ{q = 0}) (3.11)
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10 François Baccelli, David R. McDonald & Julien Reynier

where r(t) = T + q(t − r(t))/L. k(t) = F (q(t) where F is continuous and when F (q(t)) = 1 (i.e.
when q(t) = qmax), k(t) is determined by

∫

w

w

r(t)
p(t, w)dw · (1 − k(t)) = L.

Proof If the initial distribution µ has a continuous density then µ(t, dw) has a continuous density
p(t, w) differentiable in t. Hence (3.8) and (3.9) become

∫

w
(p(t, w) − p(0, w))g(w)dw

=

∫ t

s=0

∫

w

∫

v
g(w)µ(s − r(s), dv; s, d(2w))

v

r(s)
k(s − r(s))ds

−
∫ t

s=0

∫

w

∫

v
g(w)µ(s − r(s), dv; s, dw)

v

r(s)
k(s − r(s))ds

+

∫ t

s=0

∫

w

1

r(s)
(1 − k(s − r(s)))

dg

dw
µ(s, dw)ds

=

∫

w
g(w)

( ∫ t

s=0

(
(4wp(s, 2w) − wp(s, 2w))

k(s − r(s)

r(s)
dwds

−
∫

w
g(w)

(∫ t

s=0

1

r(s)
(1 − k(s − r(s)))

∂p(s, w)

∂w

)
dw

and

q(t) − q(0) =

∫ t

s=0

( ∫

w
p(s, w)

w

r(s)
(1 − k(s)) − L

+
(∫

w
p(s, w)

w

r(s)
(1 − k(0)) − L

)−
χ{q(t) = 0})

)
ds.

Since g is arbitrary we have the Fokker-Planck equation of the theorem. This system has a unique
solution because it has no singularity.

An even grosser approximation is obtained by taking g(x) = x in equation (3.7). Assuming
w(t) = 〈w, µ(t, dw)〉 is finite we obtain

w(t) − w(0) =

∫ t

0

[ 1

r(s)
(1 − k(s − r(s)))

+ (〈wv, µ(s − r(s), dv; s, d(2w))〉 − 〈(wv, µ(s − r(s), dv; s, d(w))〉) 1

r(s)
k(s − r(s)))

]
ds

=

∫ t

0

[ 1

r(s)
(1 − k(s − r(s))) − 1

2
〈wv, µ(s − r(s), dv; s, d(w))〉 1

r(s)
k(s − r(s))

]
ds (3.12)

If we make the approximation that the window size at time s is uncorrelated with the window size one
RTT ago then the second term in (3.12) becomes

1

2
w(s − r(s))w(s)

1

r(s)
k(s − r(s)).
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This is the term in Equation (1) in [9]. Note that if the loss rate is small then the above term is small
so the results can still be good. Equation (1) in [10] has a term like this as well (but the covariance
between W (t) and W (t − r(t)) is approximated by a variance).

A more precise approximation can be obtained by investigating the evolution of the window size
W (t) of a canonical connection having distribution µ(t; dw). As a rough approximation there are two
ways of arriving at a window size of w at time t. It happens if W (t − r(t)) = w − 1 and there are
no losses in the round trip time before t − r(t). If the w − 1 packets were evenly distributed across
that RTT then the approximate probability there were no losses is approximately H(t − r(t), w − 1)
where

H(t, w) =

w∏

j=1

(
1 − k(t − r(t)

w
j)

)
.

It also happens if W (t − r(t)) = 2w and there is one losses in the round trip time before t − r(t). If
the 2w packets were evenly distributed across that RTT then the approximate probability there was at
least one loss is approximately 1−H(t− r(t), 2w). In the second case, we will neglect events where
a loss just before time t − r(t) plus a loss at time t − r(t) causes a timeout. We also will neglect the
possibility the window was 4w between two and three round trip times ago and so on.

Using time reversal we have,

〈v, µ(s − r(s), dv; s, dw〉 (3.13)

= (w − 1)P (W (t) = w|W (t − r(t)) = w − 1)µ(t − r(t), dw − 1)

+(2w)P (W (t) = w|W (t − r(t)) = 2w)µ(t − r(t), d(2w))

= (w − 1)H(t − r(t), w − 1)µ(t − r(t), dw − 1)

+(2w)(1 − H(t − r(t), 2w))µ(t − r(t), d(2w)) (3.14)

= (w − 1)H(t − r(t), w − 1)p(t − r(t), w − 1)dw

+(2w)(1 − H(t − r(t), 2w))p(t − r(t), 2w)2dw

=

[
(w − 1)H(t − r(t), w − 1)

p(t − r(t), w − 1)

p(t, w)

+(2w)(1 − H(t − r(t), 2w))
2p(t − r(t), 2w)

p(t, w)

]
p(t, w)dw

= e(t;w)p(t, w)dw

where e(t, w) is

(w − 1)H(t − r(t), w − 1)
p(t − r(t), w − 1)

p(t, w)
+ (2w)(1 − H(t − r(t), 2w))

2p(t − r(t), 2w)

p(t, w)

Hence, by the same argument as Corollary 1 we get the refinement:

∂p(t, w)

∂t
=

(
p(t, 2w)

e(t; 2w)

r(t)
2 − p(t, w)

e(t;w)

r(t)

)
k(t − r(t))

− 1

r(t)
(1 − k(t − r(t)))

∂p(t, w)

∂w
(3.15)

where r(t) = T + q(t − r(t))/L and q(t) satisfies (3.11).
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12 François Baccelli, David R. McDonald & Julien Reynier

From (3.14) we also get

〈vw, µ(s − r(s), dv; s, dw〉
= 〈w, (w − 1)H(t − r(t), w − 1)µ(t − r(t), dw − 1)〉

+〈w, (2w)(1 − H(t − r(t), 2w))µ(t − r(t), d(2w))〉

= 〈(w + 1), wH(t − r(t), w)µ(t − r(t), dw)〉 +
1

2
〈w,w(1 − H(t − r(t), w))µ(t − r(t), d(w))〉

= 〈(w + 1)wH(t − r(t), w) +
1

2
w2(1 − H(t − r(t), w)), µ(t − r(t), dw)〉.

With this evaluation the second term in (3.12) becomes

−1

2
〈1
2
w2 + (

w2

2
+ w)H(t − r(t), w), µ(t − r(t), dw)〉 1

r(t)
k(t − r(t))

which is close to − k(t−r(t))
2r(t) E

(
W (t − r(t))2 + W (t − r(t)

)
if k(t − r(t)) is small.

4 Fixed points of the mean-field equations

When the RTT is sufficiently small the approximating system (3.10) and (3.11) stabilizes; that is q(t)
tends to a constant q and consequently the RTT, r(t), and the loss rate, F (q(t)), tend to a constants
r and k. As the RTT increases however the delayed feedback will start amplifying any perturbation
from equilibrium as was discussed in [9]. Since our window histogram is centered about its mean
it follows that the stability analysis in [9] (modulo the refinements we have suggested above) should
predict the bifurcation point.

For stable systems (3.10) and (3.11) become:

(1 − k)
dfk(w)

dw
= k (2(2w)fk(2w) − wfk(w)) (4.16)

L = (1 − k)
1

r

∫

w
wfk(w)dw. (4.17)

(4.17) is simply Little’s formula since the right hand side represents the throughput as the average
window size divided by the RTT times the proportion of packets that are not killed.

Theorem 2 Let Ψ =
∑∞

i=0
2i

∏i
j=1

(1−4j )
(Ψ ≈ 0.4194). The unique density fk(w) solving (4.16) is

given by

fk(w) =
∞∑

i=0

ai exp(− k

1 − k
4i w

2

2
) (4.18)

a0 =

√
2

π

1

Ψ

√
k

1 − k
; ai = ai−1

4

1 − 4i
= a0

4i

∏i
j=1(1 − 4j)

. (4.19)
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Figure 1: The histogram of window sizes in steady state when k = .01

This solution was obtained in the paper by Adjih, Jacquet and Vvedenskaya [1] and independently
by the authors.

Proof The fact that fk is a solution follows by inspection. There are no convergence problems
because the sum of the supremum norms of each term in (4.18) converges. The only point to elucidate
is why fk is a positive function : depending on the value of w, the modulus of the general term
in the series decreases from the second or the first term on. Since the sign alternates, fk(w) ≥
min(f2

k (w), f4
k (w)) ≥ 0, where f i

k(w) is the series trunked at the ith term.
The value of a0 is determined by the requirement that fk be a density.

1 =

∫ ∞

0
fk(w)ds =

∞∑

i=0

ai

∫ ∞

0
e−

k
1−k

w2

2
4i

dw =

∞∑

i=0

ai
1

2

√
2π

1 − k

k4i
(4.20)

=

√
2π

2

∞∑

i=0

a0
4i

∏i
j=1(1 − 4j)

√
1 − k

k4i
=

√
1 − k√

k
a0

√
π

2

∞∑

i=0

2i

∏i
j=1(1 − 4j)

There always exists a unique solution to both (4.16) and (4.17). First note that

∫

w
wfk(w)dw =

∞∑

i=0

ai

∫ ∞

0
w exp(− k

1 − k
4i w

2

2
)dw

=
∞∑

i=0

ai
1 − k

k4i
(4.21)

=
1 − k

k
a0

∞∑

i=0

1
∏i

j=1(1 − 4j)
=

1 − k

k
a0ξ

= α

√
1 − k

k

where ξ =
∑∞

i=0
1∏i

j=1
(1−4j)

(ξ ≈ 0.6885) and α =
√

2
π

ξ
Ψ (α ≈ 1.310).
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14 François Baccelli, David R. McDonald & Julien Reynier

It follows from (4.17) that

L =
(1 − k)

r
α

√
1 − k

k
=

α

r

(1 − k)3/2

√
k

.

Hence we get

(1 − k)3

k
=

(
rL

α

)2

. (4.22)

The function (1−k)3/k is monotonically decreasing. It follows that there is a unique point k satisfying
(4.22).

There are two possibilities. From (4.22), since (1 − F (q))3/F (q) is decreasing in q, the stable
queue size is determined by the unique solution to

(1 − F (q))3

F (q)
=

(
(T + q/L)L)

α

)2

. (4.23)

If the solution to (4.23) is less than qmax then k = F (q) gives the stable point and r = T + q/L. On
the other hand if the solution to (4.23) is equal or greater than qmax then q = qmax and k is given by
(4.22) (this is the case when QN (t) jitters at qmax).

Until now we have ignored the fact that in equilibrium active connections go into timeout while
an equal number become active (the slow-start period is assumed to be part of the timeout period
so connections immediately enter congestion avoidance when they become active). At any time, N
connections are active out of a total of N ′ connections and N ′ − N , the number of connections in
timeout, is a proportion TO(k) of N . Hence N ′ − N = TO(k)N . In most cases we are given N ′ so
solving the above equation for N gives the number of active connections.

The equilibrium window distribution can be used to calculate the number of connections in time-
out. The long run proportion of connections in timeout, TO(k), is equal to the proportion T (k) that
enter timeout during one RTT times RTO/RTT where RTO is the timeout period (we take RTO to
be one second). We could but will not analyse Selective Acknowledgements (SACK) or NewReno
([7]). We assume timeouts occur because there is a loss when the window size is less than four (we
neglect the possibility of packets out of order). Since the number of losses in a window of size w has
a Binomial distribution we have

T (k) =

∫ 4

0
fk(w)[1 − (1 − k)w]dw =

∞∑

i=0

aiTi where (4.24)

Ti =

√
π

2
Ai

[
erf(

4

Ai
) − exp(

A2
i

4
ln(1 − k)2)

(
erf(

4

Ai
− ln(1 − k)

Ai

2
) − erf(− ln(1 − k)

Ai

2
)
)]

where Ai =
√

2(1 − k)/(4ik) and erf(z) = (2/
√

π)
∫ z
0 exp(−t2)dt. The proof is given in the

Appendix along with the Laplace transform of the window distribution.
To return from timeout a connection goes through slow-start until congestion avoidance starts after

a packet loss. If the loss rate is k then the number of packets through the link from this slow-start is
(1 − k)/k on average, the mean of a geometric. These must be accounted for by modifying (4.17).
Over time T , the amount of time in timeout is T · N · TO(k) and since each timeout lasts RTO this

INRIA



A Mean-Field Model for Multiple TCP Connections with RED 15

means T · N · TO(k)/RTO timeouts are generated each of which generates (1 − k)/k packets on
average; i.e. NTO(k)/RTO(1 − k)/k packets per second on average are generated by slow-start.
Matching the link rate of the router with the incoming rate (4.17) becomes

NL = N
(1 − k)

r
α

√
1 − k

k
+ N

TO(k)

RTO

1 − k

k
(4.25)

where r = T + q/L. We must now recalculate (4.22) by substituting k = F (q) into (4.25) thus
determining k, q and r.

Theorem 3 The number of active connections among N ′ connections is N where N ′−N = TO(k)N
and TO(k) = T (k)RTO/r where RTO is the timeout period plus the slowstart period, T (k) is given
by (4.24) and k (and hence q and r) is determined by (4.25).

In addition, the equilibrium distribution of the window sizes (4.18) provides interesting QoS pre-
dictions. In particular the pth quantile of (4.18) wp provides that a connection spends a proportion p
of its time with a window size less than wp.

5 Analysis of the mean-field system

The system (3.15) and (3.11) can be solved numerically and it displays a whole range of behavior
depending on the function F and the parameters L and T . To simplify matters we will take F (q) = 0
if q < qmin and F (q) = 1 if q ≥ qmax. This covers the usual drop-tail case if qmax = B. We first
look for fixed points as discussed in Section 4. Then we discuss a case where limit cycles are present
and finally we discuss a case where there are multiple fixed points.

5.1 Numerical Results

In the following numerical example N ′ = 200 and the link rate is 44.736 Megabits per second. We
assume each packet is 538 bytes to the link rate 10433 packets per second. We first assume there are
no connections in timeout so N = N ′ so with N = 200, L = 20.866 packets per link per second.
The transmission delay is T = .1 seconds. Qmin = 0, pmin = 0, Qmax = 1000, pmax = .05. By
(4.23), the stable loss rate is k = 2.6% at stable queue size q = 520.9 and the RTT is 0.15 seconds.
For the same parameters the numerical solution to the approximation (3.10) and (3.11) and to the
approximation (3.15) and (3.11) both stabilize at the same queue length, loss rate and RTT. This is not
surprising since the loss rate is quite low.

The Opnet simulation with 200 sources gives an average queue size of 452, an average loss rate
of about 2.5% and 0.145 is the average RTT. Opnets lower loss rate combined with lower mean queue
size results from timeouts which occur often because the mean window size is small. If we account
for timeouts then solving 200 − N = TO(N)N gives N = 192 with 8 connections in timeout
or slowstart. By solving (4.25) k = 0.0256 which determines the average queue size of 512 and
r = .149. T (0.0238) = .006 and TO = 0.041. With the correction for timeouts we see the Opnet
values are predicted slightly better. Timeouts may occur when there are multiple losses in a large
window and this has not been modelled. The calculations given here should be refined.

The time series of queue sizes of the Opnet simulation is given in Figure 2 while the numerical
solution using Matlab gives Figure 3.
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Figure 2: Opnet simulation with N=200: the queue size divided by N
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Figure 3: Matlab solution with N=186: the queue size divided by N

Next we redo the simulation with the same parameters but with N = 400 connections and N =
800 connections (see Figure 4).

5

4

3

2

1

0
0 2 4 6 8 10 12 14

5

4

3

2

1

0
0 2 4 6 8 10 12 14

Figure 4: Opnet simulation with N=400 (on the left) N=800 (on the right): the queue size divided by
N

We remark that the same behaviour occurs but the standard deviation of the oscillations around
the average relative queue size gets smaller (probably proportionate to 1/

√
N ).

Next we use the same parameters except that we increase the transmission delay is T = .3 seconds.
On the right side of Figure 5 the approximation (3.10) and (3.11) is indicated by a dotted line while
the approximation (3.15) and (3.11) is indicated by a solid line. The approximation in [9] is given by
the dashed line. All plots seem to oscillate around the steady state values but with bigger and bigger
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Figure 5: Queue sizes: Opnet on the left, Matlab on the right

oscillations until the queue hits zero. The Opnet simulation with 200 sources given on the left of
Figure 5 is also unstable. We haven’t corrected for proportion in timeout (which we can’t calculate).
Notice the period and amplitude of the oscillations observed in the Opnet simulation is pretty well
predicted by all the approximations.

6 Conclusion

The mean-field model for the congestion windows of N TCP/IP sources multiplexed through a buffer
implementing RED is given by (3.15) and (3.11). Simulation studies show excellent agreement when
the number of sources is greater than 25. The equations for the evolution of the histogram of the
window sizes provides a description of the quality of service experienced by each connection. The
standard deviation of the histogram gives the variability of the throughput of a single connection and
should be kept as small as possible. We can identify when the system becomes stable and when
it becomes unstable because of the RTT delay in the feedback control loop. We can also identify
systems with multiple equilibria caused by the RTT delay.

There are a host of outstanding questions associated with the analysis of the mean-field system.
The most pressing is a derivation along the lines of [9] of the bifurcation point when a system goes
from a stable queue size and loss rate to a system with limit cycles. It should also be possible to
incorporate varying transmission time along with the window size of each connection to make a two
dimensional histogram which along with the queue size more precisely describes the system. The
mean field limit poses no additional difficulties.
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7 Appendix

From (4.18),

T (k) =
∞∑

i=0

ai

∫ 4

0
[1 − exp(w ln(1 − k) − w2

A2
i

)]dw =
∞∑

i=0

aiTi

where

Ti =

∫ 4

0
[exp(−w2

Ai
) − exp(w ln(1 − k) − w2

Ai
)dw

=

∫ 4

0
exp(−w2

Ai
)dw − exp(

A2
i

4
ln2(1 − k))

∫ 4

0
exp(−(

w

Ai
− Ailn(1 − k)/2)2)dw.

A change of variable gives (4.24).

Let gδ(x) = exp(−δ
x2

2
) and let ĝ(t) =

∫ ∞

0
g(x)etxdx.

We will evaluate the Laplace transform of fk,

Tf (θ) =

∫ ∞

0
fk(w)e−θwdw =

∞∑

i=0

aiĝ k
1−k

4i(−θ) by (4.18). (7.26)
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We next calculate ĝδ .

ĝδ
′(t) =

∫ ∞

0
xgδ(x)etxdx =

∫ ∞

0

−1

δ

d(eδ −x2

2 )

dx
etxdx

= −
[1
δ
eδ −x2

2 etx
]x=∞

x=0
+

t

δ

∫ ∞

0
gδ(x)etxdx

=
1

δ
+

t

δ
ĝδ(t), for all t ∈ R

We can solve this equation by multiplying both sides by e−t2/(2δ) which gives

ĝδ
′(t)e−t2/(2δ) − (

t

δ
e−t2/(2δ))ĝδ(t) =

1

δ
e−t2/(2δ).

Since ĝδ(0) = 1/
√

π/(2δ),

ĝδ(t) =

√
π

2δ
+

1

δ
et2/(2δ)

∫ t

0
e−x2/(2δ)dx.

If we now substitute into (7.26) we get

Tf (θ) = 1 −
∞∑

i=0

ai
1 − k

4ik
e

θ2

2

1−k

k4i

∫ θ

0
e−

x2

2

1−k

k4i dx

using (4.20).
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