-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A maximum curvature step and geodesic displacement
for nonlinear least squares descent algorithms
Guy Chavent

» To cite this version:

Guy Chavent. A maximum curvature step and geodesic displacement for nonlinear least squares
descent algorithms. [Research Report] RR-4383, INRIA. 2002. inria-00072205

HAL Id: inria-00072205
https://hal.inria.fr /inria-00072205
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50452564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072205
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4383--FR+ENG

ISSN 0249-6399

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A maximum curvature step and geodesic
displacement for nonlinear least squares descent
algorithms

Guy Chavent

N° 4383
Février 2002

THEME 4

apport
derecherche







Zd INRIA

ROCQUENCOURT

A maximum curvature step and geodesic displacement
for nonlinear least squares descent algorithms

Guy Chavent*

Théme 4 — Simulation et optimisation
de systémes complexes
Projets Estime

Rapport de recherche n® 4383 — Février 2002 — 21 pages
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Pas de courbure maximum et déplacement géodésique
pour des algorithmes de descente pour les problémes de
moindres carrés non-linéaires

Résumé : Nous considérons dans ce travail le choix du pas et de la courbe sur laquelle on
se deplace dans I’ espace des paramétres lors de la recherche linéaire au sein d’un algorithme
de descente pour la résolution d’un probléme de moindre carrés. Notre analyse utilise la
courbure du chemin suivi, dans I’espace des données, au cours de cette recherche linéaire.
Nous définissons d’abord un nouveau pas de courbure maximum facile a calculer, qui donne
une valeur garantie du résidu au prochain itéré, et satisfait la condition de décroissance
linéaire avec w = 3. Nous montrons ensuite que l'on optimise (c’est a dire minimise !)
la valeur garantie du nouveau résidu en suivant dans l'espace des paramétres une courbe
dont 'image est une géodésique de ’ensmble atteignable de l’espace des données. Une
mise en ceuvre utilisant une approximation d’ordre deux de la géodésique est développée.
Une comparaison numérique préliminaire de I’algorithme avec deux versions de 1’algorithme
de Gauss-Newton montre qu’il se comporte correctement sur une grande gamme de non-
linéarités, et tend & étre plus efficace pour les fortes non-linéarités.

Mots-clés : optimisation, moindres carrés, recherche linéaire, courbure, geodesique.



A mazimum curvature step and geodesic displacement for nonlinear least squares 3

1 Introduction

We consider here the resolution of a non linear least squares problem

(£S) # minimizes f(z) %HF(Q;)”2 over R" (1)
where z is the parameter of R" to be estimated, and F(z) is the residual between the data
and the output of the model.

Descent algorithms for the resolution of (£S) perform a line search in the parameter space
by moving away from the current estimate z* in a direction y* specific to the algorithm,
until ideally the first stationary point of ||F(z)|| is attained. If we denote by p be the path
of the data space followed during this step, this amounts to search for the first stationary
value 7 of the residual r = ||F|| along p.

We propose in this paper a new approach to line search algorithms, based on the curvature
of the path p. Of course, one does not know the shape of p ! But one can compute easily its
radius of curvature Ry at arc length v = 0; then R = uRy is an a lower bound to the radius
of cuvature of p in a neighborhood of 0, where p < 1 is a security factor, which accounts for
the possible diminution or the radius of curvature along the path. This lower bound R will
be the key to our study.

So we analyse first in section 2 the properties of paths p which leave pg in the direction vy
with a curvature bounded by 1/R. We show that, among all these paths, there is one (and
generally only one) "worst path" pys for which the residual 7, at the first stationary point
is maximum, and simultaneously the arclength ), at the first stationary point is minimum.
Not surprisingly, this worst path consists, after leaving py in the direction vg, in "turning
steadily away from 0" with the maximum authorized curvature 1/R;

Then we use in section 3 these results to define a "maximum curvature step" ok, for the
computation of z¥+1 from z* and y*, which corresponds to moving forward on p up to the
arclength s of the first stationary point on the worst path pas.

This step is conservative : under the hypothesis that the radius of curvature of p has
stayed above R over the [0, 7] interval, one can be sure that one has not passed the first
stationary point, and that the residual has decreased at least below 75;. It is also optimal
in the sense that it is the largest step which ensures these two properties.

Section 4 is devoted to the choice of the curve g of the parameter space along which to
move from z¥ to z¥*!. Based on the observation that the guaranteed residual 7j; after a
curvature step is a decreasing function of R, we are led to replace the line search by a search
along a curve a — g(a) such that the corresponding path p has the smallest curvature. As
this path is constrained to stay on the "output set"

D={F(z)eRIforallz e R"} .

this amounts to chose g = gg such that p is a geodesic of D. We show that moving along gg
optimizes the worst possible case; once the maximum curvature step af, has been computed,
this can be implemented at no additional computational cost by following the second order
approximation g% to g.

RR n°4383



4 G. Chavent

Finally, section 5 presents a few preliminary numerical tests on examples of increasing
nonlinearity, which include comparisons with the classical Gauss-Newton algorithm with an
Armijo or Quadratic line search.

2 The first stationary point along a path with bounded
curvature

We denote in this section by p paths of R? parameterized by their arc length v, with W2
regularity, and by v(v) = p'(v) and a(v) = a"(v) the corresponding velocity and acceleration,
which satisfy:

[[v] =1 and <v,a>=0.

We consider as given the origin and the initial direction of the path:
po €ER? vy €R? (2)
where vy is supposed to be a descent direction for the residual r(v) = ||p(v)||:
< po,vo ><0. (3)

Then we denote by:
R €]0,00] , (4)

a lower bound to the radii of curvature along p, and define:
P={peW>*([R+) | p(0) = po , v(0) = vo and [la(v)|| < 1/R} . ()

All paths p of P leave the same point pg in the same descent direction vg, with a curvature
smaller than 1/R. To a path p € P we associate the first stationary point 7 of the residual
r(v) = ||[p(¥)||, defined by:

v = Inf{v > 0 such that diy(rQ)zo} . (6)

If one thinks of p as the set of points in the data space on which one wants to minimize the
residual during the line search step of an optimization algorithm, then # is the point where
one should ideally stop! So in order to study how 7 depends on p, we single out among all
paths of P the path pjs defined by:

pu turns steadily away from zero with the mazimum curvature 1/R. (7

and we want to show that pys is the worst path in the sense that it
o hits its first stationary point 7y sooner,

e with a residual 7y = r(Pys) larger

INRIA



A mazimum curvature step and geodesic displacement for nonlinear least squares 5

than any other path p of P.
Proposition 2.1 Define:
v = arccos(— < v,p/||pl]| >) (angle between v(v) and —p(v))
y =rsiny (minimum residual along the tangent to p at p(v))
t =192 —r? (decrease of squared residual),
Then:

G(t)

y(t) = yo + SR (8)

where G(t) is a function which depends on p and satisfies:
G(0)=0,|G't)|<1. 9)
The function Ga(t) =t YVt corresponds to the path py defined in (7).

Proof: The formula sin®y + cos® v = 1 gives, after multiplication by r2:
v+ <u,p>i=r? —t,
and, after differentiation with respect to v :

_1<ap/lpl>

d
Y 2 sin y

dt . (10)

But ¢ is a monotonously increasing function of » on [0, 7] by definition of 7, and we can
reparameterize p -and hence y- as a function of ¢ over the [0,] interval, where f = ry% — 72
and 7 = r(D).

Let np be the projection of —p/||p|| on the normal hyperplane to p at p(v) , defined by:

np +vcosy = —p/|lpll -

Then
< np,v >=0 and ||n,|| = sinvy .

so that
- <a,p/|lpll >=<a,np >

and (recall that ||a|]| < 1/R):
|=<a,p/llpll >| < llal| lIny|l < sinv/R .
Hence we can associate to the path p a function x such that:
< a,p/llpll >= Fsin~y,

(11)
X(®)] <1 ae. on (0,7 .

RR n°4383



6 G. Chavent

The differential equation for y reduces then to

dy 1x

dt 2R’

whose solution is formula (8), where G(t) denotes the primitive of x with respect to ¢ (not

vl):
G(t) = /Otx .

The case xp = 1 corresponds to the case where the acceleration a satisfies ||a|| = 1/R and
points constantly in the direction of n,, which is the definition of pas given in (7).

Proposition 2.2 The decrease t = ro? —r()? of the squared residual at the first stationary
point U is given by:

t=Inf{t >0 such that u(t) = ro’} , (12)
where: () .
_ 2 BARY: déf
M(t)—t+(yo+—2R ) St+(y0+2R) pm(t) (13)
so that:
ty <t VpeP. (14)

Hence ppr s, among all paths of P, the worst one for the minimization of the residual.

Proof: One has obviously:

d
d_y(r2):0 S <pv>=0 & siny=1 & y=r,

and, using proposition 2.1:

G(t
P =1 6 ot SR =gt & plt)=re?,

which proves that (12) is equivalent to (6). Then y, = r¢ sinyg > 0 implies

u(t) =t+ (yo + %}?)2 <t+ (yo+ —|C;g?|)2 )

which proves (13) using (9). Then (14) follows from (13).
|

Proposition 2.3 The arclength 0 at which a path p attains the first stationary point of the

residual satisfies:
oy < U VpeP, (15)

r<r(v)<ry) Vve[0,vy] VpeP. (16)

INRIA



A mazimum curvature step and geodesic displacement for nonlinear least squares 7

Proof: Differentiation of ¢ using the definitions of ¢ and y in proposition 2.1 gives:
dt = -2 < p(v),v(v) > dv = 2r(v) cos(y)dv .
and, omitting the v argument from now on:
dt = 2(r® — r2sin® 4)'/2dy .

But r2 =r¢?2 —tand rsiny =y = yo + C;L]?, which shows that

G(t)
_ 2, G) 2172
dt = 2(re” =t = (yo + 5 1)) v

or, with the notation (13):
dt = 2(ro? — (1) ?dv .

Hence v is given as a function of ¢ by:

1 [t dt
*=3 ), w e "

In particular, 7 and s are given by:

O P Y as)
2Jo G =@y M7 2y o= pa )

We consider now the change of variable

t€[0,t] ~ ta €[0,%u]

defined by:
p(tar) = p(t) - (19)

It is uniquely defined because ¢ ~ puas(t) is monotonously increasing, and the ranges of both
w over [0,%] and ppr over [0, are [0,79?]. From (13) in proposition 2.2 we know that
w(t) < par(t) Vi, which implies that:

ty <t Vte[0,t], (20)
and hence, using the definition of y and pas:

(o + 2292 > (yo + )2 (21)

Differentiation of (19) gives:

RR n°4383



8 G. Chavent

where g/ (tar) > 0, but p'(¢) can be positive, negative or zero. Hence the formula for 75s in

(18) becomes )
] _;/twm dt
M2 o w(ear) (ro? — p()?

1w
<2Luwm0f—mmW‘

so that

But we see from (13) that:

W@ =11+ G;ét) (yo + %?n <1+ |G;§t)| lyo + (;E?| ,
i.e. using (9) and (21):
WO <1+ 0+ 20y = 1 (ear)

This shows that

o < & / e,
Y2y o )T
which is (15). In order to prove (16), let ¢ and ¢ar be the decrease of squared residual along
p and pps at the same arclength v = vy, In view of (17), ¢t and tps are linked by:

/t dt _ /tM dt
o TP = " o GoT =)
Then (13) implies that necessarily

t>ty Vve[0,y]

which is (16).
|

Proposition 2.4 The arc length vy and residual 7ppat the first stationary point along the
“worst path” ppr are given by:

_ v,
= Rarct , 22
2%, arctan 11, (22)

iu=(R+rL)*+v?)? - R, (23)

where U, and Tr are the arc length and residual at the first stationary point along the
linearized path pr,(v) = pg + vov, given by:

UL =TgCOS7Y9 , Trp=rosinyg - (24)

The residual 7pr given by (23) decreases from ry (for R = 0, infinite curvature) to ¥, =
rosinyy (for R = 0o, zero curvature).

INRIA
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Proof: The case where p has zero curvature is easily obtained in the previous formula
by chosing G(t) = 0. We get first from equation (8)

r(v)sinyr(v) =rosiny Vv,
which proves the right part of (24) as sin¥;, = 1. Then we see from equation (17) that

Y72 )y (recosro—t)1/2°

where
I 2.2
tr, =ro” cos” o ,

which proves the left part of (24). Then we can rewrite (18), using ¥y, and 71, defined above,
as:

vy = 1/{M di (25)
"T2)y B AR (Rro+ o)
ie.: L
— du
iy =R - 7(1 i (26)
where u and U4, are defined by
R4ty N R+ry
(@ (R+FL)DV2 T (B2 4 (R+FL)2)V2

Hence: R47
_ . . TL
vy = R{arcsinl — arcsin ———————
m =R L+ R+
which gives (22) after some transformations. Finally, equations (8) (12) (13) show that 7,
is the positive solution of the equation:

r* 4+ 2rR — (2Rrp +10°) =0,

which is (23).
|
Remark In fact, formula (22) (23) could have been guessed -and in fact have- from the
very beginning, by noticing that the “worst path” pys defined by (7) is a circle of radius R
in the hyperplane determined by 0, py and vy.
|
All the above results have been obtained under the hypothesis that one knew a global
lower bound R of the radius of curvature along p. This will not be the case in the applica-
tions to optimization we have in mind, where such an estimate will be available only on a
neighborhood of v = 0. So we replace P by:

P={peW>»®[R+) | p(0) =po , v(0) = vo}, (27)

RR n°4383



10 G. Chavent

and denote, for any R > 0, by:

vy (R)  defined by (22) (28)
Fu(R)  defined by (23) (29)

the arclength at the stationary point of the worst path pys with radius R, and the corre-
sponding residual.

Proposition 2.5 Let p € P and R > 0 be given such that:
pv) >R Wwel0,m(R) (30)

where p is the radius of curvature along p, given by:

p(r) E Jla(n)|7 = [Ip" (D (31)

Then:
v > ‘M(R) , (32)
7 < r(m(R)) < P (R) (33)

where

e U is the arclength of first stationary point of the residual on p,

=

is the the value of the residual on p at its first stationary point,

The best estimates, i.e. the largest value of Upr(R) and the smallest value of Far(R), are
obtained for the largest R which satisfies (30), that is for R solution of;

p=om([R) , R=Rn@). (34)

where:
Rp(v) =Inf{p(r) ,0<7<v} . (35)

denotes the smallest radius of curvature on p up to arclength v.

Proof: Properties (32) and (33) follow immediately from (15) and (16) of proposition
2.3 applied to the path ¢ € P which coincides with p up to arclength p(R), and has zero
curvature for v > 7y (R). The existence and uniqueness of 7 and R satisfying (34) results
from the fact that v ~ R,,(v) defined by (35) is decreasing, and that R ~» ys defined by
(28) is increasing.

INRIA



A mazimum curvature step and geodesic displacement for nonlinear least squares 11

3 A maximum curvature step for descent algorithms
We are given in this section a mapping
F : R"—TRP (36)
to be inverted in the least squares sense by minimization of:
[ aeR @) = SIF@IP R, (37)
by a descent algorithm of the form
gt =g(a") . (38)

The function o ~ g(a) describes the curve of the parameter space along which one moves
from zF to zF*1. Tt is chosen such that:

g0 =2* , 4'0)=y", (39)
where:
1. z* is the current iterate,

2. y* is a descent direction for f at z*, computed from V.J(z*) and the previous descent
direction(s) (Conjugate Gradient, Quasi-Newton algorithms...), or from F* and J* =
F'(z*) (Quasi-Newton algorithms...),

3. o* is the step on the curve g, which is required to satisfy the so called linear decrease
condition:

Fg(a®)) < fa*) + afwf'(a%).4* (40)
for some
w €]0,1/2] (41)
to be chosen by the user.

It will be convenient to denote by
= ¢"(0) (42)

the initial acceleration on the curve g. The usual situation where one moves from z* to
z*+1 along a straight line of the parameter space is obtained by requiring that g satisfies
the differential equation:

9"(@)=0 Va>0, (43)

which, together with (39) gives:

def p

gs(a) = x + ay® . (44)

RR n°4383



12 G. Chavent

We consider in this section the curve g as given, for example -but not necessarily- by
(43) (44), and discuss the choice of the step a*. We recall first in sections 3.1 and 3.2 the
classical Armijo and Quadratic steps (cf for example [2]), which we have implemented in our
numerical tests for comparison purpose. Then we introduce in section 3.3 a new Mazimum
Curvature step by application of the results of section 2 on the first stationary point of a
path.

3.1 The Armijo step

In this approach, one has first to make a first guess a of the step. If the linear decrease
condition (40) is not satisfied, one replaces a by pa for some u €]0, 1] and tries again. The
Armijo step ¥ is then the first a for which condition (40) is satisfied.

In Gauss-Newton type algorithms, where y* is determined by requiring that z* + y*
solves the linearized problem, @ = 1 is a reasonable first guess (condition (40) would then
be satisfied with w = 1/2 if F' were affine and g = gs had been chosen).

3.2 The Quadratic step

Here also, one has to make a first guess a of the step. If condition (40) is satisfied, one sets
ag = a. If not, one uses f(g(a)), f(z¥) and f'(z*).y*, which have just been evaluated to
check (40), to compute a quadratic approximation of (f o g)”(0). Then one sets:

f'(a*).y*
(f29)"(0)

When F' happens to be affine, and one moves along the straight line g = gg, the function
a ~ f(g(a)) is quadratic. Then the step & produces exactly the minimum of f along the
straight line, and (40) is satisfied with w = 1/2. But f is nonlinear, and for security reasons,
one does not want to test (40) for values outside the [0, @] interval. Hence one projects & on
the interval [ra, (1 — 7)a] for some 7 € [0,1]. This gives the new value of ag. If (40) holds,
one proceeds to the next iteration. If not, the algorithm stops with the proper diagnostic.

(45)

o= —

3.3 The maximum curvature step

We associate to g a path p of the data space defined by:
pla) = F(g(a)) Va>0, (46)

and denote by .
v(a) = /0 I1E"(g(7))-g'(T)I| dr (47)

the arclength function along p, and by p the reparameterization of p by the arclength v.
The curve g and the mapping F' are supposed regular enough for p to have a finite curvature

INRIA



A mazimum curvature step and geodesic displacement for nonlinear least squares 13

which varies continuously with v, i.e. to satisfy:
p€CH(R"). (48)

We propose here to use the specific least-squares structure (37) of f to define a new
“maximum curvature step” ok, which will produce a guaranteed decrease of f and satisfy
(40) with w ~ 1/2: rather than evaluating one single real number f"(z*).(y*,y¥) as it is
done in the quadratic step, one could as well evaluate at a similar cost the vector p"”(0),
which gives information on the shape of the path p in the data space, and allows to use
results of section 2.

With the notations:

FE= 50 = P,

Vh= )= F(a*)y", (49)
Ak = p"(0) = F"(a%).(y",y") + F'(2").2* .

the quantities associated to p in section 2 are given by:
po=F*, vo = VH/IIVF, (50)
ro=F*l,  f'(=*).y* = =IV*]| < po,vo >, (51)
vp=—<FF o>, 7= (|FF|>= < F* vy >2)1/2 (52)

and the radius of cuvature R* of p at v = 0 is given by:
(1/RF)? = ||A*|]>— < AF vg >2 . (53)

(58) In order to apply the results of proposition 2.5, one needs a lower bound R of the radius
of curvature of p on a neighborhood of v = 0. But we know the radius of curvature R* at
v = 0. Hence it is natural to take R of the form:

R=kM7R" with 0<khtz <1, (54)

where k"2 is a security factor which accounts for the possible increase of the curvature
along the path. We can now define the mazimum curvature step aX, along g by:

v(ak,) = iy (R) = Rarctan (55)

L

where v is the arc length function defined in (47), and ps(R) is the arclength of the first
stationary point on the "worst path" pys with curvature 1/R, defined in (28).

Theorem 3.1 If Xk+% is small enough for p and R to satisfy (30), the mazimum curvature
step ok, defined by (55) satifies:

vieh) =  7u(R)

flg(ehy) <

IN
|

(56)

1 v(ak,) .,
L) gty 57

f(a*) + oy

rolm
I
5
3
[\V)
IN

RR n°4383



14 G. Chavent

where Upr(R) and 7y (R) are given by (28) (29), and a ~ v () is the arclength along the
tangent to p at the origin, defined by:

ve(a) =a [[V*] . (58)
The linear decrease condition (40) is hence satisfied with

v(agy)
ZAC

~

(59)

DN =
N —

w =

Proof: The left part of (56) is the definition of a%;, and the right part is (32) of
proposition 2.5 applied to p. Then we get from equation (33) in proposition 2.5 that:

1

Flg(ahn)) = 5r(Fm(R))* < 5Tm(R)* (60)

D | =

which proves the left part of (57). Then we define w¥, by:

Liur(R)? = £(0%) + aly LBt i) b (61)
v (ajy)

We can rewrite this equation, with the notations (50) (51), as:

- L. v(afy)
7 (R)? = zri — ok
° MVL(aﬁl)

2
or,using (58) and the definitions (55) of X, and (52) of vy:

WhelIVFI < po,v0 >, (62)

1.
EF]\/[(R)2 = 57‘(2) - ﬁM(R)ﬁLwﬁ,[ . (63)

Solving this equation for w¥, and using the formula of proposition 2.4 for 7y (R) and 7 (R)

gives:

1—cos#d VL

_ here: tanf = .
gsmo oo MU T RYw

But the function 6 ~ w¥, increases from 1/2 for § = 0 to 2/ for § = m/2, which proves the

right part of (57).

wir = (64)

We discuss now the implementation of the maximum curvature step.
In order to determine o, by (55), we need first to render equation (55) solvable with re-

spect to a by replacing the arclength function
a ~ v(a) by a simpler function, as for example

INRIA



A mazimum curvature step and geodesic displacement for nonlinear least squares 15

e its linear approximation:
vr(a) = a [[V¥]] (as in (58)), (65)
in which case of; is given by:
MlIVE = va(R) (66)
Qpr 144 ,
e or its quadratic approximation:

vk &

2
a
vg(a) = a [VF|| + 5 < W:A >, (67)

in which case ok, is the root of smallest absolute value of the second degree equation:

vg(a) = 7 (R) . (68)

Now that equation (55) is technically solvable, we need to know its right-hand side to
actually compute ak,. Equation (52) gives immediately the values of 77, and 7r,, so we are
left with the choice of the lower bound R to radius of curvature of p near v = 0.

Given w € [0,1/2], we want to satisfy the linear decrease condition (40) at each iteration
for this value of w. But theorem 3.1 shows that this condition is necessarily satisfied for
a = ok, provided that R is chosen small enough for (30) to hold. So we shall compute a%,
from R = kF+% R* with the current value of K¥T1/2_ and accept the step if (40) is satistied.
If not, k¥ 2 is multiplied by some p < 1, and a* is evaluated again. In the implementation
of this algorithm used in section 5, the security factor k was initialized to 1 at the beginning
of each iteration, but other strategies can be considered.

When only f(z*) and Vf(2*) are computationally available, the cost incurred by the
computation of ok, is that required to evaluate (exactly, or approximately by finite dif-
ferences) the two directional derivatives V¥ and A* of the forward model F in the same
direction y* (two evaluations of F).

When f(z*) and the Jacobian J* def (z*) are available, then V* can be computed by

the matrix product J*y*, so the only cost incurred by af, is that of the evaluation of A*
(one evaluation of F').

4 Moving along Geodesics

We consider in this section the case where both F(z*) and its Jacobian J*¥ = F'(z*) are
available for the computation of 2*¥*1, and discuss the choice of the curve a ~ g(a) used to
move from z¥ to ¥+ with a maximum curvature step ok,

There is of course no hope of finding the curve g which gives the best decrease to f. But
the maximum curvature step, based on the worst case analysis of section 2, has been shown
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16 G. Chavent

in theorem 3.1 to ensure that f(z**1) is smaller than the “guaranteed residual” 17as(R)?.
So we will choose the curve g which gives the smallest guaranteed residual $7as(R)2.

As we know from proposition 2.4, 7ps decreases from 7o to 7z, = rg sinyp when R increases
from 0 (infinite curvature) to oo (zero curvature). This leads to choose for g the curve gg
whose image p by F' has the smallest possible curvature, i.e., as p is contrained to stay
on F(R™), such that p is a geodesic of F(R™). Such a function g(a) is the solution of the
differential equation (see [1] for example):

T (9)J(9)g" + T (9) F"(9).(¢',9") =0, (69)

9(0)=2" , ¢'(0)=y". (70)
and the arclength function v(«) simplifies to:

va(e) = a||[V¥| = vr(a) (71)
where vy () is the arclength along the tangent to p at the origin, defined in (58).

Theorem 4.1 Let pg (resp. ps) be the path on F(R™) associated to the curve gg (resp.
gs) defined by (70) (71) (resp. (44)), and Dg, Rg (resp s, Rs) the corresponding solutions
of (34).

1. There exists Vmaz > 0 such that:
émaw,s S émaa),G ) (72)
where

ﬁmaw,s is the largest R such that R < Es and Upr(R) < Vipggs
émaz,g is the largest R such that R < Rg and m(R) < Vinag-

2. For any Rs and Rg such that:
0 S RS S émaz,s ) 0 S RG S -ﬁma:c,G ) (73)

the maximum curvature step a’fVL g along the half line gs satifies (57) (with R replaced
by Rs), and the mazimum curvature step a’f\,LG along the geodesic gg satisfies:

Fur(R)? < (o) + Sok f1at)at (74)

N | =

flg(ehre)) <

which means that the linear decrease condition (40) holds with w = %
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A mazimum curvature step and geodesic displacement for nonlinear least squares 17

3. If moreover the Gauss-Newton step y* given by:
JEE kb 4 TRk = (75)

is small enough, then (72) is satified with a strict inequality. Hence , if Rg is chosen
close enough to Rpyeq.c in (73), the guaranteed residual along the “geodesic” gg is
necessarily smaller than the one along the “straight line” gs, for any Rgs satisfying

(73).

Proof: The geodesic have at each point the smallest curvature among all paths of same
direction. Hence there exists V4, > 0 such that;

pa(V) > ps(v) Vv € [0,vmaz] - (76)

The theorem follows then easily from proposition 2.5 and theorem 3.1.
|

From a computational point of view, following the geodesic is an expensive operation, as
it requires the resolution of the differential equation (70) by a numerical scheme. If an Euler
scheme were used, for example, each step would have the same cost as the computation of the
Gauss-Newton direction y* (compare (69) and (75)), plus the cost of the second directional
derivative F"'(g).(¢', g").

Moreover, we see from theorem 4.1 that the geodesic is, from the point of view of achiev-
able guaranteed residuals, better than the half line only on the neighborhood [0, Vmaz] Of
v=20.

Hence we shall replace gg by its second order approximation g/~” defined by:

2

97 (0) = 2" +ayt + T2k (77)

where z* = ¢""(0) is the solution of (compare with (75)):
THETEE £ TKTF (@) (g i) = 0 - (78)

As we have seen in section 3, the implementation of the maximum curvature step requires the
computation of F"(x).(yx,yx) anyway for the evaluation of R* (see equations (49) (53)).
Hence the only cost incurred by moving along the geodesic rather than along a straight line
is that of the resolution of the linear system (78), which is the same as the Gauss-Newton
system (75), but with F"(z).(yx, yx) in the right-hand side instead of F*.

5 Numerical results
We have performed some preliminary tests, which we present now. We shall invert the

function:
F=®%-d, (79)
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18 G. Chavent

where ® : Q =] — 1,+00[xR C R2 — R® is a regularized version of the Powell example,
defined by:

x1
(21, 32) = | 12 + 243 | (80)
€T
and where d is the data to be inverted:
1
d=11 (81)
0

The vector d does not belong to ®(2), so the minimum residual is strictly positive. The last
component is set to zero, which correspond to the situation where no information on z- is
available.

When the regularization parameter e goes to zero, the function ® tends to the function of
the Powell example, which has a singularity along the line x5 = 0. We have used the values
€ = 0.1, which corresponds to a relatively smooth problem, and € = 0.01, which corresponds
to a quite stiff problem, where the curvature of ®(Q2) varies very quickly when z» changes
sign.

The solution of the minimization problem is, Ve > 0:

5 (0.;25) , (82)

which, when € — 0, tends to be on the singularity of ®(12).
The minimization of f(z) = %||F(z)||*> has been performed by three variations of the
Gauss-Newton algorithm: at each iteration, the descent direction y* is the Gauss-Newton

direction computed by (75), only the way z**! is computed from z*, y* and J* changes:

GN/Armijo/Straight: one moves from z* to y* straight in the direction y*, with a step
determined by the Armijo backtracking algorithm of section 3.1. This is a classical
algorithm, which we use as reference. The parameters are the initial guess of the step
at each iteration, set to a = 1, the reduction factor, set to = 0.5, and the coefficient
w in the linear decrease condition (40), set to w = 1074,

GN/Quadratic/Straight: same as above, but with a step determined by the quadratic
algorithm of section 3.2. This algorithm is expected to be more efficient for smooth
problems, so it can be a more demanding reference. The parameters are the initial
guess of the step, still set to @ = 1, the security coefficient for the projection, set to
7 =102, and the coefficient w, still set to w = 1074.

GN/Max_ Curv/Geodesic: one moves from z* to y* along the approximate geodesic
97" defined in (77) of section 4, with the maximum curvature step a?w,a defined by
(55) of section 3.3 applied to g¢f*. The parameters are the initial value of the security
factor for the radius of curvature at each iteration, set to k = 1, and the reduction
factor, set to p = 0.5.

INRIA
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Each algorithm was started at one of the two initial points:

2y = G) or 1z9= (g) , (83)

and was stopped when the norm of the gradient was a given fraction of its initial value:
T T
|75 F*| < 1074 |17°7 FO| . (84)
We present in tables 1 to 4 the comparative results in four situations. Each table displays:

e the number of Gauss-Newton iterations,

e the total number of reductions of the step a (for the GN/Armijo/Straight and GN/Quadratic/Straight
algorithms) or the security factor & for the radius of curvature (for the GN/Max_ Curv/Geodesic
algorithm),

e the total number of function evaluations (computation of the Jacobian J* and the
directional derivative F"(z*)(y*,y*) have been counted for one),

e the average value of the step a* per Gauss Newton iteration,
e the solution [z1,z2] found by the algorithm,

e the exit type of the algorithm: Normal when it stops because condition (84) is sat-
isfied, Descent when it stops because the linear decrease condition (40)cannot be
satisfied,

The first comparison was made on a rather smooth problem (e = 0.1) and with the initial

guess 79 = [2,1]. The results are as follows:

| Algorithm | GN Tter | Reductions [ Funct eval |
GN/Armijo/straight 261 1173 1695
GN/Quadratic/Straight 56 51 163
GN/Max_curv/Geodesic 501 68 1571

| Algorithm | Mean step | Solution | Exit type |
GN/Armijo/straight 0.060 [0.1250; —0.0001] | Normal
GN/Quadratic/Straight 0.1286 [0.1250; —0.0006] | Normal
GN/Max_ curv/Geodesic 0.018 [0.1249; 10 *1] Normal

As expected, the GN/Quadratic/Straight algorithm is the most effective on this smooth
problem. The GN/Max_curv/Geodesic algorithm makes equal game in this case with the
GN/Armijo/straight algorithm.

The next table show how the algorithms performs on the same problem (e = 0.1), but
with the worse initial guess z3 = [6, 5]:
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| Algorithm GN Tter | Reductions | Funct eval |
GN/Armijo/straight 257 1165 1695
GN/Quadratic/Straight 63 57 163
GN/Max_ curv/Geodesic 48 61 1571

| Algorithm Mean step | Solution | Exit type |
GN/Armijo/straight 0.065 [0.1268;0.0062] Normal
GN/Quadratic/Straight 0.09 [0.1248;0.0564] Normal
GN/Max_ curv/Geodesic 0.129 [0.1268; —0.0021] | Normal

This time we see that the GN/Max_ curv/Geodesic algorithm takes a slight advantage
over GN/Armijo/straight: it does a few less function evaluations and also less iterations.
But the GN/Quadratic/Straight algorithm is still the best performer.

We test now the case of more strongly non linear problems: we divide € by 10, so one

has now € = 0.01. We begin with the closest initial guess 9 = [2,1]. The results are:

| Algorithm GN Tter | Reductions | Funct eval ]
GN/Armijo/straight 7111 78846 93068
GN/Quadratic/Straight 4
GN/Max_ curv/Geodesic 15970 739 48469

| Algorithm Mean step | Solution | Exit type |
GN/Armijo/straight 0.002 [0.1250; 10~°] Normal
GN/Quadratic/Straight 0.4417 [0.9997;0.1708] | Descent
GN/Max_ curv/Geodesic 0.0007 [0.1250; 10~€] Normal

The problem being less regularized, we see that the GN/Quadratic/Straight algorithm
stops far from the solution, and that it takes more iterations to reach the solution for the
two other algorithms. The GN/Armijo/straight algorithm does twice as much function
evaluations as the GN/Max_curv/Geodesic algorithm, although it does less iterations.

The last comparison is made with the same regularization parameter € = 0.01, but with
the worse initial guess z3 = [6, 5]:

| Algorithm GN Tter | Reductions | Funct eval |
GN/Armijo/straightcce 6455 72294 85204
GN/Quadratic/Straight 5
GN/Max_ curv/Geodesic 2163 99 6588

| Algorithm Mean step | Solution | Exit type |
GN/Armijo/straight 0.002 [0.1268; —0.0013] | Normal
GN/Quadratic/Straight 0.5776 [0.9970; —0.1375] | Descent
GN/Max_ curv/Geodesic 0.002 [0.1268;0.0003] Normal
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The GN/Max_curv/Geodesic algorithm takes here a great advantage over the others.
It is the only one that finds the solution in a reasonable number of steps, and it does on
average 13 times less function evaluations than the GN/Armijo/straight.

6 Conclusion

The proposed algorithm, which is based on the optimization of the worst situation, seems to
behave in a very robust way over a wide range of situation and nonlinearity. Unsurprisingly,
it tends to outperform the two reference algorithms in situation of strong nonlinearity.
Further numerical experimentation is required to assess its practical interest.
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