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Abstract: A tournament is an orientation of the edges of a complete graph. An arc is
pancyclic in a digraph D if it is contained in a cycle of length [, for every 3 <! < |D|. In
[4], Moon showed that every strong tournament contains at least three pancyclics arcs and
characterized the tournaments with exactly three pancyclic arcs. All these tournaments are
not 2-strong. In this paper, we are interested in the minimum number px(n) of pancyclic
arcs in a k-strong tournament of order n. We conjecture that (for k > 2) there exists a
constant ay > 0 such that px(n) > apn. After proving that every 2-strong tournament
has a hamiltonian cycle containing at least five pancyclic arcs, we deduce that for k > 2,
pr(n) > 2k + 3. We then characterize the tournaments having exactly four pancyclic arcs
and those having exactly five pancyclic arcs.

Key-words: pancyclic, tournament, strong connectivity, strongness

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65



Arcs pancycliques et connexité dans les tournois

Résumé : Un tournoi est une orientation des arétes du graphe complet. Un arc est
pancyclique dans un graphe orienté D s’il est contenu dans un cycle de longueur [, pour
toute longueur 3 < [ < |D|. Dans [4], Moon a montré que tout tournoi fortement connexe
contenait au moins trois arcs pancycliques et il a caractérisé les tournois ayant exactement
trois arcs pancycliques. Tous ces tournois ne sont pas 2-fortement connexes. Dans ce
rapport, nous étudions le nombre minimum pi(n) d’arcs pancycliques dans un tournoi k-
fortement connexe. Nous conjecturons que (pour k > 2), il existe une constante ay, telle
que fr(n) > arn. Nous prouvons d’abord que tout tournoi 2-fortement connexe posséde un
circuit hamiltonien contenant au moins cing arcs pancycliques. Nous en déduisons ensuite
que pour k > 2, pr(n) > 2k + 3. Enfin, nous caractérisons les tournois ayant exactement
quatre arcs pancycliques et ceux ayant exactement cing arcs pancycliques.

Mots-clés : pancyclique, tournoi, forte connexité
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1 Introduction

A tournament is an orientation of the arcs of a complete graph. Paths and cycles are always
directed. A [-cycle is a cycle of length [.

An arc or a vertex is pancyclic in a digraph D if, for every 3 <1 < |D|, it is contained in
an [-cycle.

A tournament is strong (or strongly connected) if for any two vertices z and y there exists
a path beginning in z and terminating at y. A nonstrong tournament is said to be reducible.
A tournament is k-strong, if T —Y is strong for any set Y of k — 1 vertices. A tournament
is (= k)-strong or exactly k-strong, if it is k-strong and not (k + 1)-strong.

To contain a pancyclic arc or vertex, a tournament must contain a hamiltonian cycle.
Therefore, it must be strong according to the well known theorem of Camion [2]: A tourna-
ment has a hamiltonian cycle if and only if it is strong. Moon [3] gave an alternative proof
of Camion’s theorem by proving that every vertex of a strong tournament is pancyclic.

Analogously, one may wonder whether there are pancyclic arcs in tournament and how
many. Moon [4] showed that every strong tournament contains at least three pancyclic arcs.
Actually, he proved a somewhat stronger result : indeed, instead of considering the number
p(T) of pancyclic arcs in the tournament T', he proved that hA(T") the maximum number of
pancyclic arcs contained in some hamiltonian cycle of 7" is at least 3.

Theorem 1 (Moon, [4]) Let T be a strong tournament with n > 3 vertices.
hT)>3
with equality holding only if T € Ps.

A tournament is in P3 if there is a vertex v such that T — v is the transitive tournament
TTt1,t2,...,tm] ((ti,t;) is an arc if and only if ¢ < j), and an integers 1 < 4; < m such
that v — t; if and only if 1 < 5 < 4.

Let px(n) be minimum number pg(n) of pancyclic arcs in a k-strong tournament of order
n and let hg(n) := min{h(T); T k — strong of order n}.

Because the tournaments of P; are (= 1)-strong, we have p;(n) = hy(n) = 3 and if £ > 2,
pr(n) > hi(n) > 4. However we consider that this lower bound 4 is not tight.

In this paper, we show Section 3 sufficient conditions for an arc to be pancyclic in
a tournament. Using these conditions, we give an easy alternative proof of Theorem 1.
Moreover our method allow us to go further. In Section 4, we prove that for k > 2, hy(n) > 5
and then deduce that p,(n) > 2k + 3. Finally, we characterize the tournaments with exactly
four pancyclic arcs and those with exactly five pancyclic arcs.

However, our lower bound for h; and p; seems to be still far from the exact value. We
conjecture that for k > 2, px(n) tends linearly to infinity :

Conjecture 1 For k > 2, there exists a constant ay > 0 such that pr(n) > agn.

RR n® 4378



4 F. Havet

We cannot expect to have more pancyclic arcs since there are k-strong tournaments
having less than 2kn pancyclic arcs.

Proposition 1 pi(n) < 2kn — 2k* — k

Proof. Let T, be the k-strong tournament obtained from the rotative tournament on 2k +1
vertices by blowing up a vertex with a transitive tournament T'T of order n — 2k. Every arc
in T'T is not pancyclic in T since it is contained in no 3-cycle. Thus (n — 2k)(n — 2k —1)/2
arcs are not pancyclic. [ |

Proposition 2
hi(n) < 3k

Proof. If n < 3k, we have trivially the answer. Suppose now that n» > 3k. Consider
the k-strong tournament T, obtained from two T7y, A and B, and one TT, o, C such
that A - B — C — A. It is easy to see that every arc contained in one of the three
subtournaments A, B and C' is not pancyclic because it is contained in no 3-cycle. It follows
that h(T,) < 3k. [ |

The bound 3k is not tight because of the 2-strong tournaments of order 2k +1 < n < 3k.
However, we think that if n is large enough, the above example are extremal.

Conjecture 2 For n sufficientlylarge , hy(n) = 3k.

Alspach [1] showed that every arc of a regular tournament is pancyclic. This implies
that hr(2k + 1) = 2k + 1. In order to avoid the exception of small order in Conjecture 2, it
would make sense to first try to prove that hy(n) > 2k + 1.

2 Definition and preliminaries

Let T be a tournament. Let x and y be two vertices of T. We write z — y if (z,y) is an
arc of T'. Likewise, let X and Y be two subdigraphs of . We write X — Y if z — y for all
pairs (z,y) € V(X) x V(Y).

Let A;, Ay, ..., A be a family of subdigraphs of T. We denote by T'[A;, As, ..., Ax] the
subtournament induced by T on the set of vertices U V(4;) and by T — [A;, A, . .., Ak]

1<i<k
the subtournament induced by T on the set of vertices V(T')\ U V(4;).
1<i<k

A(X,Y) denotes the set of arc (z,y) with z € X and y € Y. AT(X) is the set of arcs
outgoing from X, that is A(X,T — X) and A~ (X) is the set of arcs ingoing into X, that is
A(T — X, X).

INRIA



Pancyclic arcs and connectivity in tournaments 5

The dual of a digraph D is the digraph —D on the same set of vertices such that z — y
is an arc of —D if and only if y — = is an arc of D.

An (z,y)-path is a path that begins in x and terminates at y.
One can easily show the following result (whose proof is left to the reader) that allows
to extend an (z,y) path to a longer one under condition.

Proposition 3 Let P = (v1,v2,...,0m) be a path in a tournament T and x a verter of
T - P.

If there exist 1 <14 < j < m such that v; — 2 — v;, then in T there is a path with m +1
vertices starting in v1 and ending in V.

A non-strong tournament 7" is said to be reducible. It admits a reduction into two
subtournaments 77 and T3 such that V(T1) UV (T,) = V(T') and T1 — T»; in this case, we
write T' = T1 — TQ.

A (strong) component of T is a strong subtournament of 7' which is maximal by inclusion.
Let T1,T5, ..., Ty, be the components of T. Then (V(T}),V(Tz),...,V(Ty)) is a partition
of V(T) and without loss of generality, we may suppose that 7; — T; whenever i < j. In
this case we say that T} — Ty — --- — Ty, is the decomposition of T. The component T}
(resp. T,) is called the outsection (resp. insection) of T', denoted by out(T') (resp. In(T))
and its vertices are called the outgenerators of T (resp. ingenerators of T.

Proposition 4 In o tournament, a vertex is the beginning of a hamiltonian path if and only
if it is an outgenerator.

Proof. Let T be a tournament. Then T' = Out(T) — T — Out(T) (with T — Out(T') empty
when T is strong). T'[Out(T")] is strong, and thus by Camion’s theorem admits a hamiltonian
cycle C. Then every outgenerator v is the origin of a hamiltonian path @ of T[Out(T)].
And T — Out(T') has a hamiltonian path P. So (P, Q) is hamiltonian path of T' with origin
V. |

Proposition 5 Let T be a reducible tournament of order n. Let u be an ingenerator and t
an outgenerator of T. For any 1 <1 <n —1, there is a (t,u)-path of length I.

Proof. Let T} — T3 be a reduction of T" and for ¢ = 1, 2, let n; be the order of T;. Clearly,
t is an ingenerator of T5 and u an outgenerator of T7. Therefore, by Proposition 4, ¢ is the
end of a hamiltonian path (t,, 1,tn, 2,-.-,t1,%) of Ty and u is the origin of a hamiltonian
path (u,u1,...,Un;_2,%n, 1) Of T1. Now, for any 1 <1 <n—1, pick 0 <[y <m; —1 and
0 <ly <mo—1suchthat Iy + 1y =1—1. Then (u,u1,...,uy,t,,ti,—1,...,t) is a path of
length I. |

A reductor of a tournament is a smallest subtournament X such that T'— X is reducible.
If T is (= k)-strong then a reductor has k vertices.

Proposition 6 Let X be a reductor of a tournament T. FEvery element of X dominates an
outgenerator of T — X and is dominated by an ingenerator of T — X.

RR n° 4378



6 F. Havet

Proof. Let z be an element of X. Let Y be the set of vertices that are not outgenerator of
T-X. If Out(T—X) — z, then T—[X \ z] is reducible with reduction Out(T—X) — T[Y, z].
This contradicts that X is a reductor.

Analogously, we prove that x is dominated by an ingenerator of T — X. |

Proposition 7 Let x and y be two vertices of a a reductor X of a 2-tournament T. If
in(T —X) > 3, there are two distinct vertices z, and z, of In(T —X) such that z, — x and
Zy = Y.

Proof. Suppose that two such vertices do not exist, then by Proposition 6, there is a vertex
u € In(T — X) such that u — {z,y} and In(T — X)\ v < {z,y}. Then X \ {z,y} U {u} is
a reductor of T', which is a contradiction. ]

3 Lower bounds for p(7) and h(T)

3.1 Sufficient conditions for an arc to be pancyclic

Lemma 1 Let X be a subtournament such that T — X is reducible and every vertexr of X
dominates an outgenerator of T — X. Let v be an outgenerator of X and u an ingenerator
of T — X. If u — v, then the arc (u,v) is pancyclic.

Proof. By Proposition 4, v = vg is the origin of a hamiltonian path (vg,v1, ...,k 2,V 1)
of T[X]. For 0 < i < k —1, let ¢; be an outgenerator of T — X dominated by v;. For
3<li<n,take 0 <k'"<k—1land1<[!<n-—k-—1suchthat ¥ +1+ 2 = 1. Then by
Proposition 5, in T'— X, there is (tx,u) path Q of length . Thus (vo, v1,...,v,Q,v0) is &
cycle of length [ going through (u,v) = (u,vp)- [ |

Corollary 1 Let X be the reductor of a tournament T. Let v be an outgenerator of X and
u an ingenerator of T — X . If w — v, then the arc (u,v) is pancyclic.

Corollary 2 Let T be a strong tournament.
p(T) 2 WT) =2

Proof. Let X be a reductor of T'. Let P be a hamiltonian path of X with beginning v and
end w. Clearly, v is an outgenerator of X and w is an ingenerator of X. Then by Corollary 1
(and its dual), (u,v) and (w,t) are pancyclic.

And by Proposition 5, there is a (¢, u)-path @ that is hamiltonian in T— X, thus (P, @, v)
is a hamiltonian cycle containing (u,v) and (w,t). |

Let T be a strong tournament T with reductor X. Let X3 — X5 — --- — X; be a
decompositon of X and 7} — T» — --- — T, be a decomposition of T'— X.

In the remaining of this section, we examine the number of pancyclic arcs in the different
parts of T'.

INRIA
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Lemma 2 For 1 <1 </, if an arc is pancyclic in X;, then it is also pancyclic in T.

Proof. Let e be a pancyclic arc in one of the X;. Then e is contained in a 3-cycle. It is also
contained in a hamiltonian cycle and then a hamiltonian path of X;. This hamiltonian path
may be extended to a hamiltonian path (vg,v1,...,vk—1) of X using hamiltonian paths of
the X, for i’ # 4. Let j be the index such that e = (v;,vj41). Let 4 <1 < n. Choose
0<1 €£7,0<lhb<k—j—2and1<Il3<n—k—1suchthatly +Il;+1I3+3 =1 By
Proposition 6, there is an ingenerator u of 7' — X dominating v;_;, and an outgenerator ¢
of T — X dominated by v;4141,. Then by Proposition 5, in T'— X there is a (¢, u)-path of
length I3. Hence (vj_i,,Vj—1;41, -+ Vj41+41,, Py vj—1, ) is an l-cycle containing e. [ |

Lemma 3 Suppose that T — X is the transitive tournament TT (t1,t2,...,tm)-
For every 1 <i <m — 1, the arc (t;,tiy1) is pancyclic if and only if it is contained in a
3-cycle.

Proof. By Proposition 6, X — t; and t,,, — X. Let (vp,v1, ..., Vk_2,Vk_1) be a hamiltonian
path of X.

Suppose first that 1 = 1. Let 4 < <mn. Take 0 < k' < k,and 1 <1I' < m — 2 such
that k' +1' + 3 = I. By Proposition 5, there is a (t2, tm )-path P of length I in T'[ta, ..., tm]-
Then (t1, P, vg,v1,---,Vk,t1) is a cycle of length [. Thus if (¢1,%2) is contained in a 3-cycle
then it is pancyclic.

By duality, we have the result if 1 = m — 1.

Suppose now that 1 < i < m — 1. Let v be the vertex such that (¢;,t;11,v,t;) is a
3-cycle. Necessarily, v is in X. Then (¢;,t;y1,v,t1,%;) is a 4-cycle. Let 5 < [ < n. The
arc (t;,t;+1) is contained in a cycle of length . Indeed, take 0 < k' < k, 0 < l; < i and
0 <ly < m —i such that k' +I; + ls + 3 = I. By Proposition 5, there is a (t1,t;)-path P,
of length Iy in T[t,...,¢t], and a (t;11,tm)-path Py of length Iy in T[t;41,...,tm]. Then
(ti, Ps,vg,v1,-..,vp, Py) is an I-cycle containing (¢;,%;11). Thus (;,%;41) is pancyclic. W

Lemma 4 For 1 <i<m, if |T;| > 4, then every T;-pancyclic arc is pancyclic in T

Proof. Let (vg,v1,---,Vk_2,Vk_1) be a hamiltonian path of X.
Let (a1,a9) be a pancyclic arc in T;. It is contained in a hamiltonian cycle of T3, C; =
(al, A2y . v .y ani,al).

Let us prove that (ai,as) is contained in a cycle of length [ for all 5 < [ < n. Let
Sy =T[T,T2,...,Ti1,a1] and Sy = T — [X, S1]. Clearly, a4 is an ingenerator of S; and
as an outgenerator of Sa. There exists three integers 1 < I3 < |S1|—1,1 <13 <[5 -1
and 0 < k' < k — 1 such that Iy + l» + k' =1 — 3. By Proposition 6, there is an ingenerator
ug of T'— X and then also of Sy which dominates vy and an outgenerator ty of S; which
is dominated by vi. By Proposition 5, there is a (¢x,a1)-path P; of length /1 in S; and a
(a2, up)-path P, of length Iy in Sy. Then (Py, P2, vg,v1, ...V, trr) is the desired I-cycle.

And because it is pancyclic in T}, (a1, az) is contained in an I-cycle, for 3 <[ <n;. N

Lemma 5 For any 1 < i <m, if T; is a 3-cycle, then two arcs of T; are pancyclic in T'.

RR n® 4378



8 F. Havet

Proof. Let (vo,v1,-..,Vk—2,vk—1) be a hamiltonian path of X. The component T; is the
3-cycle (ay,as,as,a)-

In the same way as in the proof of Lemma 4 the arc (a1,a2), is contained in cycle of
length [ for all 5 <1 < n. Analogously, (az2,a3) and (a3, a;) are contained in cycle of length
[forall 5 <1 <n.

Hence, it suffice to prove that two arcs of T; is contained in a 4-cycle. Without loss
of generality, we may assume that {ai,as2} < vg or {a1,a2} — vg. If {a1,a2} « vg, then
(a1, az2,u9,v9,a1) and (az, ag, ug, v, az) are 4-cycles. If {a1, a2} — wvp, then (as, a1, v9,to,a3)
and (a1, az,v9,tp,a1) are 4-cycles. [ |

Lemma 6 Let C = (a1,a2,...,0n,,a1) be a hamiltonian cycle of Ty such that ay is domi-
nated by an ingenerator of X.
If (aj,a;41) is pancyclic in Th and 1 < j < nq — 2 then (a;,ai41) is pancyclic in T

Proof. By Ti-pancyclicity, (a;,a;4+1) is contained in a cycle of length [ for 3 <1< n4.

Let now [ be an integer of [nq + 1,n].

Let vx—1 be an ingenerator of X dominating a;. By Proposition 4, there exists a hamil-
tonian path (vg,v1, ..., Vk—2,vk—1) of T[X]. By Proposition 6, for every 0 < ¢ < k—1, there
is an ingenerator u; of T — X dominating v;.

Let 1<lh<n—k—j—1and 0 <k’ <k-—1suchthat k' +1; =1 —j — 2. Obviously,

a;+1 is an outgenerator of T = T — [X,a1,0a2,...,a;]. And ug_1_k is an ingenerator
of T'. Thus, by Proposition 5 there is an (a;+1,ur—1-4) path P of length l;. Hence
(P, Vk—1—k'yVk—1—k'y++sVk—1,01,02,... ,aj+1) is a cycle of length l. |

Lemma 7 There are at least h(Ty) — 1 pancyclic arcs in Ty.

Proof. Let C = (a1,a2,...,0n,,01) be a hamiltonian cycle of T} containing h(Ty) T3-
pancyclic arcs. Without loss of generality, we may suppose that a; is dominated by an
ingenerator v of X.

Since j; < n1 — 2, by Lemma 6, every pancyclic arc in P = (a1,as,...,an,-1) is also
pancyclic in T'. If P contains h(T}) — 1 Ti-pancyclic arcs, we have the result.

Hence we may assume that (an,—1,0n,) and (a,,,a1) are pancyclic in T7.

If v — an,, again by Lemma 6, the arc (an,,a;) is pancyclic in 7.

If v « an, then let us prove that es = (an, _1,an,) is pancyclic in T. By pancyclicity
in T}, ez is contained in a cycle of length [ for 3 <1 < mn;. And (a1,as,...,an,,v,a1) is an
(n1 + 1)-cycle containing es.

Let now [ be an integer of [n1 + 2, n].

By Proposition 4, there is a hamiltonian path such that (vg,v1,...,0k 2,vk_1) be a
hamiltonian path of X. By Proposition 6, for every 0 < i < k — 1, there is an ingenerator
u; of T — X dominating v;.

Let 1<li<m—k—-ni—1and 0 <k’ <k—1suchthat k' +1; =1—n; —1. Obviously,
an, is an outgenerator of 7' =T — [X, Out(X) \ an,]. And up_1_s is an ingenerator of T".
Thus, by Proposition 5 there is a path P of length [; with start a,,, and end u;_1_j. Hence
(P, Vg1 k', Vk—1_kty--sVk_1,01,02,--.,0n,) is a cycle of length [. |

INRIA
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3.2 The lower bounds
Using the above lemmas, we derive lower bounds for p(T') and h(T).

Definition 1 Let k be an integer and T a tournament. e(k,T) = 1 if |T| > k and 0
otherwise.

Theorem 2 If T — X is transitive then

1
p(T) > [A(In(T = X); Out(X))| + [AIn(X); Out(T = X))| + Y _p(X;)+1 (1)

j=1

Otherwise

i
p(T) > [AIW(T = X); Out(X))| + |A(In(X); Out(T — X)) + H_ p(X;)

Y {2603, T) + (T, — 2e(4, T}
3, Ty)(A(T}) = 1) + (3, To) (A(T) 1) @)

Proof. Since every outgenerator of T— X is dominated by an ingenerator of T— X, according
to Corrolary 1, every arc of A(In(T — X); Out(X)) is pancyclic. By duality, every arc of
A(In(X); Out(T — X)) is pancyclic. According to Lemma 2, there are at least 22:1 p(X;)
T-pancyclic arcs in X.

Suppose now that T — X is a transitive tournment. Then since vg — t; and vg — tp,
then there is an index i such that (¢;,¢;41,v0,%;) is a 3-cycle. So by Lemma 3, this arc is
pancyclic. So we obtain Equation 1.

To obtain Equation 2, let us now count the number of pancyclic arcs contained in each
T; such that |T;] > 3. If ¢ = 1 or « = m, by Lemma 7 (or its dual), h(T;) — 1 arc are
T-pancyclic.

If 1 < i < m, then, if T; is a 3-cycle then by Lemma 5, 2 arcs of T; are pancyclic in T
and if |T;| > 4, by Lemma 4, each T;-pancyclic arc is pancyclic in 7. |

Theorem 3 If T — X is transitive then

WT) >3+ i:e(s,xj). min{h(X;); | X;| - 1} 3)
otherwise i
WMT) > 2+ i €(3,X;). min{A(X;); | X;]| — 1} + mf €(3,T3). min{h(T}); | T3] — 1}
+€(;,:Tl’1)(h(T1) = 1)+ €3, To) (h(T) — 1:)2 (4)

RR n° 4378



10 F. Havet

Proof. For 1 < j <1, let P; be a hamiltonian path of X; defined as follows :
o If X; is reduced to a single vertex x; then P; = (z;).

o if | X;| < 3, let P; is obtained from a hamiltonian cycle of X; containing h(X;) X;-
pancyclic arcs by removing a non X;-pancyclic arc if h(X;) < |X;| or any arc if
h(X;) = |X;].

By Lemma 2, each P; contains €(3, X;). min{h(X}); |X;| — 1} T-pancyclic arcs. Let v be
the beginning of P; and w the end of P,.
Suppose first that T — X is the transitive tournament T7T (1, ta,...,ts). By Lemma 3,
there exists ¢ such that (¢;,t;11) is pancyclic and by Corollary 1, (w, 1) and (¢m,v) are pan-
cyclic. Thus, the hamiltonian cycle ((t1,t2, ..., tm, P1, Ps, ..., P, t1) contains 3+E§:1 €(3, X;). min{h(X,); | X;|—
1}.
Suppose now that T'— X is not transitive.
For 1 < i < m, let @; be a hamiltonian path of T; defined as follows :

e If T; is reduced to a single vertex t; then Q; = (¢;).

o If |T;| = 3, then Q; is a path formed by two arcs of T; that are pancyclic in 7. (Such
arcs exists according to Lemma 5.)

o If T3] < 4, let Q; is obtained from a hamiltonian cycle of T; containing h(7;) T;-
pancyclic arcs by removing a non T;-pancyclic arc if h(T;) < |T;| or any arc if h(T};) =
|T].

By Lemma 4, each @; contains €(3,T;). min{h(T;);|T;| — 1} T-pancyclic arcs.

Let Cy = (a1, as,.-.,an,,a1) be a hamiltonian path of T} containing h(T}) T1-pancyclic
arcs. Then set Q1 := ((a1, a2, -.,a,,). Analogously define @,,. By (the proof of) Lemma, 6
Q1 (resp. @.,) contains at least h(Ty) — 1 (resp. h(T},) — 1) pancyclic arcs in 7.

Then the hamiltonian cycle (w, @1, Q2, ..., tm,P1, P, ..., P) gives Equation 4. |

3.3 Tournaments with A(7T) =3

From the lower bounds, one can easily derive Theorem 1 :
Proof of Theorem 1 Let us prove the result by induction on the order n of T. If n = 3,
it is obviously true.

Suppose now that it is true for strong tournaments of order less than n. Let X be a
reductor of T'and Ty — Ty — --- — T, be a decomposition of 7' — X.

If T — X is transitive, Equation 3 yields the result and if it is not then Equation 4 gives

h(T) > 4.
Suppose now T is a tournament such that h(T) = 3. Let X be a reductor of T. By
Equation 4 then X and T — X are a transitive tournaments. Set X = TT[vo,v1, ... ,Vk_1]

and T — X = TT[ty,ta,--,tn—r]. By Corollary 1, (tn—k,vo) and (vk—1,t1) are pancyclic.
Therefore there is at most one pancyclic arc on the hamiltonian path of 7' — X. Thus by
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Pancyclic arcs and connectivity in tournaments 11

Lemma 3, there is an index ¢ such that X — ¢; if and only if j < 4. And (¢;,t:41) is
pancyclic.

Suppose that T is 2-strong. Then T — ¢; and T — t,_; are strong, so 2 < ¢ <
n —k — 2. By Lemma 1, (t,_r_1,v0) is pancyclic in T — ¢,  and (t,_x,v1) is pan-
cyclic in T — vg. Thus two arcs are T-pancyclic because they are contained in the n-
cycle C3 = (tn—k—1,V0,Vk—1,12,13, ..., tn—k—2,tn—k, V1, V2, .., Vk—2,t1,tn——1) if & > 3 or
CQ = (tn_3,’Uo,tl,tn_g,vl,tQ,t;;,.. .,tn_3) if kK =2. Analogously, (Uk_l,tQ) and (Uk_Q,tl)
are also T-pancyclic. Hence the cycle Cs or C3 contains four pancyclic arcs. This is a
contradiction.

Thus T is (= 1) — strong. Then by Lemma 3 it is in Pj. |

Note that in the proof of Theorem 1, we also show the following :

Proposition 8 Let X be a reductor of a strong tournament. There is at least one T-
pancyclic arc in T — X.

4 Number of pancyclic arcs in k-strong tournaments

Theorem 4 (Yao, Guo and Zhang, [5]) Every tournament contains a vertex x such that
every outgoing arc is pancyclic.

From this result, we derive lower bounds on the number of pancyclic arcs in a strong
tournament :

Lemma 8

R(T)+ 6T —1 (5)
h(T)+ 6T +6~ -3 (6)

=
3
VALY,

p(T)

Proof. By Theorem 4 and its dual, there is a vertex x such that every outgoing arc is
pancyclic and a vertex y such that every ingoing arc is pancyclic. Obviously, |AT(z) N
A~ (y)| £ 1. There are h(T') pancyclic arcs on a hamiltonian cycle. At most one of them is
in A*(X) and at most two of them are in A*(z)U A~ (y). Hence, p(T) > h(T)+d*(z)—1 >
h(T)+ 6% —1, and

p(T) = d™(z)+d (y) - [AT (@) N A7 (y)| + W(T) - 2 (7)
> df(z)+d (y)+MT) -3 8)
|

Lemma 9 Let X be the reductor of a 2-strong tournament. Suppose that X is the transitive
tournament TT (v, v1, .- ., Vk—1)-

For every 0 < j <k —2, the arc (vj,vj+1) is pancyclic if and only if it is contained in a
3-cycle.
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12 F. Havet

Proof. Let 0 < j < k—2and 4 <! < n. Let us prove that (v;,vj4+1) is contained
in an [-cycle. There exist 0 < /3 < j,0<lb <k—j7—2and 1 <3 <n — k such that
l1+12+4154+3 = I. By Propositon 6, there is an ingenerator v of T'— X dominating v;_;, and
an outegenerator ¢ of T'— X dominated by v;414,. And by Proposition 5, in T' — X, there
is an (t,u)-path P of length l3. Therefore, (P,v;j_i,,Vj_1;41,---,Vj+1+12,t) is the desired
l-cycle. [ |

Theorem 5 For every a 2-strong tournament T, h(T) > 5.

Proof. Let T be a 2-strong tournament such that A(T") = 4. Let X be a reductor of T and
Ty —» T3 — --- — T, be a decomposition of T'— X. By Equations 3 and 4, we may assume
that X is a transitive tournament, say 7T (v, v1,...,vx—1), and that at most one of the T;
is not reduced to a single vertex ;.

I) Suppose that for some 2 < i < m — 1, T; is not reduced to a single vertex.

Then by Equation 4, we may assume that T; is a 3-cycle (a,b,¢,a). By Lemma 10, for
1<j<i—-1, X —-tjandfori+1 <35 < m, X « t;. Without loss of general-
ity, we may assume that both ¢ and b dominate a vertex in X. Then by Lemma 10,
(ti—1,a) and (t;—1,b) are pancyclic and by (the proof of ) Lemma 5, the arcs (a,b) and
(¢,a) are pancyclic. If ¢ dominates a vertex in X then (b,¢) is pancyclic, and if ¢ is
dominated a vertex in X then (c,t;41) is pancyclic. In any case, the hamiltonian cycle
(t1,t2,- - ti_1,a,b,¢,t41, -« tm, V0,01, --,Vk_1,%1) contains five pancyclic arcs.

IT) Suppose that |T1| > 3.

By Equation 4, we may assume that h(T1) = 3. So T1 € P; according to Theorem 1.
Let w be the reductor of T; such that 77 — w is the transitive tournament.

If for some 2 < j < m, t; is dominated by a vertex of X, then by Lemma 10 (dual), there is
a pancyclic arc in the path (¢;,%¢;41,...,tm). Let P be a hamiltonian path of T} beginning at

an outneighbour of Vi, ;. The hamiltonian cycle C = (vk_1, P,ta, ..., ti 1,ti,titty- s tmy V0, V1, v, Vk—1)
contains five pancyclic arcs. Hence we may assume that X < t;, for 2 < j < m.
If there is a pancyclic arc in the path (vg,v1, ..., vk—1), the cycle C contains five pancyclic

arcs. So, by Lemma 9, we may assume that N (vx—1) € N (ve—2) C ... € N (vo). There
are two distinct vertices r; and 73 of 77 that are dominated by vg_1. Let Cy be a hamiltonian
cycle of Ty containing three T1-pancyclics arcs. Let 7 (resp. r1) be the vertex dominating
r1 (resp. r2) in C. Let P, (resp. P») be the subpaths of C; with beginning ry (resp. 72)
and end r; (resp. 77 ).
1) Suppose first that m > 3.
Let C’ be the cycle defined as follows:

—Ifk Z 3, then Cl = (Uo,vk_l,Pl,tm,Ul,Uz,. .. ,Uk_Q,PQ,tQ,t;;,. .. ,tm_l,’l]o);

— if k=2, then C' = (1}0,Pg,tm,vl,Pl,tQ,tQ,t;;,. ..,tm_l,vo).
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Pancyclic arcs and connectivity in tournaments 13

Since C contains at least three Th-pancyclic arcs, one of them, say e is contained in
Py, or P». So, by Lemma 6, e is pancyclic in T. Moreover C' contains the four arcs
(tm,v1), (tm—1,v0), (Vk—2,72) and (vig—1,71). By Lemma 1, these arcs are pancyclic in
respectively in T — [vg], T — [tm], T — [vk—1] and T'. Hence because they are contained
in C’, these four arcs are pancyclic. Thus C’ contains five pancyclic arcs.

2) Suppose now that m = 2. Then vy (and then every v;, 0 < j < k — 1) has an
inneighbour in 77 which dominates X. Without loss of generality we may suppose
that this inneighbour s, is between r; and r2 in Cj, that s2 the successor of s, along
C; dominates vg. Let @1 (resp. @2) be the path beginning in 7y (resp. s») and ending
in s; (resp. ry).

Set Cy = (vo,Q2,t2,v1,v2,...,Vk—1,Q1,v0). It is easy to check that (vg,s2) and
(t2,v1) and (vk—1,71) are pancyclic in T. If P; U P, contains two Tj-pancyclic arcs
then these two are also pancyclic in T by Lemma 6. So Cy contains five pancyclic arcs.

Hence we may assume that both (r; ,r1) and (s, , s2) are pancyclic. Let e be the third
Ty-pancyclic arc. Let z be an vertex of Q; such that v, — x and its successor 1 in
Q1 dominates vg. Such a vertex exists since v9g — r1 and s; — vp. The arc (z,2t) of
@1 is pancyclic. Indeed ...

Thus if e = (x,2%), so e € Q.

Three cases may arise:

— a) Suppose that w = so = r{ . Then T} — [s5,82] — S5, thus (s ,vg,71,8, ) is
a 3-cycle. For 4 <1 < ny+1, (s;,v9) is contained in the I-cycle obtained by
replacing the arc (s5 , s2) by (85 ,v9, $2) in the [ — 1-cycle. Now since vg — X —wp
and X — ry, by Proposition 3 (applied for every vertex of X — vy one after
another), (s3,v9) is contained in an l-cycle for n1 +2 <1 <n—1. And it is
contained in Cy. Hence, (s5 ,vg) is pancyclic and Cy contains five pancyclic arcs.

— b) Suppose that w = r1. Then 1 — T1 — Q2 and Q2 — 71. Then (s5 ,v9,71,55 )
is a 3-cycle. For 4 <1 < n; + 1, pick Q] a subpath of Q; ending in s; of length
1 < |Q1|—2 and Q) a subpath of @, beginning in s; of length Iy < |Q2| — 2 such
that I; + 13+ 4 =1, then (s5 ,vg, @%,71, Q%) is an I-cycle. Analogously to the end
of Case a), we obtain that (s, ,vg) is pancyclic and Cy contains five pancyclic
arcs.

— Suppose that w = s; = z*. Then 1 — w, so (s3,v0,71, 85 ) is a 3-cycle. And
T, — s is a transitive tournament with outgenerator sp and ingenerator z. Thus
for4 <1< m;+1,inT; — s5, there is an (s2, z)-path P of lenght | — 2. Hence,
(@, s5 ,v0, $2) is an l-cycle. Again, analogously to the end of Case a), we obtain
that (s3,v9) is pancyclic and Cy contains five pancyclic arcs.

I1T) Suppose now that T'— X is a transitive tournament.
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14 F. Havet

If vg — tr—g—1, then X' = T[t,_k,v1,02,...,0¢—1] is a reductor of T and T — X’ is not
a transitive. Indeed vy is dominated by some vertex ¢; and then (¢;,v,,t1,t;) is a 3-cycle.
So we have the result by one of the previous case.
Analosgously, we obtain the result if v;_5 « t3. Thus we may assume that vg < t,_x_1
and Vi—9 — t2.
By Lemma, 1, (t,—x—1,v0) is pancyclic in T — ¢, and (¢,—x,v1) is pancyclic in T' — vy.
Thus two arcs are T-pancyclic because they are contained in the n-cycle C3 = (tn—k—1,V0, Vk—1,t2,t3, -« -y bn—k—2, tn—k, ¥
if k >3 or Co = (tn—3,v0,t1,tn_2,v1,ta,t3,...,tn—3) if K = 2. Analogously, (vk_1,t2) and
(vk_2,t1) are also T-pancyclic.
Suppose that k& > 3, then the 4 pancyclic arcs (tn—k—1,v0), (tn—k,v1), (Vk—1,t2) and
(vk,Q, t1) are contained in the two n-cycles C3 and Cé = (tn—k—17 V0, Vk—1,t2,tn—k, V1,02, ..., Vk—2,t1,t3, 84, ..., tn—k—1 )
Therefore no arcs in {(¢;,t:41),2 <@ <n —k — 2} is T pancyclic. By Lemma 3, t; — vo for
2 <i<n—kand (t1,t2) is pancyclic, and vy—1 — t; for 1 <¢ <n—k—1and (tn—k—1,tn—x)
is pancyclic. Thus at least one of the arcs (v;,v;+1) is in a 3-cycle is pancyclic by Lemma 9.
Hence the cycle C' = (vg,v1,...,Vk—1,t1,t2,...,tn_k, Vo) contains five pancyclic arcs.
Thus we may assume that £k = 2. We may assume that there is no pancyclic arcs in
{(ti,tit1),2 < i < n — 4}, otherwise Cy contains five pancyclic arcs. Then by Lemma 3,
t; — vo for 2 < i <n—2and (t1,%2) is pancyclic, and vy — ¢; for 1 <i <n—3 and (t,—_3,t2)
is pancyclic. Hence (vg,v1) is in the 3-cycle (vg,v1,t2,vq), so by Lemma 9, it is pancyclic.
Hence the cycle C' = (vg,v1,t1,1t2,-..,tn_2,vg) contains five pancyclic arcs. [ |

This result is best possible since the regular tournament Ry on five vertices is 2-strong
and obviously satisfies h(Rs5) = 5.

It follows directly from Theorems 5 and Equation 6, that for £ > 2, every k-strong
tournament has at least 2k + 2 pancyclics arcs.

Corollary 3 Every k-strong tournament has at least 2k + 2 pancyclic arcs.
We now prove a slighty better result.
Theorem 6 FEvery k-strong (k > 2) tournament has at least 2k + 3 pancyclic arcs.

Proof. Let x and y be vertices such that the arcs of A*(z) U A= (y) are pancyclic. By
Equation 7, we have the result, if d*(z) > k+1ord (y) > k+1or At (z)N A" (y) = 0.
Thus we may assume that x — y, and d(z) = d~(y) = k.

Then X = N*(z) is a reductor of T' containing y. We have 2k — 1 pancyclic arcs in
A*(z)UA™ (y) and by Corollary 1, there is at least one pancyclic arc e, in A(X, Out(T—X)).

If X is not transitive, then according to Lemma 2, there are at least three pancyclic
arcs in X, with at most one of them in A~ (y). And by Proposition 8, there is at most one
pancyclic arc in T'— X . Tt follows that p(t) > 2k + 3. Hence we may assume that X is the
transitive tournament 7T (vg, V1, - - -, Vk—1)-

Let Ty - Ty — --- — T, be a decomposition of T'— X. By Lemmas 4, 5 and 6, at most
one of the T; is not reduced to the vertex ¢;.
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Pancyclic arcs and connectivity in tournaments 15

Suppose that for some 2 < ¢ < m — 1, T; is not reduced to a single vertex. If |T;| > 4
then by Lemma 4, there are at least three pancyclic arcs in T;. Thus p(t) > 2k + 3. Asssume
now that T; is a 3-cycle. Two arcs of T; are pancyclic by Lemma 5. Let ¢; be a vertex of
T;. By Lemma 10, if #; — vg, then (¢;_1,t;) is pancyclic and if ¢t; « v, then (¢;,t;41) is
pancyclic. Hence, p(T) > 2k + 3.

Suppose now that T; is not reduced to a single vertex. By Lemma 7, we have the result
if h(T1) > 4. So we may assume that 77 € P3. Also by Lemma 7, there are two pancyclic
arcs in Tj. According to Proposition 7 (dual), there are two distinct vertices wy and ws of
T1 such that vx_1 — wy and vi_2 — wy. Let C; be a hamiltonian cycle of T7.

e Suppose first that m > 3. If a vertex t; with 2 < i < m — 1 dominates an el-
ement of X then by Lemma 10 one of the arcs (t;,t;41) with ¢ < j < m —1
is pancyclic. Hence p(T) > 2k + 3. So we may assume that T — [T7,X] — X.
Let us prove that (vg—s,w2) is pancyclic : it is contained in the hamiltonian cycle
(P2, tm, Vk—1, P1,to,t3, ... ytm—1,V0, V1, - . . Vk—2,W2), where Py (resp. P») is the sub-
path along C of T; starting in wy (resp. ws) and ending in the predecessor of wa (resp.
wy). For3<1<n—-1,let0<k'<k—2,0<m'<m—2and 0 <y < ny—1such that
l1+k'+m'+3 = I. Thereis a path Q; of length [ starting in ws. Thus (vk_2,ws) is con-
tained in the l—cycle (Uk_z, QQ, tm_m/,tm_ml+1, ceey tm, Vi—2 — kl, Vek—1—k', - - - ,’Uk_g).

Hence T has at least 2k + 3 pancyclic arcs.

e Suppose now that m = 2. Since d (vo) < k—2, vy is dominated by at least one vertex
in T;. Hence there exists a vertex wy of 77 dominated by vy such that its predecessor
w, along C; dominates vy.

Because dj} (vk—1) < k —2, vp_1 dominates at least two vertices of T, so at least one,
say wy, distinct of wy.

Let us now prove that (v, wp) is pancyclic. For 3 <1< nq +1, let Qg be a path in Ty
starting at wq of length [ — 3. Then (vg, Qq, t2,vg) is an [-path. Let Q; (resp. @) be
the subpath of C starting at w, (resp. wg) and ending in w; (resp. the predecessor
of wy) along C;. Then for n; +2 <1< n, (Q1,v0,Q2,t2, Vny1 1,Vn 15+, Vp_1, W) iS
an [-path containing (v, wp)-

Hence T has at least 2k + 3 pancyclic arcs.

Suppose now that 7' — X is the transitive tournament TT(t1,ta,. .., tn k)
Let i be the smallest integer 4 > 1 such that vx_1 — ;.

e Suppose that igp = 2. Since T is 2-strong, vy is dominated by vertex ¢;, disticnt from
tn_k- By Lemma 1, (vg_1,t2) and (vi_2,t1) are respectively (T — #1)- and (T —vg_1)-
pancyclic, thus they are contained in I-cycle for any 3 < | < n—1. And they both are in
the following hamiltonian cycle : (Vi—1,t2,83, ..« Tig, V0, V1, -« Vk—2, b1, big 415 big 425 -« - bnks Vk—1)-
Thus they both are pancyclic in 7. Moreover, by Proposition 8, there is a T-pancyclic
arcin T — X. Hence, p(T') > 2k + 3.
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16 F. Havet

e Suppose now that ig > 2. Then X' = T[X — v_1,t] is a reductor of X. And by
Lemma 3, (t1,t2) is T-pancyclic.

The subtournament 7" = T'[t;,, tig+1, - - - tn—k,Vk—1] 1S & strong component of T' — X',
By Lemma, 7, there are h(T") — 1 T-pancyclic arcs in 7’. And at most one of them
is in A*(x). Thus, if h(T') > 4, we obtain p(T) > 2k + 3. So we may assume that
hT') = 3,80 T' € P3. Since T' — v_1 is transitive, (¢, x,vr_1) and (vg_1,t;,) are
T'-pancyclic. Let ey be the third T'-pancyclic arc. By Lemma, 6, e, is also T-pancyclic
because t,,_, = x dominates vg.

If vy is dominated by a vertex of 7' — [z, vi—1] then by Lemma 6, (vi_1, t;,) is pancyclic
in T and so p(T) > 2k + 3.

If vy dominates T' — [z, vg—1], it must have an ineighbour ¢;, with 2 < iy < 49 — 1.
Hence, by Proposition 10, there is a pancyclic arc (¢;,t;41) with 1 < i <49 — 2. So,
(T) > 2k + 3.

5 Tournaments with exactly four pancyclic arcs

We now prove a generalization of Lemma 3.

Lemma 10 Let T be a strong tournament, X a reductor of T and Ty — Ty — - — T}, be
a decomposition of T — X.

i) For 1 <i <m —1, if there exist t; € T; and t;41 € Tit1 such that (t;,tiy1) is in a
3-cycle then (t;,ti+1) is pancyclic.

@) If m > 3 and Ty = {t1} and there is a vertex to € T» such that (t1,t2) is in a 3-cycle
then (t1,t2) is pancyclic.

Proof. Let (vg,v1,...,vk—1) be a hamiltonian path of X and for 1 < i <m, set n;, = |T;|.

i) Let v be the vertex of X such that (¢;,¢;41,v,%;) is a 3-cycle. Then v belongs to X and
then by Proposition 6, dominates a vertex ¢ € Ty. Then (t;,t,41,v,t,t;) is a 4-cycle. Let ¢,
be an element of T} that is dominated by v;_; and t,, be an element of T}, dominating vy.
Let 5 <1 < n. The arc (t;,t;41) is contained in a cycle of length . Indeed, take 0 < k' < k,
0<h <Y ynjand 0<ly <) 7.  n;such that k' + 11 + I + 3 = . By Proposition 5,
there is a (t1,t;)-path Py of length I; in T'[T1,...,T;], and a (t;41, tm)-path P, of length Io
in T[T;41,...,Tm]. Then (t;, Ps,vo,v1,...,V0k, P1) is an I-cycle containing (;,t;11). Hence
(ti,tit1) is pancyclic.

ii) Let 4 <1 < n. Let us prove that (¢1,t2) is contained in an I-cycle. By Proposition 6,
Vg—1 — t1. Let t,,, be an element of T,,, dominating vg. Since m > 3, T — [ X, t;] is reducible
and t9 is one of its outgenerators and t,,, one of its ingenerators. Therefore, by Proposition 5,
there is a (t1,t,)-path P of length [ — 3 in T' — [X,#;]. Then (P,vg,v1,...,Vk—1,t1,t2) is
the desired I-cycle. [ |
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Pancyclic arcs and connectivity in tournaments 17

Definition 2 A tournament is in P4 if there is a vertex v such that T — v is the transitive
tournament TT'[t1,to,...,t,] and three integers 1 < 4; < i3 < i3 < m such that v — ¢; if
and only if 1 < 7 <47 or is < 7 < i3.

Theorem 7 A tournament has exactly 4 pancyclic arcs if and only if it is in Py.

Proof. It is easy to check that every tournament of P, has exactly four pancyclic arcs.
Let T be a tournament with exactly 4 pancyclic arcs. By Corollary 3, T is (= 1)-strong.
Let {v} be a reductor of X and Ty — Ty — --- — T, be a decomposition of T —v. By
Equation 2, at most one of the T'— i, 1 < 4 < m is not reduced to a single vertex.
Let us prove that there exists a decomposition such that each T; is reduced to a single
vertex.

1. If T — v is a transitive tournament, then by Lemma 3, T is in Py.

2. Suppose that there exist 1 < i < m, such that T,, is not reduced to a vertex. By
Corollary 1, (t,m,v) and (v, 1) are pancyclic. By Equation 2, then |T;| =3. If T; — v
or v — T; then the three arcs of T; are pancyclic, then T has 5 pancyclic arcs. This
is a contradiction. Then there is a vertex t; € T; such that t; — v. Thus there is an
arc (tj,t;41) with 1 < j < 4 such that (v,t;,t;41,v) is a 3-cycle. So by Lemma 10,
(t;,t;41) is pancyclic. Again T has 5 pancyclic arcs which is a contradiction.

3. Suppose that T, is not reduced to a vertex. By Equation 2, v has a unique inneighbour
win Ty,. Set T; = {t;} for 1 <i < m—1. By Corollary 1, (u,v) and (v, ¢;) are pancyclic
and by Lemma 6 dual, there are two pancyclics arcs in T,,. Therefore, there is no other
pancyclic arcs in T'. Thus according to Lemma 10, v — {¢;,1 < i < m — 1}. Then
w is a reductor. And there are 3 pancyclic arcs which are not in 7, — u. Then by
Lemmas 4, 5 and 7, T — u is a transitive tournament. So we have the result by Case
1.

6 Tournaments with exactly five pancyclic arcs

Definition 3 A tournament is in P5 if there is a vertex v such that T — v is the transitive
tournament TT[tq,ta,...,tm] and three integers 1 < 41 < iy < i3 < iy < 45 < m such that
v—t;ifandonlyif 1 < j <id; orip <j<igoriy <j<is.

The tournament Q(n) (n > 5) is the tournament contructed from the transitive tourna-
ment TT,,_4 = TT(t1,ta,...tn—a) and four vertices a, b, ¢ and v such that (a,b,c,a) is a
3-cycle, v = TT,,_4, TT,,_4 — {a,b,c}, {a,b} — v and ¢ « v.

Proposition 9
p(Q(5)) =5
Forn > 6, p(Q(n)) = 6.
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18 F. Havet

Proof. v is a reductor of 7. By Corollary 1, (a,v), (b,v) and (v, 1) are pancyclic. And By
Lemma 6, (a,b) and (c,a) are pancyclic. Thus p(Q(n)) > 5.

Now an arc in T'T,,_4 is not pancyclic in T" because it is contained in no 3-cycle ; (b,¢)
is not pancyclic because it is contained in no 4-cycle ; and (v,c) is not pancyclic because
it is contained in no I-cycle for [ > 5. For 1 < i < n — 4 the arc (¢;,z) with z € {a,b,c}
is not pancyclic because it is contained in no hamiltonian cycle. The arc (¢,—4,a) is not
pancyclic since it is contained in no hamiltonian cycle and (¢,—4, ¢) is not pancyclic since it
is contained in no 3-cycle

For 3 <1< n—2, the arc (t,_4,b) is contained in the I-cycle (tn_4,b,v,tn 11, tn_1).
For 5 <1 < n, the arc (t,_4,b) is contained in the I-cycle (tn_4,b,¢,a,v,tnp1 1y« tn_a).
Thus, if n > 6, p(Q(n)) = 6. It is easy to check that if n = 5, the arc (¢1,b) is contained in
no 4-cycle. Thus p(Q(5)) = 5. ]

Theorem 8 A tournament has exactly 5 pancyclic arcs if and only if it is in Py or is Q(5).

Proof. It is easy to check that every tournament of Ps U {Q(5)} has exactly five pancyclic
arcs.

Let T be a tournament with exactly 5 pancyclic arcs. By Corollary 3, T is (= 1)-strong.
By Equation 2, at most one of the T3, 1 < 4 < m is not reduced to a single vertex.

e If T — v is a transitive tournament. Then by Lemma 3, T is in Ps.

e Suppose that there exist 1 < ¢ < m, such that T;, is not reduced to a vertex. By
Corollary 1, (tm,,v) and (v, 1) are pancyclic. By directionnal duality, we may suppose
that there is a vertex t; € T; such that ¢;, — v. Then by Lemma 10, there is a
pancyclic arc in T'[t1, ta, . .. ,t;]. Thus, there are at most two pancyclic arc in T;. Then
by Lemma 4 and the proof of Lemma 5, T; is a 3-cycle containing 2 pancyclic arcs and
there is a vertex s; € T; dominated by v. Then by Lemma 10, there is a pancyclic arc
in T[si,tit1,---,tm]. So p(T) > 6 which is a contradiction.

e Suppose that T, is not reduced to a vertex.

Then 6t > 2. So by Equation 5, h(T) < 4 thus by Theorem 1, T,, € P3. Let w be
a reductor of T}, such that T, — w is the transitive tournament TT'[ay,. .., ap]. Let ¢
be the index such that w — a; and w «— a;41.

v — T, \ {as, w,a,}, otherwise by Lemma 6, A(T") > 5 which is a contradiction. Also
v — T — [v,T,] oterwise by Lemma 10, there is a pancyclic arc in {(¢;,¢;41),1 <j <
m — 2}.

By Equation 2, hz. (v) < 2.

If hy (v) = 1, then let u be the inneighbour of v in T},. The vertex u is a reductor.
And out(T — u) < out(T — v). Iterating the process, we find a reductor v’ such that
T — ' is transisitve or hy, (v') = 2. So we may assume that hy, (v) = 2.
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— Suppose that Ni, (v) = {a;,w}. If i # 1, then by Lemma 6 dual, the three arcs
(w,a1), (ap, w) and (a;, a;4+1) are pancyclic. So p(T") > 6 which is a contradiction.
Thus ¢ = 1. It is easy to see that (a1,a2) is contained in every cycle of length [,
for 5 <1 < n. It follows that |T;,] = 3 Then T = Q(n) and by Proposition 9,
T =Q(5).

— If Ni. (v) = {w,ap}, then by Lemma 6 dual, (ap,w) and (a;, a;11) are pancyclic.
It is easy to see that (w, ay) is contained in every cycle of length [, for 5 <[ < n.
And because (w, a1) is pancyclic in Ty, it follows that |T,| = 3. Thus T = Q(n)
and by Proposition 9, T = Q(5).

— Suppose that Nz (v) = {a;,ap}. If i # p — 1, then by Lemma 6 dual, the
three arcs (w,a1), (ap, w) and (a;,a;41) are pancyclic. So p(T') > 6 which is a
contradiction. Thus ¢ = p — 1. It is easy to see that (a,,w) is contained in every
cycle of length [, for 5 <1 < n. And because (ap,w) is pancyclic in T, it follows
that |T),| = 3. So T' = Q(n) and by Proposition 9, T' = Q(5).
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