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Abstract: We present a model of TCP flows suited to Internet backbone traffic,
where links are usually not congested. We characterize the traffic using information
on flows, i.e., arrival time, size, and duration. The major contribution of this paper
is a model capturing the variation of the transmission rate during a TCP flow solely
based on the above flow parameters. This model accounts for the dynamics of TCP
congestion window and for the Timeout mechanism. It is independent of the packet
loss rate and the round-trip time of the connection. We then model the traffic on
a backbone link by aggregating TCP flows. Our model is easy to compute, and we
show via simulations that it gives a good approximation of Internet backbone traffic.
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Modélisation du trafic TCP dans le backbone

Résumé : Nous présentons un modéle pour le trafic TCP dans un backbone de
I'Internet. Les backbones de I'Internet ont la particularité d’étre souvent sous-
utilisés. Nous caractérisons le trafic dans le backbone & 1’aide des informations sui-
vantes sur les flots TCP: les instants d’arrivée des flots, leurs volumes, et leurs durées.
La contribution majeure de notre travail est 1’élaboration d’un modéle pour le débit
d’un flot TCP, utilisant seulement les informations citées avant. Contrairement aux
autres modeles dans la littérature, notre modéle ne demande pas la connaissance
de la probabilité de perdre un paquet TCP, ni la connaissance du délai aller-retour.
Une fois le modéle pour le flot TCP présenté, on modélise le trafic dans le backbone
comme étant le résultat du multiplexage des flots TCP. Notre modéle est facile &
utiliser, et nous montrons par des simulations qu’il permet une bonne approximation
du trafic dans les backbones de I'Internet.

Mots-clés : Poisson shot-noise, backbone, flots TCP, modélisation du trafic, si-
mulation



A flow-based model for TCP traffic in an IP backbone network 3

1 Introduction

Modeling Internet traffic is important to evaluate the performance of a backbone
network. Models can assist in network links dimensioning. Models can also be used
to plan link upgrades using statistics on the evolution of the users’ demand. In case
of a fixed demand, the model can predict any change in the total traffic on a link of
the backbone network given a change in other parts of the network. For example,
an increase in bandwidth on the access network will shorten the duration of flows
and hence increase the variability of the traffic in the backbone, which requires an
increase in the bandwidth of backbone links to absorb such a variability. Finally, we
claim that for operational use, it is more important to model the network traffic for
non congested links in order to anticipate and avoid congestion by an appropriate
resource provisioning.

A promising approach is to model a link traffic as an aggregation of flows. Given
statistics on the arrivals of flows, the sizes of flows, and the durations of flows, one
can build a model that predicts the different measures of the traffic (e.g. average,
variance) that will result from the multiplexing of all those flows. Different flow-
based models exist in the literature (see [8] and the references therein), but most of
them have the particularity of only dealing with congested links. These paper mostly
focus on fairness issues.

In [7], we introduced a flow-based model for the IP backbone traffic. The main
assumption was that the backbone is not congested. Flows are assumed to arrive as a
Poisson process. They are characterized by their volume S and their duration D. S
and D are two random variables that are supposed to have the same distribution for
all flows. S and D are also very easy to compute on current routers. Using queuing
theory and Poisson-shot noise processes, we characterized the moments of the total
rate R(t) resulting from the superposition of all the flows on one of the backbone
links. The computation of the first moment of R(t) is straightforward and does not
need any particular assumption. If we denote by A the average rate at which flows
arrive on the link, the first moment of R(¢) (or the average total rate) will be equal
to A times the average size of flows!. For the higher moments of R(t), we need the
function that describes the evolution in time of the transmission rate of a flow. Let
X(t — tp) denote this function for a flow that arrived at time tg. In the context of
Poisson shot-noise processes, X (t — tg) is the shot starting at time ¢o. The variance

!The unit by which the total rate is expressed is equal to the unit by which the sizes of flows are
expressed (packets, bytes, bits) divided by the unit of time.
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4 C. Barakat, P. Thiran, C. Diot

of the total rate in the steady state has been shown to be equal to

Vi = AE [/OD XQ(u)du] : (1)

We also found that the computation of the k-th moment of the total rate requires
the computation of all the expectations E [fOD Xi(u)du] ,up to i = k.

In [7], the model is deliberately kept simple and general to make a very sparse use
of the statistics that can be collected from passive measurements on the backbone
(only flow arrival times, sizes, and durations) to model all IP flows including UDP
and TCP. This crude model prevents us from having an explicit expression of X (t)
given S and D, which is needed to compute the higher moments of R(t). We therefore
made some a-priori choices for the shape of the shot; either a constant equal to S/D
during the duration of a transfer (rectangular shot), or a linearly increasing rate from
0 to 25/D in [0, D] (triangular shot)?. These assumptions enabled us to compute
the moments of R(t) as a function of the join moments of S and D. For example,
the variance of R(t) can be expressed as

52
Ve =K)E |—
R |:_D:| )

where K =1 in case of a rectangular shot, and K = 4/3 for a triangular shot.

In this paper, we focus our attention on TCP flows and we propose a new model
of the moments of R(t) that is specific to TCP. We motivate this choice by the
dominance of TCP as transport protocol in the Internet [14]. On the other hand,
we might loose in generality as in the future, another protocol could catch up on
TCP and our TCP-based model could become less accurate than the rectangular
and triangular models proposed in [7]. However, we believe that the domination
of TCP is not compromised yet and that it is worth accounting for TCP control
algorithms in our model. Contrary to UDP flows, the variation of the transmission
rate of a TCP flow can be predicted given the well known TCP congestion control
and congestion avoidance mechanisms. We make the same assumptions as in [7],
i.e. that backbone links are not congested and flow arrivals are Poisson. However,
losses dues to congestion are considered to occur on the access network only. The
analysis can be extended to more general arrival processes, but we keep working

>The slope and starting point of X (¢) have been chosen in a way that the flow transmits a
volume of data equal to S in a time equal to D. The function X(t) is taken equal to zero outside
the interval [0, D].

INRIA



A flow-based model for TCP traffic in an IP backbone network 5

with the Poisson assumption given the good results we get in previous works. We
propose models for the computation of the integral of the shot created by a TCP flow
throughout its lifetime. From these models, we find expressions for the expectation

E [fOD Xi(u)du] , and hence, for the moments of the total rate R(t). For this purpose,

we use fluid models inspired from the models proposed in [2, 6, 9, 10, 13].

Our objective is to express the integral of the shot created by a TCP flow as a
function of its size and its duration only. When computing these expressions, we
account for the initial slow start phase of a TCP connection, its steady state, as well
as Timeouts which are frequent at high loss rates [2, 13]. Models in the literature
usually characterize a TCP flow using the connection round-trip time and the process
of loss events (such as the intensity of loss events, the packet loss rate, etc.) as an
implicit indicator of a congestion|2, 9, 13]. The problem with round-trip time and loss
events is that they are difficult to measure in reality because (i) the finite duration
of flows prohibits any measurement of quantities as the average packet loss rate or
the average time between loss events®, and (ii) the accurate measurement of these
parameters requires accurate time source as well as the observation of the two paths
of the TCP connection. With our model, the total rate can be approximated using
only statistics on flow sizes and flow durations, which are easier to measure (using
router embedded tools such as Netflow for example). Another objective for this
paper is to propose a simple model for the shot of a TCP flow of size S and duration
D that can be used for simulating and generating traffic.

We first focus in Section 2 on long-lived TCP flows. We give close-form expres-

sions for the expectations E [ fOD X i(u)du]. Those expectations are required in the

computation of the moments of R(t), the total rate process [7]. We present the
analysis for a general order ¢ although we are more interested in the second order
statistics (or the variance of R(t) using (1)). The reason is that the analysis is ap-
proximately of the same complexity, and so providing expressions for all orders is
better. Our expressions are a function of the joint moments of S and D, namely
of the expectations E [Si /Di_l], 1 > 2. They are not a function of the round-trip
times of TCP connections, not of the rate of loss events. This consists our main
contribution: the round-trip time and the loss rate, which are the basis of most TCP
models (e.g., [2, 9, 13]), are replaced in our expressions by the joint moments of S
and D. These expressions hold for any marginal distribution of times between loss
events.

3These quantities have to be measured on end-to-end and not only in the backbone, where there
are generally no losses.

RR n°® 4433



6 C. Barakat, P. Thiran, C. Diot

Next, in Section 3, we extend our model to account for the initial slow-start
phase in a TCP transfer [9]. We present the analysis for the variance of the total
rate, which is given in Equation (1). The same approach can be used to compute the
higher moments of the total rate. We focus on the variance of R(t) simply because
it is more significant than the higher moments. The initial phase of a TCP transfer
has an important impact when the size of the file transferred is short, which is the
case with web traffic [9]. TCP has a different behavior during this initial phase than
in steady state (exponential instead of linear window increase). We introduce two
new parameters to account for this initial phase. These two parameters are Ss, the
volume of data transmitted during the initial phase and D;, the duration of the
initial phase. We also use a fluid model for this phase inspired from [4, 9]. Again,
the round-trip time of the connection and the packet loss rate are not needed. In
Section 4, we combine this model to the steady state model introduced earlier to get
a general model of the TCP shot.

At the end of the paper, we present two other models. The first one explains
how the shot created by a TCP transfer can be approximated using the round-trip
time of the connection and the packet loss rate. With this model, we get rid of
D, S; and D;. We call this model the "packet model" to distinguish it from our
previous model which we call the "fluid model". The advantage of the packet model
is that it allows to account for Timeouts, a phenomenon pronounced at high packet
loss rates [13]. The second model explains how our fluid model can be corrected to
account for Timeouts.

The different models in the paper are validated by simulations using the ns-2
simulator [11]. The paper ends with concluding remarks and perspectives on our
future work.

The outline of the paper is as follows. In the next section we present the analysis
for the steady state phase of TCP. In Section 3, we present the analysis for the initial
slow start phase of a TCP transfer. The general model for the shot is presented in
Section 4 together with the simulation results. Sections 5 and 6 contain our last two
models, respectively. The paper is concluded in Section 7.

2 Modeling TCP flows in the steady state

Given the distributions of S and D, our objective is to compute the following expec-

tations,
D .
E [/ X“(u)du] 1> 2.
0

INRIA



A flow-based model for TCP traffic in an IP backbone network 7

The particular expectation for i = 2 will be deduced and plugged in (1) to find the
variance of the total rate. We consider a particular flow which has size s and duration
d. We find first the expectations for this flow, that we sum over all flows to get the
expressions of the expectations for an arbitrary TCP transfer. All expectations and
probabilities conditioned on the fact that S = s and D = d will be distinguished by
the subscript sd. Using this notation and supposing that d is large enough so that
the time average of X'(t) coincides with its expectation (it has been shown in [2]
that X?(t) is ergodic when the process of loss events is), we write

o [ /0 ’ Xi(u)du} — 0B, [X(1)] . @)

The problem is then transformed into the computation of the ¢-th moment of the
transmission rate of a long-lived TCP transfer at an arbitrary time ¢ in the steady
state.

We consider a fluid additive-increase multiplicative-decrease model for the steady
state of TCP inspired from [2]. We look at the TCP connection in its congestion
avoidance mode. We define a loss event as the time at which the transmission rate of
the TCP connection (or equivalently the window size) is divided by two. Denote by
A; the rate of loss events. To simplify the analysis, we suppose that times between
loss events are i.i.d., in other words we only consider the marginal distribution of
times between loss events and we ignore any correlation. It has been shown in [2] that
the correlation of times between loss events has a small impact on the performance of
TCP over a wide range of Internet paths. We also suppose that there is no limitation
on TCP rate caused by the receiver window or any other factor. It is indeed very
difficult to find close-form expressions for TCP performance measures in presence of
such a limitation and this is for general processes of loss events [2]. Even for the
homogeneous Poisson case, the expressions are complicated and involve many infinite
series [3]. Moreover, it is recommended in [1] to conduct all analysis of TCP without
this limitation since it will disappear in future TCP versions.

Between loss periods, the rate of TCP increases linearly with a slope a, which
is inversely proportional to the square of the round-trip time of the connection [2].
When a loss event appears, the transmission rate of TCP is divided by two. Let
X, denote the rate of TCP just before the n-th loss event. Let T3, be the time at
which the n-th loss event appears and let 7,, denote the time between the n-th and
the (n + 1)-th loss events: 7, = Ty, 41 — T5,. The process {7,,} is assumed to form an
ii.d. sequence, whose average is denoted by 1/\; = E [1,,], and whose k-th moment
is denoted by 7(*) = E [r¥]. The variance of 7, is thus equal to 7(2) — (1/X;)%. For

RR n°® 4433



8 C. Barakat, P. Thiran, C. Diot

a time ¢ in (T}, T5,+1], we have
X(t)=Xn/2 + ot — Tp).
For t =T, 11, the previous equation becomes
Xnt1 = Xn/2 + arp. (3)

Using this fluid model, we find the expressions of the moment of TCP transmis-
sion rate in the steady state. These expressions are stated in the following theorem.

Theorem 1 The k-th moment of TCP transmission rate at an arbitrary time in the
steady state is equal to

Gk ()it R, X1

Eia [Xk(t)] T Lk —i+1)

k
i=0
where C} = % is the (k,1) binomial coefficient, +(*¢—+1) = )\f_H'lT(k*H'l) is the
(k —i4 1)-th moment of the times elapsed between loss events divided by the average
time between these events, E‘Sd [X}l] are the moments of X (t) at loss events, i.e., the
moments of X (t) associated with the Palm distribution, which is here the distribution
of TCP transmission rates at loss events. The moments E°; [X;] are the solutions
of the following set of recurrent equations:

i—1 i—q
B, [Xi) = 30 01 (/3 I B, [x3]
j=0

Proof: Let us put ourselves in the stationary regime of the TCP connection. Ac-
cording to [2], the stationary regime exists and is unique for any initial state. Using
the following inversion formula from Palm theory [2, 5|, the moment of order & of
X (t) at a random time ¢ is given by

E, [sz;nH Xk(u)du] B [fi (X /2 4 au)kdu] 4
1/) B /N ' )

E,, [X’“(t)] -
The binomial formula tells us that

k . 'Xi k—i_ k—i
(Xn/2 + au)* = 20,12—;1@ —iyk
=0

INRIA
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Therefore, (4) becomes

k
| . [T
Eqq [Xk(t)] = ZC,Q)\liak_’Egd [X;/O uFldu
=0
k

Clzc k—ipn0 e k—i+1
= Y et R, (X ]
iz:; Zz(k — i+ 1) o sd nTn

kol

C}é k—i_(k—i+1)n0 ;
= : ir(h-HDES, [XE] .

7

The later equality uses the fact that X, and 7, are independent. This follows from
our assumption that the times between loss events form an i.i.d. sequence.

The moments of X,, can be computed using Equation (3). Making a similar
development as the one made for obtaining (5), we find

EY, [X41] ECJ o IR, [X7] .

Since we are working in the stationary regime, we have E; [X! ] = EJ, [X1]. We
bring the term E?, [X:] from the right hand side of the equation to the left hand
side, and we get the following expression of the ¢-th moment of X,, as a function of
lower order moments

;207 o .
2 Z J g TR (X (6)

By simple multiplications and divisions of Equations (5) and (6) by equal powers
of A\;, we get the system of equations in the Theorem which concludes the proof.

o

Consequently, we have two systems of equations that give us all the moments of
X (t) as a function of two unknowns: the ratio «/A; and the normalized moments of
times between loss events 7() = A%T(i). To compute the moment of order k& of X(¢),
we have to know the ratio a/)\; and the terms 7®) up to i = k + 1.

The normalized moments of times between loss events describe the way with
which loss events appear. They are a function of the loss event process, and they
are independent of the average rate of this process. For example, for equal times
between loss events, they are always equal to 1. For exponential times between loss

RR n° 4433



10 C. Barakat, P. Thiran, C. Diot

events, they are equal to i!. We shall assume in the sequel that these normalized
moments are given. We still have to find the expression of the ratio «/); in order
to eliminate completely the average rate of loss events and the parameter o (hence
the round-trip time) from the expressions of TCP transmission rate moments. This
will be done in the next section using the fact that E;q[X(¢)] = s/d (Equation (2)).
In the following section, we will focus on the computation of the second moment of
X (t) and infer from it the variance of the total rate process R(%).

2.1 First moment of X (¢) and the ratio a/\,

We solve the system of equations in Theorem 1 for £ = 1. This gives us
E [ X(t)] = (a/N) (1 + ()_571(2)> )

This result is similar to the one found in [2]. Using equation (2) which holds since
the transfers are assumed to be long, we write E;4 [X (¢)] = s/d. It follows that

« S -1
S =2 (1+05:) . 7
ol g
We get rid of the ratio (a/A;) by using statistics on flow sizes and flow durations as
well as information on the normalized second moment of times between loss events

that TCP connections encounter in the network. We will use this value of the ratio
a/\; in the sequel.

2.2 Variance of the total rate

Let fsp(s,d) be the joint probability density of S and D. Using (1) and (2), we
write

VR=2\ / / fsp(s,d)Eq [ /O ’ XQ(u)du} dsdd = \ / / fsp(s,d)dEq [X?(t)] dsdd.

We solve the system of equations in Theorem (1) for k¥ = 2 and we get

1 2
By [X*()] = 3 <%> (2447 +7®).

We substitute the ratio a/\; by its value given by (7) to obtain

Eo [X%(1)] = % (5) i (1+05#®) _2 (2447 + 7).

INRIA



A flow-based model for TCP traffic in an IP backbone network 11

We plug this expression of the second moment of TCP transmission rate in the
expression of the variance of R(t) to obtain our following main result

Vi = %,\ (1 + 0.5%@))_2 (2 +47® 4 %(3>) E [%2] . 8)

This expression of Vi has the particularity to only depend on the joint moment of
flow sizes and flow durations. More precisely, it is a multiple of the expectation
E [S?/D]. Note that the two expressions of the variance we obtained in [7] and
we cited in the introduction are also a multiple of the expectation E [52 /D], but
a multiplicative coefficient K which is a priori chosen, and not computed from the
distributions of loss events as in (8). Expression (8) is independent of packet loss
rates and round-trip times. The higher moments of R(¢) can be computed in a similar
way and can also be shown to be only dependent on the joint moments of flow sizes
and flow durations. The variance of R(t) is also a function of the type of the process
of loss events. This is represented by the second and third normalized moments of
times between loss events, #(2) and #(3). This expression holds for any distribution
of times between loss events. We are assuming that the process of loss events has
the same type for all TCP connections.

Expression (8) tells us that if the time between loss events is equal (so that
#() = 1 for all k), the variance of R(t) is equal to %)\E [SQ/D], that is, it is
equal to % times the variance of R(t) when all shots are assumed to be rectangles.
Interestingly enough, if times between losses are exponentially distributed, we get
the same variance as in the triangular case, that is, a variance equal to %)\E [S 2/ D}.
In fact, the variance of R(¢) is an increasing function of the normalized moments of
7n- The burstier the process of loss events, the higher the second moment of X (¢),
and as a result, the higher the variance of R(t).

2.3 Simplified model for TCP flows

Using the result of our modeling, one can find a simple model for the shot created by
a long TCP transfer. When used in our previous fluid-based model, this simple model
for the shot should give the same characteristics for the process R(t) as the use of an
exact model. A simple model for the shot is also useful for the generation of TCP
traffic. Instead of mimicking exactly the behavior of TCP when sending packets, one
can use a simple model so that the resulting traffic has the same moments as the
real TCP traffic.

The complexity of a model for the shot of a TCP flow depends on how the number
of high order moments of the process R(t) are required to be computed. If we only

RR n® 4433



12 C. Barakat, P. Thiran, C. Diot

need to approximate the first two moments of R(¢), we need a model for the shot
that gives us the same average and the same variance for R(t) than an exact model.
Therefore, we need to find a function X (¢) that verifies the following for a TCP flow
of size S and of duration D,

/OD X(u)du = S

/OD X2(u)du = % (1+ 0.5%@))_2 (2+47® +70)) %.

The function X (¢) has to be only defined on the interval [0, D]. It will be a function of
S, D, 7 and 73). Clearly, an infinite number of functions satisfy such requirements.
For example, one can take X(¢) = at®, and compute the two coefficients a and b
using the above two integral equations. When the times between loss events are
exponentially distributed (so that 7(*¥) = k!), we get b = 1 and a = 25/D?. This
gives a triangular form for the shot as the one we considered in [7]: the rate of TCP
increases linearly from 0 to 25/D in the time interval [0, D]. Using this triangular
model for the shot, we get the same average and the same variance for the process
R(t) as when using a real model for TCP steady state with exponential times between
loss events. However, no guarantees can be made about the higher moments of R(t),
its marginal distribution, and its correlation function.

As explained in [2, 3, 12|, assuming that times between loss events are expo-
nentially distributed leads to good results, especially in wide-area networks where a
large number of flows are multiplexed. We adopt this assumption in the rest of the
paper. Consequently, we model the shot created by a TCP flow in its steady state
as a triangle. Our objective being only to approximate the second order moment of
the total rate.

3 Modeling the initial phase of TCP

The above model only accounts for the steady state phase (i.e., the congestion avoid-
ance phase) of a TCP connection. It is valid for long-lived connections where the
initial slow-start phase does not have an impact. However, most of transfers in the
Internet are of small size [9, 14]. A small transfer starts (and generally terminates)
by a slow-start phase that has a different behavior than the congestion avoidance
phase. In particular, the increase in the window size is exponential at the beginning
of the connection until the first packet loss, which marks the end of this initial phase.
We design a model for the slow-start phase in this section. Again, we try not to use

INRIA



A flow-based model for TCP traffic in an IP backbone network 13

packet loss events and round-trip time into our model. This is possible with the two
random variables we introduced earlier, S; and D;.

Denote by Ss the volume of data transmitted during the initial slow-start phase.
Denote by Dy its duration. The initial slow start phase lasts from the beginning
of the transfer until the first packet loss (or equivalently the first reduction of the
congestion window). The receiver window is assumed to be very large so as not to
limit the transmission rate of TCP. The analysis of the initial slow start phase can
be easily done in the case of a small receiver window, but since this is not the case
for the steady state, we opted to make this assumption during all the duration of
the transfer. As in the previous sections, S and D denote the total size and total
duration of the flow. Clearly, if the flow does not suffer from losses, we will have
S, =S and D, = D.

The increase in TCP rate in the slow-start phase is known to be exponential [4,
10]. Denote by RT'T the round-trip time of the TCP connection and by b a parameter
that accounts for delaying ACKs (b=2 if ACKs are delayed, b=1 if not). Using the
fluid models in [4, 10], we have during the slow-start phase

dX(¢) X(t)

dt  BRTT’

This differential equation holds for any unit used to express transmission rates. Let
M denote the size of a TCP packet (Maximum Segment Size in TCP implemen-
tations). The TCP connection starts usually with a window of one packet. Then,
X(0) = M/RTT, and the expression of X (t) in the slow-start phase is therefore

M
X(t) et/(bRTT)- (9)
Since we know that

Ds
/ X(u)du = S,
0

we can solve this integral equation for the round-trip time of the connection as a
function of S and Dy, to obtain

D

RIT = 190008, & Mb) (b))

(10)

We substitute this expression for the round-trip time in (9), which then becomes

X(t) = MbIn((S; J;Mb)/(Mb)) In((Ss+Mb)/(MB))t/D,

RR n°® 4433



14 C. Barakat, P. Thiran, C. Diot

This gives the expression of the rate of TCP in the slow-start phase as only a function
of S5 and Dy; the round-trip time disappeared from this expression. The rate of TCP
at the end of the slow-start phase is equal to

X(Ds)

_ Se+Mb. (S +Mb
- D, "\ )

It is now very simple to compute any power of X (¢) and find its integral in the
slow-start phase as a function of S; and D,. Then, we sum over all the values of S,

and D; to find the expectations E [ fODS X k(u)du] that we need for the computation

of the moments of the total rate R(¢). Combined with our previous model for the
steady state, this will give us the moments of the total rate as a function of A, and
the joint moments of Ss, Ds, S and D. We will show how this can be done for the
variance of the total rate in the next section.

4 General fluid model for TCP flows

4.1 The model

We have TCP flows that arrive at an average rate A. The shot of a TCP flow is
characterized by the four random variables: S, Dy, S and D. We make the same
assumption as in [9] that the connection gets into the steady state once the initial
slow start phase is over. As explained above, we consider a triangular model for the
shot of a TCP flow in its steady state. This yields the following general model for
the shot of TCP including the initial and steady states,

Mbln((SsJBMb)/(Mb))eln((ss+Mb)/(Mb))t/Ds 0<t<D,

s

X(t) =

Bp(t — D) D,<t<D

This model for the shot is better illustrated in Figure 1. We recall that this model,
and particularly the steady state part, only approximates the first two moments of
R(t).

According to (1), we integrate the square of X () between 0 and D and we sum
over all the values of the four random variables of our model to get the variance of

R(t). Thus,
Vi = AE [/OD Xz(u)du} +AE [/DD X2(u)du] .
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X(®)

Figure 1: A model for the shot created by a TCP flow

The second term on the right of the equation corresponds to the steady state phase
and is equal to (4/3)AE [(S — Ss)?/(D — D,)]. The first term can be computed using
the expression of X (¢) in the slow-start phase. This gives us the following expression
for the variance of the total rate,

Ve = AE (11)

o [ [S:+ MbY 8u(S +2Mb) | 4(S - 5,)’
Mb D, 3 D-D, |’

For TCP flows that do not suffer from losses, the second term vanishes and Vg

becomes
. ( S+ Mb) S(S + 2Mb)]

Ve =AE Mb D

4.2 Validation

We validate our general model for TCP shot via simulation. We modify ns-2 to
be able to measure the values of S, Dy, S and D for a TCP transfer. Using the
statistics on these four random variables, we study how well our expressions for Vg
(using different models for the shot) approximate the real variance of the total rate.
The real variance of the total rate is computed from the samples of R(t) obtained by
averaging the number of packets that cross the bottleneck link over intervals of the
same order of the round-trip time. Such an averaging (or sampling) interval is the
most appropriate to capture the dynamics of TCP rate, and hence the dynamics of
the total traffic. Instead of the variance, we plot the coefficient of variation of R(t)
expressed in percents (i.e., we plot (100 * v/Vg/E [R(t)]). The average value of R(t)
has been shown to be equal to AE [S] [7].
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We consider different scenarios. Each scenario studies the sensitivity of the results
to a different parameter of the model. Our scenarios consist in a set of TCP transfers
arriving according to a Poisson process of rate A\. The transfers cross first a link of
10 Mbps, then they cross another link of 10 Mbps where their packets are dropped
according to a Bernouilli process; with a dropping probability p. Note that since
the link is under-utilized, these losses actually occur on the access or exit links. The
transfers use the New Reno version of TCP, implement the delay ACK mechanism
(hence b = 2), and have a very large receiver window. We set the Maximum Segment
Size to 500 bytes. The parameters we vary are the distribution of the sizes of the
transfers (S), the arrival rate of the transfers (\), the packet drop probability (p),
and the round-trip times (RT'T) of the TCP connections. All TCP connections in
a particular simulation have the same round-trip time, and the averaging interval of
the total rate R(t) is set to this round-trip time. We will choose the values of the
different parameters of the model (particularly A and E[S]) so that the 10 Mbps
link remains under-utilized. This is the main assumption we made in this paper.
Therefore, the simulated networks do not enqueue packets, and the round-trip time
for a TCP connection is equal to the two-way propagation delay.

For each scenario, we run 10 simulations of 1000 seconds each and we average the
coefficient of variation of R(t) over them. The confidence intervals are very small, so
we do not plot them.

4.2.1 Impact of file size on variance

We set the round-trip time to 80 ms, the packet drop probability to 3% and the
arrival rate of TCP transfers to 1 transfer per second. Files to be transmitted in a
simulation have all the same size. We vary this size from 10 Kbytes to 1 Mbytes and
we run 10 simulations for each file size. We compute the coefficient of variation of
the total rate given by simulation (by sampling the total rate over 80 ms intervals).
We also compute the coefficient of variation of the total rate given by three models
for the shot: the rectangular model, the triangular model, and our TCP fluid model
proposed in this paper. Figure 2 shows the results. The TCP fluid model gives a
good approximation of the variance of the total rate for all sizes of TCP transfers. It
gives better results than the triangular model in case of TCP transfers of small size.
The reason for that is that the former model accounts for the fast rate increase during
the slow start phase. In case of TCP transfers of large size, the TCP fluid model
gives similar results to the triangular model since the initial slow start phase becomes
negligible. The rectangular model results in the lowest coefficient of variation since
it ignores any variation of rate during the lifetime of a TCP flow.
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Figure 2: Variance of R(t) versus file size

4.2.2 Impact of arrival rate on variance

We consider the impact of the arrival rate of TCP transfers (or equivalently the load
of the network) on the accuracy of the model. We set the round-trip time to 80 ms
and the packet loss rate to 3%. We vary the sizes of flows for each simulation run.
When a file is to be generated, we pick randomly a real number between 1 and 3 and
we generate a file of size in bytes equal to 10 power the picked number. This leads
to average file size of 215 Kbytes.

We vary the arrival rate of transfers from 1 and 5 transfers per second and we
plot the coefficient of variation of the total rate given by simulation and by the above
three models. The results are plotted in Figure 3. First, we notice that the coefficient
of variation of the total rate decreases with A since it is inversely proportional to v/.
Second, the TCP fluid model gives a better approximation of the real coefficient of
variation than the triangular model. The results at high arrival rates are not very
representative since the 10 Mbps link starts then to be congested. In the following
two scenarios, we will choose an arrival rate equal to 3 transfers per second, since
with this value for A, the probability that the total rate reaches 10 Mbps is very
small.
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Figure 3: Variance of R(t) versus arrival rate of transfers

4.2.3 Impact of packet loss rate on variance

In this section, we vary the packet loss rate. A change in the packet loss rate
impacts the durations of transfers, and hence the variance of the total rate. We
consider five values for the packet loss rate: 1%, 2.5%, 5%, 7.5%, and 10%. As in
the previous section, the size of a TCP transfer is generated randomly between 10
Kbytes and 1 Mbytes for each simulation run. The round-trip time is set to 80 ms
and the transfers’ arrival rate to 3 transfers per second. Figure 4 shows how the
coefficient of variation of the total rate varies with the packet loss rate and how well
our models approximate this coefficient. The increase in packet loss rate stretches
the TCP transfers, and hence, decreases the coefficient of variation of the total rate
which becomes smoother and smoother. This smoothness of the total rate continues
until a certain point where the increase in loss rate does not have an impact on the
coefficient of variation. The results given by the three models plotted figure 4 do
not account for such stabilization of the coefficient of variation, and continue their
decrease proportionally to the packet loss rate.

The stabilization of the simulated coefficient of variation at high loss rates is
caused by Timeouts, which become frequent in this region [13]. Timeouts result
in the TCP flow switching between silent phases and transmission phases. Even
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Figure 4: Variance of R(t) versus packet loss rate

though the duration of the transfer becomes longer, the burstiness of the flow caused
by Timeouts yields to the maintaining of the coefficient of variation at a constant
value. Our fluid model does not account for Timeouts (it assumes that the flow
continuously transmits packets during its lifetime). Hence, it is not able to capture
this plateau of the coeflicient of variation. In Section 6, we will present a method to
account for Timeouts in our fluid model for TCP flows.

4.2.4 TImpact of round-trip time on variance

Varying the round-trip time also has an impact on the TCP rate. The longer the
round-trip time, the longer the duration of the transfer. We study here the impact
of the round-trip time on the coefficient of variation of R(t) and on the efficiency of
our models. We set the packet loss rate to 3% and the arrival rate of TCP transfers
to 3 transfers per second. The size of a transfer is generated randomly between 10
Kbytes and 1 Mbytes as explained above.

We increase the round-trip time (together with the sampling interval of the total
rate) from 40 ms to 200 ms. All connections in the same simulation run have the
same round-trip time. We plot the coefficient of variation of the total rate as a
function of the round-trip time. We find the results in Figure 5. The TCP fluid
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Figure 5: Variance of R(t) versus round-trip time

model gives a good approximation of the real coefficient of variation over all the
values of round-trip time we are considering. We also notice that the coefficient of
variation of the total rate decreases with the round-trip time since the durations of
flows become longer.

5 An alternative method for modeling TCP flows

We present an alternative method for modeling TCP flows. The previous method
only uses statistics on flow sizes and flow durations to model the shot created by
TCP. To model the slow start phase, it was necessary to introduce two additional
parameters that are the volume of data transmitted until the first loss, and the time
taken until the first loss. With the present method, we only use three parameters:
the size of the TCP transfer S, the packet loss probability p, and the average round-
trip time RTT. S corresponds to the volume of data given by the application to
the TCP connection to transmit (not including retransmissions). These are the
three parameters widely used in the literature to model TCP transfers (e.g., [9]).
The advantage of this second method is that it allows to account for Timeouts
in TCP transfers. There is no way to model Timeouts without the knowledge of
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packet loss probability. Another advantage is that we only need to measure two
parameters (p and RTT) instead of three (S5, D; and D). However, as explained
in the introduction, this second method has the problem of measuring p and RTT,
which are more difficult to measure than the sizes of flows and their durations.
We present this second method for completeness of the study. It will serve as an
introduction to the next section, where we introduce the effect of Timeouts into our
fluid model.

5.1 The model

Consider a TCP transfer of size S = s. Without loss of generality, we suppose that
s is measured in packets. Suppose that the packets of the transfer are dropped in
the network with a probability p and that the round-trip time of the connection is
RTT. M denotes the Maximum Segment Size. We will develop a model inspired
from those in [9] and [2] to characterize the shot created by the TCP transfer.

We will only focus on the computation of the variance of R(¢). This requires the
computation of the following expectation for the TCP transfer

B,y [ /O dXz(u)du} , (12)

with D the duration of the transfer. The subscript spr means that we are condition-
ing on the fact that the transfer has a size s, a loss probability p and a round-trip
time RTT. Clearly, this expectation will be a function of p, RTT and s. We sum
then over all the transfers and we multiply by A to find the variance of R(t) according
to (1).

The idea is simple. First, we integrate X?(u) in the slow start phase, and we
compute the average value of S;. This gives us the number of packets to transmit
in the steady state of the connection which equals s — Egp, [Ss]. Then, we use the
model for the steady state phase of TCP in [2] to compute the integral of X?(u) in
the steady state. The computation is done in the following two sections.

5.1.1 Computation for the slow start phase

We have to distinguish between two cases. The first case is when no packets of the
TCP transfer are lost. The second case is when at least one packet of the TCP
transfer is lost. Let p; denote the probability that at least one packet is lost. We
have,

p=1-(1-p) (13)
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When no packets are lost, all the s packets of the transfer are transmitted in the slow
start phase (we are working under the assumption that the receiver window is set to
a very large value). Using the expression of RTT in (10), we can get the following
value for the duration of the transfer,

D = bRTTIn (szb) .

The expectation in (12) will be equal to

Espr [/OD X2 (u)du

Consider now the case when at least one packet is lost. In this case, Ss packets are
transmitted in the slow start phase with S; < s. We can find the average value of
Ss using the packet loss probability. Denote this average by Ss = Egpr [Ss | loss]. It
is equal to

s(s + 2b)
2bRTT ~

no loss} = M?

__ 1— 1— s—1
5, = byolmek, o OA7p)Tp
b b D1

1 s(1—p)*

= - —— (14)
p 1-Q-pp
With a more complex computation, we can also find the second moment of the
number of packets transmitted in the slow start phase, given that there is at least
one loss in the transfer. Denote this second moment by S2 = E,,, [SZ |loss]. One
can use (S;)? as an approximation, but we will use the exact value,
= _ 2 1 (1-p)ps*+2s)

7= - . (15)

opr op p(1-(1-p)*)

Again, we use Equation (10) to find Dy, the duration of the initial slow start phase
in case of losses, as a function of RTT and the moments of S;. The expectation of
the integral of X2(u) in the slow start phase is equal to,

Ds
Epr [ / X% (u)du
0

We still have to compute the expectation of the integral of X 2(u) in the steady state
in case of losses. Denote by X?2 the second moment of the transmission rate of TCP
in the steady state. Then, we write

D
Epr [ / X (u)du
D,

52 + 2bS,
_ 2Ms S
=M 2bRTT

loss]

loss} = M*(D - D,)X?2.
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D — D, is the average time required to transmit s — S, packets in the steady state.
Let X denote the average of the transmission rate of TCP in the steady state, then
D - D, = (s — S,)/X. We combine the different expectations above to get the
following expression for the expectation of the integral of X?2(¢) through all the
duration of the transfer,

D T2 Y AY ¢
9 R _ .\ s(s+2b) S24+2b6Ss  (s—Ss)X

S, and S2 are given by (14) and (15), respectively. X and X2 will be computed in
the next section as a function of p. We still have to sum over all the values of s, p,
RTT, and multiply by the flow arrival rate A to find the variance of the total rate
R(t).

5.1.2 Moments of TCP transmission rate in the steady state

We use here the model presented in [2]. We make again the assumption that times
between loss events are exponentially distributed. Consider first that there is no
Timeouts. According to the model in [2], we have

— 1 2
X=——/=
RTT \ bp’ (16)
— 4 - 8 1
2 __ = 2 _ _
X = 3(X) 3RTT? bp’

To account for Timeouts, we have to divide these two moments by a term A(p, RTT) =
(1+pXQ(p)Z(p)) (see [6] for details). This term, which is larger than one, corre-
sponds to the ratio of the total transfer time (including Timeouts) and the total
transmission time (excluding Timeouts). Q(p) and Z(p) have been computed in [13]
and are equal to

(A0 (= (1))
ow = min (- )

1+p+2p® +4p® + 8p* + 16p° + 32p°
1-p

_2+b 8(1—p)+ 2+b)\?
T 3bp 3 )

Z(p) = ARTT : (17)

with
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In summary, (p) denotes the probability that a congestion event results in Timeout,
and Z(p) denotes the average duration of a Timeout period. As we notice, the
numerator and the denominator in the expression of the variance have to be divided
by A, and so this factor disappears from the formula. We will later detail on the
factor A, when we introduce a correction for our fluid model for the shot of TCP
(the model using the four parameters Ss, Ds, S and D).

5.2 Validation

We consider the four scenarios in Section 4.2. For each scenario, we plot the coef-
ficient of variation of the total throughput in a separate figure as a function of the
corresponding parameter (i.e., S, A\, p and RTT). This gives us the Figures 6, 7, 8
and 9. Each figure contains the results from simulation, the results from our fluid
model for the shot, and the results from our present packet model for the shot. We
see that the packet model for the shot gives mainly better results when the packet
loss probability is high. In the other regions, its performance is comparable to that
of the fluid model, if not worse. The gain we get with the packet model in case of
high loss rates is simply due to the fact that it accounts for Timeout intervals, dur-
ing which the TCP flows are silent and not transmitting packets. The fluid model
assumes that TCP sources are transmitting during all the durations of the trans-
fers. Hence, it under-estimates the second moment of TCP transmission rate and
consequently the coefficient of variation of the total rate.

6 Correction of the fluid model for Timeouts

As we saw above, the fluid model presents a problem in case of frequent Timeouts,
or equivalently, in case of high packet loss rates. The problem comes from the
fact that the fluid model assumes that a TCP source is always transmitting during
the duration of the transfer D. In reality, it is only transmitting out of Timeout
intervals. Instead of D, one has to use the time during which the TCP source is
actually transmitting. However, this time is difficult to measure. We will provide in
this section an approximation of this time using the function A(p, RTT) introduced
in the previous section.

Consider the expression of the variance in Equation (11). The first term in the
expectation remains the same since it corresponds to the transitory phase during
which no Timeouts occurs. The second term however has to be corrected. In this
term, D — D, denotes the duration of the steady state phase. This duration has
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to be corrected so that to eliminate the Timeout intervals out of D — D,. Using
A(p, RTT), the time during which the TCP source is actually transmitting can be
approximated by (D — Ds)/A [6]. We substitute this into (11) to get the following
corrected version of our fluid model,

. ( /S, + b) Su(S +28) | 4A(S — S,

b Dy 3 D-D;
p and RTT can be approximated using the statistics on S; and S. In fact, the
term A is only a function of the packet loss probability p, since the round-trip time
disappears when multiplying X by Z(p) (Equations (16) and (17)).

For the computation of p, we use the expression of p; (Equation (13)). pi(s)
represents the probability that a TCP transfer of size s (packets) suffers from the
loss of one of its packets. We also use the expression of E[S; |S = s|, the average
volume of data transmitted during the initial slow start phase, given that the transfer
has a size S = s. We take S; equal to s when the flow does not suffer from losses.
All TCP transfers are assumed to encounter the same packet loss probability p in the
network, otherwise the computation of p will be difficult for the reasons we mentioned
at the beginning.

Using a development similar to that in (14), one can show that

Ve =)E

B[S, |5 = 5] = m2).
p

All TCP packets have the same size M. By summing over all the values of s, we get
the following expression for p:

)= Ay EPS)]
E [S;]

E [S;] is the average volume of data transmitted during the initial slow start phase
for an arbitrary TCP transfer. It can be easily approximated from the statistics on
S and Ss. E[p(9)] is the probability that an arbitrary TCP transfer suffers from
losses. Again, it can be approximated from the statistics on S and Ss;. We do that
by dividing the number of TCP flows that suffer from losses by the total number of
flows monitored in the backbone.

To validate our corrected fluid model, we consider the third simulation scenario
in Section 4.2 where we change the packet loss rate. We compare the coeflicient of
variation given by our fluid model to that given by the present corrected version of
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Figure 10: Variance of R(t) versus packet loss rate

this model. The results are plotted in Figure 10. Clearly, the correction we introduce
improves the performance of the model in case of high loss rates. In case of low loss
rates, the original and the corrected versions give similar performances.

7 Conclusion

We proposed in this paper a model for the traffic on an IP backbone network. This
model represents the traffic as the aggregate of TCP flows. The backbone link
is supposed to be non-congested, which is the case in most tier 1 ISPs backbone
networks. Using statistics on the sizes and durations of TCP flows, we computed
expressions of the moments of the total link rate that results from the multiplexing
of all TCP flows on this link.

Our main findings in this paper are close-form expressions for the moments of
the aggregate of TCP traffic (average, variance) using only the joint moments of flow
sizes and flow durations. In contrast to other modeling approaches in the literature,
our expressions are independent of round-trip times and loss rates, which are difficult
to measure in the core of the network. Our model accounts for the dynamics of TCP,
and is valid for the different kinds of distributions of times between packet loss events.
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It also accounts for Timeouts, which frequently occur at high loss rates. Based on our
analysis, we provide a simple model for the shot of TCP that can be used to simulate
and generate TCP traffic on uncongested backbone links (and evaluate the impact
of a change e.g. in the traffic demands, or in the capacity of the access network, on
the actual utilization of the link).

This model can be used for network management as it relies on parameters that
are simple to compute on-line, namely S and D, the volume and the duration (re-
spectively) of each TCP flow that compose the link traffic. Various router embedded
tools can currently compute these parameters without affecting the performance of
the router.

Our results can be extended in different directions. First, we are working on
the validation of our results with real measurements on a major ISP backbone. In
previous works, the validation of our model with simple forms for the shot on the
same backbone has yielded very promising results. Second, we are working on the
extension of our model to environments where the arrivals of flows are not really
Poisson, and we are investigating whether a flow arrival process which has more
correlation than a Poisson process has a big impact on the results. Finally, we are
working on algorithms that implement the results of our model, and that could be
used by an ISP to anticipate variations in its backbone traffic, using the history on
the evolution of users’ demand.
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