-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

A Finite First-Order Presentation of Set Theory
Stéphane Vaillant

» To cite this version:

Stéphane Vaillant. A Finite First-Order Presentation of Set Theory. RR-4344, INRIA. 2001. inria-

00072244
HAL Id: inria-00072244
https://hal.inria.fr /inria-00072244
Submitted on 23 May 2006
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50452525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072244
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4344--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Finite First-Order Presentation of Set Theory

Stéphane Vaillant

N° 4344

Décembre 2001

THEME 2

apport
derecherche







VAV 1 IN IX I A

ROCQUENCOURT

A Finite First-Order Presentation of Set Theory

Stéphane Vaillant

Théme 2 — Génie logiciel
et calcul symbolique
Projet Logical

Rapport de recherche n® 4344 — Décembre 2001 — 35 pages

Abstract: We present a first-order formalization of set theory which has a finite number of axioms.
Its syntax is similar to that often used in textbooks: it provides an encoding of the comprehension
symbol. We prove that this formalization is a “conservative extension” of Zermelo’s set theory. In fact
the proof is more general and applies to other variants of Zermelo’s set theory like ZF.
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substitution. This presentation of set theory is also described as a deduction modulo system and the
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Une présentation finie de la théorie des ensembles au premier
ordre

Résumé : Dans cet article on donne une présentation finie de la theorie des ensembles au premier
ordre dont la syntaxe est similaire & celle souvent rencontrée dans la litérature : elle fournit un codage
du symbole de compréhension. On prouve que cette présentation est une “extension conservative” de la
théorie de Zermelo. En fait la preuve est plus générale et s’applique & d’autres variantes de la théorie
de Zermelo comme ZF par exemple.

Cette formalisation est fondée sur un codage du symbole lieur qu’est le symbole de compréhension
dans un langage de substitution explicite.

Cette présentation est aussi décrite comme une théorie modulo, la preuve de conservativité se
faisant dans ce formalisme.

Mots-clés : théorie des ensembles, substitution explicite, déduction modulo, logique des prédicats
du premier ordre
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Introduction

Computer based theorem proving in set theory requires a finite presentation of its axioms. For
instance [BLM*86] used the von Neumann, Bernays and Godel axiomatization of set theory [Men87]
in the framework of first-order resolution. This axiomatization is expressed in first-order predicate
logic and has a finite number of axioms; the device used in this formalization is proposition as class
encoding using only few axioms for class construction.

Having a finite number of axioms is essential but having notations for set constructions is also
important. For instance, in textbooks Z (or ZF') is given with existential axioms and immediately
is introduced the comprehension symbol which is a notation for the construction defined by the
comprehension scheme. Extended propositions built with this notation are in fact abbreviations for
primitive propositions. A language where this symbol is built-in can be defined but it is not a first-
order language anymore. Such a presentation is given in [Dow95] and proved to be equivalent to
Zermelo’s theory. We call it Zj.

Reusing HOL-\o [DHK99], we give a finite first-order presentation of Zermelo’s set theory providing
an encoding of such a symbol. The principle is as follows: propositions of Z; are encoded as first-
order terms using de Bruijn indices to encode occurrences of bound variables and using an explicit
substitution. This gives an almost natural encoding as it preserves the structure of the propositions.
These terms are propositional contents and we need to express them as propositions; this is why a
predicate ¢ is introduced such that, for instance, e(“A A B”) is equivalent to e(“A”) Ae(“B”). So, on
one hand this device allows us to have a first-order formalization and on the other hand having the
ability to quantify over these terms allows us to express the comprehension scheme as one axiom.

Having given this presentation of set theory, we prove that it is what we can call a “conservative
extension” of Z,. The precise meaning is: there exists a translation P — P’ such that for any
proposition P of Zj, P is provable in Z; if and only if P’ is provable in the new presentation.

In order to do the proof we rely on two important points: the structure of propositions (with a
binder) is preserved by the translation and, since the theory associated with the encoding is decidable,
we express it as a congruence on propositions and we work in deduction modulo [DHK98].

This presentation in deduction modulo deserves its own interest, in particular for proof search,
since a cut-elimination theorem has been proved.

RR n° 4344



4 Stéphane Vaillant

Preliminaries

Let F be a set of function symbols with arity. Let X be an infinite set of variables. 7(F,X’) denotes
the first-order algebra generated from F and X.

Rewrite systems A rewrite system is given by a first-order term algebra 7 (F) and by a set R
composed of pairs of terms from 7T (F, X), each pair being written | — 7, where all variables of r have
at least one occurrence in [.

A rule I — r in which any variable has at most one occurrence in [ is said to be left linear.

Let (T(F),R) be a rewrite system, —x denotes the one-step rewrite relation generated from R.
We write —% for its transitive closure, —% for its reflexive transitive closure and % for its reflexive
symmetric transitive closure.

We call a rewrite relation — confluent if for all a,b, ¢, a =* bAa —* ¢ implies 3d b -* dAc —* d,
locally confluent if for all a,b,¢, a = bAa — ¢ implies 3d b -* d A ¢ =* d, and strongly confluent if
for all a,b,¢c, a - bAa — cimplies Ad b — d A ¢ — d.

Let t be a term, ¢ is said to be in normal form if there does not exist any term ¢’ such that ¢ — ¢'.
We call a rewrite relation — strongly normalizing if all derivations are finite, and weakly normalizing
if all terms have a normal form.

Two rewrite relations - and —s are said to commute if for all a,b,c, a =% bAa =% ¢
implies 3d b =% d A ¢ =% d, and to strongly commute if for all a,b,¢, a - bA a =g ¢ implies
Adb—=s5dAc =y d

First-order predicate logic Let X', F and P be the sets of variables, function symbols and pred-
icate symbols, 7 (P, F,X) denotes the language of propositions (formulas).

Let P be a proposition, F'V(P) denotes the set of its free variables and BV (P) the set of its bound
variables.

A valuation o is a function from X into 7 (F, X) such that o(z) = x except for a finite number
of variables. This function may be extended to a function from 7(F,X) into T (F,X) in two ways:
either as a grafting denoted {z; — t1;...;2, — t,} or as a substitution (with capture avoiding)
denoted {t1/z1;...;tn/2n}.

Let o be a valuation and {t;/z;} the associated substitution (again named o). Dom(c) denotes
the set of the variables z such that o(z) # z; Ran(o) denotes the set of the variables of the terms ¢;
(such that t; # x;) and Var(co) denotes Dom(c) U Ran(o).

Expressions are considered modulo a-conversion: we can always assume that when a substitution
o is applied to a term whose head symbol is a binder, the bound variable, x, does not occur in the
substitution (that is z does not belong to Var(o)).

A proposition P is said to be provable if the sequent F P is provable. Given a set A of sentences
(closed propositions), P is said to be provable under A if there exists a finite list A of propositions of
A such that the sequent A F P is provable.

If P is a proposition then VP denotes its universal closure.

If P is a proposition and ¢ a term then {t/z}P is said to be an instance of Vz P. If P, @ and R
are propositions such that () is an instance of P and R is an instance of () then R is an instance of P.

Let L and L’ be first order languages such that L is a subset of L’. Let T be a theory of L and
T' a theory of L. T' is said to be a conservative extension of T if for any proposition P of L, Fr P
holds if and only if -7+ P holds.

New definition Let L and L' be first order languages. Let F be a mapping from L to L'. Let T
be a theory of L and T" a theory of L'. T' is said to conservatively interpret T if for any proposition
P of L, Fr P if and only if -7 F(P).

INRIA



A Finite First-Order Presentation of Set Theory D

1 Zermelo’s set theory with a binder: 7,

In [Dow95|, two presentations of Zermelo’s set theory [Kri98, Sup72] are given. One with existence
axioms and the other, which we call Z;, with a notation for set constructed by comprehension: the
comprehension symbol which is a binder. These presentations are equivalent in the sense that the
later is a conservative extension of the former and the later can be encoded in the former (this proof
requiring the presence of the extensionality axiom).

Here we give these two presentations and, in the sequel, we shall show that the presentation given
in the following section conservatively interprets Zj.

Set theory with existence axioms

It is expressed in first-order predicate logic. The language is given by the following inductive definition:

propositions P = P=P|PAP|PVP|-P|Ll|VzP|3zP
[t=t|tet
terms t =
where z is a variable from an infinite set X of variables.

Substitution is defined as usual.
There are five axioms and two axiom schemes:

Pairing axiom) VzVydAVz(z € A& (z =2V 2z =y))

Powerset axiom) Vz3AVy(y € A & Vz(z € y = 2z € ))

Sum axiom) Vz3AVy(y € A & J2(y € 2 Az € x))

[ ]
~~ N N N

Comprehension scheme)

for any proposition P whose free variables are among z, 1 . .. Zp,
Vi ... Ve,Vy3AVz(z € A& (2 € y A P))

Extensionality axiom) VaVy((Vz(z €z & z € y)) = z = y)

(
(Equality axiom) Vo z = x
(

Equality scheme)

for any proposition P whose free variables are among z,x; . .. x,,
Yy .. Ve ,VaVy(z =y = ({z/2}P = {y/z}P))

Set theory with a binder: Z,

The language is given by the following inductive definition:

propositions P == P=P|PAP|PVP|—-P|Ll|VzP|3zP
|t=t|tet
terms t o= x| {t,t} | P@E)|UE) | {zet|P}

where z is a variable from an infinite set X' of variables.

As the term language uses a binder, the definition of substitution needs to be extended. Using the
fact that we consider terms/propositions modulo a-conversion, the substitution is defined by:

{t/z}y=t fz=y

{t/zsty=y fz#y

{t/z}({t1, t2}) = {{t/x}t, {t/x}t2}

{t/z}(Ot,) = O{t/x}t; where O is in {P,U}

{t/z}({y e t' | P}) = {y € ({t/=}t) | {t/=}P}

{t/2}(t10t2) = {t/z}t1 O{t/z}t2 where Ois in {=, €}

{t/z}L =1

{t/z}(-P) = =({t/z}P)

{t/z}(POQ) = {t/z}PO{t/x}Q where Ois in {=,A,V}

{t/2}(Oy P) = Oy ({t/z}P) where Ois in {V,3}

RR n° 4344



6 Stéphane Vaillant

There are five axioms and two axiom schemes:

Pairing axiom) VaVyVz(z € {z,y} & (z =2V 2z =y))

Sum axiom) VaVy(y € U(z) & Jz(y € 2 Az € x))

(

o (Powerset axiom) VzVy(y € P(z) & Vz(2 € y = 2 € z))
(
(

Axiom scheme of comprehension)

for any proposition P whose free variables are among 2,1 ... Zy,
Vzp... Ve ,VyVz(z € {z €y | P} & (z € y A P))

¢ (Extensionality axiom) VaVy((Vz(z €z © 2z € y)) => 2 = y)

(Equality axiom) Vo z =z

(Equality scheme)

for any proposition P whose free variables are among z, 1 ...z,
Yy ... Ve,VaVy(z =y = ({z/2}P = {y/2}P))

Proof theory, for instance sequent calculus, is the same as in first-order predicate logic with the
exception of the new definition of the substitution.

Remark: In usual presentations of Zermelo’s theory there is no equality scheme but only a finite

number of axioms expressing that equality is a congruence on terms and propositions. Nonetheless,
using either these axioms or the scheme gives equivalent presentations.

INRIA
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2 A finite first-order presentation of 7,

Here we present a theory in first-order predicate logic with a finite number of axioms. In the rest of
the paper, this theory will be proved to conservatively interpret Z;: for any proposition P of Z; there
exists a proposition P’ in this theory such that P is provable in Z; if and only if P’ is provable in this

theory.

We have adapted the work that has been done in [DHK99]| for higher order logic to Zj.
presentation can be seen as a syntactic transformation of Zj: first we get rid of the binder by cod-
ing bound variables by de Bruijn indices, then the language of term/proposition of Z; is seen as a
two-sorted first-order algebra. The substitution of Z; is then simulated by an explicit substitution.
Therefore we add another sort subst, axioms to deal with the explicit substitution and axioms to deal

with the encoding of the propositions of Zj.

We work in many-sorted first-order predicate logic with equality.

e Sorts: set, o, subst

e Function symbols:

rank
rank
rank
rank
rank
rank
rank
rank
sort
rank

(set,set)set
(set)set
(set)set
(set,0)set
(set,set)o

(0,0)0
(0,0)0
(0)o

o

0)o

sort
rank
rank
sort
rank
sort
rank
rank

set

(0,subst)o
(set,subst)set
subst
(set,subst) subst
subst
(subst) subst

(subst,subst) subst

e Predicate symbols: € of rank (0) and an equality symbol for each sort.

e Axioms of equality.

e Axioms for the explicit substitution:

RR n° 4344

VaVsVt (a[s])[t] = a[s o t]
VaVsVt (a[s])[t] = a[s o t]
VaVs 1[a-s] =a

Vs 1[fi(s)] =

VsVt 1[f1(s) o t] = 1[t]
VsViVu (sot) ou =so (tou)
VaVsVt (a-s)ot =a[t]- (sot)

YaVs 1o (a

-8) =35

Vs tofi(s) =sot

VsVt 1o
VsVt fi(s)

YaVsVt (s
Vsidos=3s
Vs soid=s

f(id) = id
Va a[id] = a
Va a[id] = a

(

fr
a

(N(s)ot) =so(Tot)
o fi(t)
VsVitVu f(s) o

) o (

=1fi(sot)
(t)ou) =fi(sot)
-t)=a-(sot)

ou
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Va¥y¥s {o,y}s] = {als], yls]}

VzVs P(z)[s] = P(z[s])

Vs U(z)[s] = U(z[s])

VaVZVs {z | Z}[s] = {=[s] | Z[fi(s)]}
VaVbVs (a = b)[s] = a[s] = b[s]
YaVvbVs (a € b)[s] = a[s] € b[s]
VXVYVs (X = Y)[s] = X[s] = Y[s]
VXVYVs (X AY)[s] = X[s] A Y[s]
VXVYVs (X VY)[s] = X[s] V Y[s]
VXVYVs (- X)[s] = ~(X[s])

VX Vs (VX)[s] = V(X[(s)])

vXVs (3X)[s] = 3(X(s)])

Vs L[s] =L

e Axioms for the encoding:
VXVY e(X AY) & (e(X)Ae
VXVY e(X VY) & (e(X) Ve(
VXVY e(X =2 Y) & (e(X) = e(Y))
VX g(-X) & —e(X)
e(l) el
VX e(VX) & Vye(X[y - id])
VX e(3X) © Fye(X[y - id])
e Axioms for set theory:
VaVyVz(e(z € {z,y}) & (e(z = z) Ve(z = 1))
VaVy(e(y € P(x)) © Vz(e(z € y) = e(z € 1))
VaVy(e(y € U(x)) & Fz(e(y € 2) Ne(z € x)))
VpVyVz(e(z € {y | p}) & (e(z € y) Ae(p[z - id])))
VaVy((Vz(e(z € ) © e(z €y))) = e(z = v))

Ve e(z = z)

VpVay(e(z = y) = (e(p[z - id]) = e(ply - 1d])))

As we shall prove in the following section the union of the theories dealing with the explicit
substitution and the encoding is decidable, therefore it is reasonable to avoid explicit use of these
axioms in proofs. This is why we give an intermediate presentation of set theory in deduction modulo.

INRIA



A Finite First-Order Presentation of Set Theory 9

3 A finite presentation of Z;, in deduction modulo: Z.

In this section we give a presentation of set theory, called Z.s, which is not first-order but which is
a theory modulo. A theory modulo can be seen as a theory expressed in a first-order language where
propositions are identified modulo a congruence.

Its language is the same as the one of the preceding presentation except that it has no equality
predicate and that there is an infinite number of indices. The substitution is defined as in many-sorted
first-order predicate logic.

The system is composed of two theories: one expressed as a decidable congruence (the terminating
and confluent rewrite system o< U L) which defines the explicit substitution and the encoding; and the
other is a finite set of axioms for set theory (it is the same as the one given in the preceding section).
The proof system is sequent calculus modulo this congruence.

In the next section we shall prove that Z.; conservatively interprets Z; and then state that the
finite presentation given in the preceding section is a conservative extension of Z.s;. In order to do
that we need to prove properties of the rewrite system of Z.s and cut-elimination in sequent calculus
modulo the congruence generated by this rewrite system.

We are now giving the formal definition of the system Zs.

The language, rewrite system and axioms of Z,

The system is split in two components. The first is an axiom free theory modulo, called €., which
is not specific to set theory except for it’s language. Then we add axioms for set theory and we obtain
the theory modulo called Z,.

The term language is given by the following ranked signature in many-sorted first-order predicate
logic with the three sorts set, o and subst.

{,} rank (set,set)set

P() rank (set)set n sort  set

Uui) rank (set)set _[] rank (o,subst)o
{1} rank (set,0)set _[] rank (set,subst)set
=, €& rank (setset)o id sort  subst

= rank (0,0)0 - rank (set,subst)subst
_A_, Vv_ rank (0,0)0 0 sort  subst

() rank (o) f1(_) rank (subst)subst

1 sort o o rank (subst,subst)subst
Y(), 3() rank (o)o

Remark: n ranges over positive natural numbers. This introduces an infinite number of symbols
but as remarked in [CHL96] concerning the definition of Aoy each index n+1 can be encoded as the
term 1[1"] in a language with the only index 1 such as was done in the preceding section.

There is only one predicate symbol: £ of rank (o).

The theory €. is expressed as a congruence defined by three sets of rewrite rules: o, €, and L.
o is the calculus of explicit substitution that comes from Aoy [CHL96], €, are the rules that express
the interaction of the substitution with the symbols of the term language we have defined and finally
L gives the meaning of terms of sort o.

RR n° 4344
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e Rules of o

1 @s)i] - alsod me (@-s)ot = alf]-(sot)
CCIC())SS’ (a[s][t] — a[sot] Sﬁ to(a-s) — s

vsl n[f] — o+l S Ttof(s) — sof

vs2 n[tos] — ntils] sz te(fi(s)or) = so(tor)
fve a-s] = a 11 (s)of(t) — fNsot)
fvll 1f(s)] — 1 }2 ﬁ(s)ﬁo (;T(t( o ’13 :: ﬂ(s(o t)t)o u
fvl2 1[ﬂ(s)ot] — 1[t] ‘e S§)o .G/' a-(so

1rvlc1 n+1[[T(T1(. (ﬂ — n{s] . llgi :‘1013 : z
rv n+1|}(s — n[so - ‘ '
W2 wilfs)ef - also(ton] T o o

ae (sot)ou — so(tou) e i o

Remark: since a substitution can be applied to terms of sort set and terms of sort o we have added
another substitution application symbol ([]) and the corresponding rewrite rules (clos’ and id’).

e Rules of €,

wolld - (sl gl GAVE 3 xdAivh
P)s] = Pas) (XVY)[s] - X[s]VY[s]
U)s] = Ula[s)) (<X)[s] - =(X[s])
(AN v DUt L B 2 o 6 I (1))
z=y)s] — =z[s]=y[s : :
o Let oc be oU €,
e Rules of £
eX=2Y) - eX)=eY)
e(XAY) — eX)neY)
e(XVY) — egX)ve®)
(=X) -+ —e(X)
5(J_) - 1
e(VX) — Vye(X[y-id]) withy ¢ FV(X)
£(3X) —  Jye(X[y-id]) withy ¢ FV(X)

The theory Z.s is the theory €.s plus the following set of axioms (it is the same as given in the
preceding section).

VaVyVz(e(z € {z,y}) & (e(z = z) Ve(z = y)))
Vavy(e(y € P(z)) & Va(e(z € y) = e(z € 1))
VaVy(e(y € U(z)) & Fz(e(y € 2) Ae(z € z)))
VpVyVz(e(z € {y | p}) & (e(z € y) Ae(plz - 1d])))
VaVy((Vz(e(z € 2) & e(z €y))) = e(z = y))
Vz e(z = z)

VpVay(e(z = y) = (e(plz - id]) = &(ply - 1d])))

INRIA



A Finite First-Order Presentation of Set Theory

Sequent calculus modulo: the proof system of €.5/7Z;

Sequent calculus modulo [DHK9S] is given in fig.1. This calculus is first-order sequent calculus in
which propositions are matched modulo a congruence.

In this paper the congruence for the proof system of Z.s is the congruence generated by the rewrite
system o¢c U L.

For example the sequent E(V(l 1)) F Vze(z = x) is provable using the rule aziom since the two
propositions are congruent: e(¥(1 = 1)) =, Vze((1 = 1)[z - id]) —;_ Vze(z = 2).

FJ Qh Q2 FA

W contr-1 if P = Ql Q2
I'FQ1,0Q2,A D
W contr-r if P = Ql = Q2
TrA eak-1 Tra eak
T.PFA TFPA st

I,PFA TFQA
TFA

maxlom lfPEQ

THAA T,BFA

=1 if C = (A= B)

T.CFA
%#—r ifC=(A= B)
F’FI?’C%/\-I itC=(AAB) FFAfAFCI:AFB’A/\-r if C = (AAB)
RA:%EfFAWIﬂCEMVE E%%%éWrHCEMVE
%%%%mlﬂCzwl %é%%¢rHCEﬂA
ml—l ifA=1
E%%%;gécuRQVJiHQEwmm
%%;E%(%P)iliHQEChP)mdm¢FV@A)
ggé%%(%p)wr it Q = (Va P) and @ ¢ FV(TA)
E%%%%?ﬂmaﬂ}rﬁQzﬁwm

Figure 1: Rules of sequent calculus modulo a congruence =.

RR n° 4344
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e Language:

terms a
substitutions s

z |0 | as
2o [1d [ 1] fi(s) | a-s|sos

where z; and x,; are elements of two infinite sets of variables of sort term and subst respectively.

¢ Rules:

clos (a[sD[t] — a[sot]

vsl n[tf] — n+1

vs2 n[tos] — nt+i[s]

fve 1la-s] — a

fvll 1) - 1

fvi2 1M(s)ot] — 1]t]

rve n+lfa-s] — nfs]

rvll n+1[fi(s)] — n[sot]

rvl2 n+i[ff(s)ot] — mn[so(Tot)]
ae (sot)ou — so(towu)
me (a-s)ot — aft]-(sot)
sc To(a-s) — s

sl1 tofi(s) — sof

s12 To(f(s)ot) — so(tot)

11 T(s)of(®) — M(sot)

12 fs)o(M(t)ou) — f(sot)ou
le MNs)o(a-t) — a-(sot)
idl idos — s

idr soid — s

lid ff(id) — id

id alid] — a

e Notations:
1
1" is defined by { 1,1_,_1 : 10 (") forn>1
nyoN . 1°(s = S
1" (s) is defined by { 4(s) = 4" (s)) forn >0

Figure 2: The oq-calculus.

3.1 Properties of the rewrite system o. U L

We are going to prove that the rewrite system oc U £ is strongly normalizing and confluent using the
fact that oc U L can be translated into an explicit reduction system.

3.1.1 Explicit reduction systems

Introduction The idea of explicit reduction systems (XRS) [Pag98] is to extend the notion of Aoy-
calculus [CHL96] to any term signature with binding symbols. This allows to encode a higher-order
rewrite system into a first-order one.

As an example the rule: t € {x € A | P} - t € AAN{t/z} P constitutes such a higher-order system.

Another example of XRS is the Aoy-calculus which can be seen as the substitution calculus oy
(fig-2) the signature of which is extended with symbols for application and abstraction, and to which
is added rules for the interaction of the explicit substitution with these symbols and a computational
rule for g-reduction.
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Crafting of an XRS There are two sorts: term and subst. A signature I' on the sort term is given.
The signature I' extended with the signature of the o-calculus is written I'y.
or is the set of rules composed of o4 and of a rule

flay, ... an)[s] =gy F(ar[fP(5)];- .- s an[P" (5)])

for every symbol f of T the arity of which is n; (p1,-..,p,) being n given natural numbers called the
binding arity of f. Binding arity indicates for each argument the binding height of the symbol for
each of its arguments.

Let R be a set of rules on the signature I'y. When the following conditions on R hold, the system
or U R is an XRS:

1. All the rules are left linear.
2. Both members of each rule have the sort term.

3. Each left member is a term of the algebra generated by T

In this paper we use R = ), but it may be used in future work to extend the congruence of €.
with rules like t € {A| P} — t € A A P[t - id].

Proposition 3.1 [Pag98] The relations —,, and —,,. are strongly normalizing and confluent.

3.1.2 Properties of the rewrite system o U L

Let’s consider the signature of €5 in which the sorts set and o are merged into one sort term and in
which the symbol [] has been removed. This signature is the signature of an XRS; let’s name it Ty,
with T being composed of the symbols: { , }, P( ), U(_ ), { | _}, =& =, A, Vv, 5V, 3, L.

Then to each symbol of I" we assign a binding arity. (), (0) or (0,0) according to the arity of the
symbol, with the following exceptions:

symbol binding arity

v (1)
3 (1)
{1y (0

This defines a rewrite relation —,,. which, according to prop. 3.1, is strongly normalizing and
confluent.

Let ¢ be the homomorphism from the term algebra of €., into the term algebra of I'y such that
each symbol is mapped onto itself except for [] that is mapped onto [].

Lemma 3.2 Let a and b be two terms of €5 of the same sort. 1) If ¢(a) = ¢(b) then a = b. 2) If
a —,. b then ¢(a) =, ¢(b). 3) If p(a) =, V' then there exists b such that a =, b and ¢(b) = V'.

Proof. (1) is done by a simple induction on a. (2) and (3) are done by case analysis on the head
rewrite step. O

Proposition 3.3 o¢ is confluent and strongly normalizing.

Proof. (1) o¢ is confluent. If a —;_ b and a —_ c then according to lemma 3.2.2 ¢(a) —; . #(b) and
#(a) =5 #(c). =5 is confluent (prop. 3.1) so there exists d’ such that ¢(b) = d' and ¢(c) = d'.
Using lemma 3.2.3, there exist di and dp such that b =} _ di, ¢ =5 _ dz and ¢(di) = d' = ¢(d2). We
then conclude using lemma 3.2.1: d; = ds.

(2) o¢ is strongly normalizing. Using lemma 3.2.2 we deduce that for any derivation a —,,
... =4 b there exists a derivation ¢(a) =4p ... =4 ¢(b) with the same length. We conclude using
the fact that —,. is strongly normalizing (prop. 3.1). O

Lemma 3.4 The rewrite system oc U L is strongly normalizing.

RR n° 4344



Stéphane Vaillant

Proof. We define a function f over propositions and terms of sort o.

f(A= B) = f(AAB) = f(AV B) = f(4) + f(B)
E)) f(Vz A) = f(Bz A) = f(A)

(e(t)) = f(2)
(avb)=flaAb)=f(a=b)= f(a)+ f(b)+1
(na) = f(Ya) = f(3a) = f(a) + 1
(=1

(a=0b) = €b)=0

(afs]) =

als]

~—

fla
f(a)

\\\x\\x

1. We show, for every proposition ¢ or term ¢ of sort o, that if ¢t —. ¢' then f(¢t) > f(¢') and if
t =4 t' then f(t) = f(t').

The proof is done by induction on ¢: we give only the case where ¢ is e(Va) and t — . ¢'. ¢ is
then Vz e(a[z - id]) and we check that f(t) = 1+ f(a) > f(a) = f(t')

2. Let’s assume we have an infinite ¢ U L-reduction sequence; since —,. is strongly normaliz-
ing (prop. 3.3) this sequence can’t contain an infinite o¢-reduction sequence and we construct
an infinite sequence of terms (¢;) for which ¢; —5c—c tit1. The sequence (f(t;)) is then strictly
decreasing due to (1).

O

Lemma 3.5 (Hindley-Rosen) If R and S are two confluent relations over the same set and are
commuting then RU S is confluent [Hin64][Bar84, p.64].

Lemma 3.6 The rewrite system L is strongly confluent.

Proof. Tt is an orthogonal combinatory rewrite system [KvOvR93]. O

Lemma 3.7 The rewrite system oc U L is confluent.

Proof. See [DHK99|. First we prove that the relations —, and —7_ are strongly commuting. The
proof is done by case analysis on the L-head rewrite step. We process only one case: S(Vt) -
Vre(t[r - id]) with z ¢ FV(¢) and e(Vt) —;_ e(Vt') with t —; _ ¢'. Since z ¢ FV (t), ¢ FV (') and
then we have that e(Vt') =, Voe(t'[z - id]). We also have that Va e(t[z - id]) —5e Yoe(t'[z - id]).
Now, we are able to give the proof of the lemma. —, is confluent (prop.3.3) and — is strongly
confluent; the relations =, and —7_ are commuting so according to Hindley-Rosen lemma their union
is confluent. |

3.2 Cut elimination in sequent calculus modulo o U L

We use the results of [DW99]: in this article the method used to show cut elimination in deduction
modulo a congruence (=) is to represent proofs as terms and to show termination of a generalized (-
reduction (I>) on these terms; the strong normalization proof is based on the technique of reducibility
candidates (Tait and Girard, [GLT89]).

By the mean of a pre-model to each proposition is associated a reducibility candidate. When the
congruence = is valid in the pre-model then proofs normalize and so intuitionistic natural deduction
(and intuitionistic sequent calculus) enjoys cut elimination.

Definition 3.8
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1. Proof terms are defined by:

Aaw | (m @)

(m,7') | fst(m) | snd(n)
i) | () | (6 m1 am fm)
(botelim )

Az | (mt)

(t,m) | (exelim 7 zax')

2. Proof reduction rules are:

(Aamy m3) D> [ma/a]my

fst(my,ma) > my

Snd(ﬂl,ﬂ'z) > 7o

(5 i(7‘l’1) QT ,871'3) > [71'1/(1]7'['2

(6 j(m) ams Brz) > [m1/Blms

Az t) > [t/z]m

(exelim (t,m) zams) > [t/z, m1 [a]ms
(6 T QT ﬂ71'3) > 7o

(6 T 0Ty ﬂ71'3) > 3

(exelim m zams) > o

3. SN is the set of strongly normalizing proofs.
4. A proof term is said to be neutral if it is a proof variable or an elimination.
5. A set R of proof terms is a reducibility candidate if the three following conditions hold:

(a) If T € R then m € SN.
(b) If m € R and n >* ' then 7' € R.
(¢) If w is neutral and if for every ©' such that = > «', 7' € R then w € R.

6. C is the set of reducibility candidates.

Definition 3.9 A pre-model is:

e for each sort s a set M.
e for each function symbol f of rank (sy,...,8,)s a function f from M, X ... x Mg, to M.

e for each predicate P of rank (s1,...,s,) a function P from Mg, x ... x M, toC.

Definition 3.10 Let A be a proposition and ¢ be a variable assignment. |A|, is defined by:

o |P(ty,...,tn)|s = P(lt1ls,-- -, |tnls)

¢ [A= Bly = =(|Als;|Bls) with
=(a,b) = {r € SN | 7 >* Aam = Vr'€a [’ /a]m € b}

e [AABlg = A(|Alg,|Bly) with
Ala,b) = {m € SN | 7 >* (m1,72) = 71 € a AT € b}

e |AV Bly = V(|Als,|Bls) with
V(a,b) = {mr € SN | 7 >*i(m) = m € a or w >* j(my) = m € b}

o | L|g=8N
o Vs 54|¢ =Vos(@ — |Alg) with
Vewo(a) = {m € SN | 7 >* Aomy = Vt:s VEEM, [t/z]m € a($ + <z, E>)}
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o [Low Alg =Ts0,6(¢" — |Aly) with
Jsz,6(a) ={mr € SN |IE € M, w>* (t,m1) = m1 € a(¢p + <z,E>)}

Definition 3.11 Let there be given a pre-model. A congruence = is valid in the pre-model if and
only if for any propositions A and B, A = B implies, for any variable assignment ¢, |Als = |B|4.

Theorem 3.12 Let there be given a pre-model. When = is valid in the pre-model then any proof in
deduction modulo = is strongly normalizing.

When the hypothesis of this theorem are verified, cut-elimination holds in intuitionistic natural
deduction modulo and in intuitionistic sequent calculus modulo. To prove cut-elimination in classical
sequent calculus modulo, we first have to define double negation of a proposition.

Definition 3.13

Double negation Light double negation
A’ = —-—A if A is atomic A" = A if A is atomic
(A= B) =--(4A"=> B') (A=B)'=A"=DB
(AAB) =-—(A"A B (AANB)'=A'"AB'
(AvB) =--(A'"VB) (AvB)'=A'"VB
l'===1 1"=1
(Vz A) = Vz —-—A (Vz A)' =Vz A’

(Fz A) =3z A’ (Fz A)' =3z A’

Theorem 3.14 [DW99] Let £ be a set of equations on terms and R a set of rewrite rules on propo-
sitions. Let R' be the light double negation of R: for each rulel — r of R, | — r" is a rule of
R'.

If the congruence =¢x: is valid in a pre-model then cut elimination holds in classical sequent
calculus modulo =¢R.

Application to €.,

Given L', the double negation of £, we give a pre-model in the system €., and we prove that the
congruence =, ¢ (i.e. €7 /) is valid in it. In particular, we have to relate the interpretations of

the symbols V and V, the first symbol binding a variable of sort set; this is almost trivial since the
meaning of terms of sort set is irrelevant.

Sorts are interpreted as the sets M = {0}, Mgupst = {0} and M, =C.
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The interpretation of symbols is given below:

{,_} =zy~0

P() z—0

Ui ) =0
{_1_} zy~—0
= z,y = SN
- z,y = SN
n 0

L T,8 T
L] z,8—0

id 0
e z,y =0
0 0
() s—0
o z,y—=0
=>_ =:(ab) = =>(5(5(a), 5(5(0))
A A, b) = A(S(5(a), 5(5(D)))
_V_ Vi(a,b) = V(5(3(a), S (5(b)))
I-oi-1
2() Siae (1)
v( ) \z’ cam {r € SN | m>* Az - m = Viset {t/z}m € 2(5(a))}
3() J:iam {r e SN | 7> (t,m) = m € 3(5(a)}
e( ) T

We then prove that for any propositions A and B, if A =,_ B then, for any assignment ¢,
|Als = |B|g. We proceed by case analysis on the rule used in the head rewrite step:

e It’s a rule of o¢; two cases are possible:

1. The rule rewrites a term of sort set or subst.

Since after rewriting the term has the same sort, the interpretation of the term is 0 before
and after.

2. The rule rewrites a term of sort o.
If it rewrites ¢[s1][s2] into ¢[s1 o s2] then, applying the definition, we check that |t[s1][s2]|e
and |t[s; o s2]|4 are equal to |t]4.

If this rule rewrites (V¢)[s] into Y(t[1(s)]) then we check that the interpretations of both
terms are equal to |t|s. The argument applies to all the other cases.

o It’s a rule of £'.

If the rule is e(X = Y) — =—e(X) = -—e(Y) then A is e(4; = As) and we have
le(Ar 2 As)ls = [A1 2 Aofp = 2 (| Ay, [42]p) = 2 (5(5(1 A1), =(5(142]4)))
with the last expression being equal to
|=—e(Ar) = ——e(42)]s -
The argument is the same for the rules dealing with A, V, -~ and 1.

If the rule is e(VX) — Vy ——e(X[y-id]) (with y ¢ FV(A’)) then A is e(VA') and B is
Vy —=—e(A'[y - id]). Then we have

[Bly = |Vy =—e(A'ly - id])l,
{m € SN | 7 >* N\y-m1 = Vi:set VEEM ey [t/y]m1 € |[7—e(A'[y - 1d])|¢4<y,E> }
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Moreover,
[m=e(A'ly - id])|pt+<y,m> = 2(5(A [y - 1d]lg+<y,E>))
(1A p+<y,5>))
= A(5(|4'g)) sincey ¢ FV(A')

I
1
1

Since M ¢; is not empty and FE is not used, we deduce

|Bls = {m €SN |np* A y-m = Vtset [t/y]m € 2(5(|A4"]4))}

This last expression is equal to |e(VA')|4.

Finally, if the rule is e(3X) — Jy ~—e(X[y - id]) (with y ¢ FV(A")) then A is e(34"), B is
Jy ——e(A'[y - id]) and we follow the same argument:

1Bl

= [Fy ~—e(A'ly - id])]s

= {mr €SN |IE € Myt " (t,m) = m € |[me(A'y - 1d]) g1 <y, B>}
{m € SN | np* (t,m) = m € 2(=(|A"]))}
le(34") |4

The hypotheses of theorem 3.14 hold, hence we can reformulate it for our framework:

Theorem 3.15 In classical sequent calculus modulo the congruence <+7_, . the cut rule is redundant.
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4 Z.s conservatively interprets Z,

To prove that Z.s conservatively interprets Z; we shall first use a translation from the language of Zj
into the language of €. (i.e. the language of Z.s) such that a proposition is provable in Z; if and
only if its translation is provable in €.5. The result does not depend on the particular axioms chosen
in the theories: in fact it gives a way to encode any theory expressed in the language of Z; into a
theory in €.5. The resulting theory has the same number of axioms as the source theory, therefore in
the case of the theory Z;, we obtain a theory in €., that has an infinite number of axioms. So a last
result we are going to prove is that, in €., the translation of each axiom scheme of Z; is equivalent
to a single axiom of Z,.

We recall that the notion of provability used in Z; is sequent calculus and in €., it is sequent
calculus modulo the congruence <7 _ ..

4.1 The translation: F

Definition 4.1 The function F (pre-cooking[DHKQ0]) takes a term t of Zy, a list of variables and
translates t to a term of €.

] ifz ¢l
F(z,1) { i if i is the first occurrence of x in the list [
F({a,b},1) = {F(a,0),F(b1)}
F(U(a),1) = U(F(a,l))
F(P(a),l) = PF(a,l))
F{zea|b},l) = {F(a,0)|F(b,z-1)}
F(a=b,1l) = F(a,l) = F(b,l)
F(a €b,l) = F(a,l) € F(b,I)
F(P=Q,l = F(PI) = FQ,l
F(PvQ,l = F(PI)VFWQ,I
F(PAQ,I) = F(P])AF(Q,I)
F(L,1) = 1

F(-P,1) = =F(P]I)

F(VzP,l) = VF(Pz-l)
F(3zP,l) = 3JF(P,z-1)

We shall write F(P) instead of F(P,[]). F(P) is called the F-translation of P.

Example: the proposition Va z = y of Zj is translated as the term V(1 = y[1]) of sort o.

Properties of F

The lemmas/corollaries 4.2, 4.3, 4.4 and 4.5 are proved in [DHKO00] in the case where F is a translation
between two term algebras with de Bruijn indices. In the present case it is a translation from an algebra
with named variables into an algebra with de Bruijn indices.

Lemma 4.2 Let t be a term or a proposition of Zy and Z,j,Z be lists of variables. If FV(t)Ng =0
then .
F(t,27%) <5, F(t, 28) 7 (117)]

Proof. By induction on ¢.

e tis{veal| P}

= {F(a,Zj%) | F(P,vZj%)}
R ] | F(P,vzz) 011 (117)]}  (by induction hypothesis)

{F(a, Z5) | F(P,oZE)}[ft* (117)]

= F({vea]| P}, Z8)17 (117

The argument is the same for the other function symbols and the logical connectors.
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t is a variable z; occurring in 2’ (z; is the ith last added variable in 2).
one AT @A) (since i < [2))
= F(z, 22) 73 (417

t is a variable y; such that y; ¢ Z and y; € §: impossible.

t is a variable z; such that z; ¢ Z7 and z; € Z.
F(x;, 277) o5, it o117

v R
e (@I
= F(;c,-,é’;c)[ﬁ

t is a variable v ¢ ZyZ.

)

]
ol

(O]

F(’U,g_‘_‘) — U[T‘2‘+|m+|f|

. U[T\a‘c‘l o T|5| ° ﬂ|5\ (T|Z7|)]
= [ ()

= Fl, 297117

Lemma 4.3 (F is a homomorphism of substitutions)
Let t be a term and p be a proposition or a term of Zy. Ifl is a list of variables all different from z

and if FV ()Nl = { then
F({t/z}p,l) &5, {F(t)/z}F(p,1)
Proof. By induction on p.

e pis {veal| P}
F({t/zH{v ea| P}
= F({ve{t/z}a] {t/z}P},])

= AF({t/z}a,]) | F({t/z}P,v])}

o {{F@)/z}F(a,l) | {F(t)/z}F(P,vl)} (by induction hypothesis)
=  AF(@®)/x}{F(a,]) | F(P,vl)}
= AF@®/«}F({vea|P}I)

The argument is the same for the other function symbols and the logical connectors.

e pis a variable y. When y ¢ [ and y = z, we have

F({t/z}x,l) = F(t,1)
and
{F(t)/z}F(e,l) = {F(t)/z}a[t] sincex ¢1
= Foi"]
FV(t)Nl =0 so we apply lemma 4.2 with # =[], # =[] and § = [, hence F(t,1) ¢%_ F(t)[t""].
When y ¢ I and y # =z it is obvious; so it is when y € [ and y # z. The case where y € [ and
y = z is impossible.

O

Lemma 4.4 (Substitution lemma) Let a be a term or a proposition of Zy, b be a term of Zy, n
and p be natural numbers such that n > 1 and 0 < p < n —1. Let ...2n_py1 be variables not
occurring in b.

F(a, T - - Tpn—p+1Tn—pTn—p—1--- .’L'l)[ﬂp(F(b, Tp—p—1--- .'L'l) . 1d)]
F{b/xn-p}a,Zn .. Tn_ps1Tn—p—1-.-21)
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Proof. By induction on a.

e ais {vet| P}

F{vet| Pl an... 1) (F(b,2n—p-1...21) - id)]
= AF(t,zn...21) | F(Pvzy ... 21) YW (F (b, Tp_p-1...21) - id)]
oo AFEtzn.. 1) [P (F(b, xp—p_1...21) - 1d)] |
F(Pvz,...o) [P (F(bzn p 1...71)-id)]}
(v not occurring in b, we apply the induction hypothesis:)
H:'e {F({b/.’L’n_p}t, Tn.--Tp—pt1Tpn—p—1--- .CE1) |
F({b/zp_p}P,vzy ... Tn_pt1Tp_p_1...%1)}
= F{b/ep_p}{vet|Plzp...0n_py1Tp_p_1...21)

The argument is the same for the other symbols.

e qis ,_p. When p is 0 the result is trivial so, we assume p > 1.
Fla,zy ... 21) [P (F (b, Zn—p-1...71) - id)] <5 F(bzn—p-1...71)[1"]
F{b/zn—p}a,n ... Tn—pt1Zn_p-1...21) = F(b,Zn ... Tn_pr1Tn_p_1...21)

By hypothesis none of the variables z,, ...z,_p4+1 occur in b, so, according to lemma 4.2, we
have

Fb,zp ... Tn-pt1Tn—p-1..-21) <—):;€ Fb,zp—p_1...21)[1*]
e ais x,_; with ¢ < p. Both sides are convertible to i+1.

e ais xp—; with ¢ = p+ k and k£ > 1. Both sides are convertible to k-1+p.

O
Corollary 4.5 Let a be a term or a proposition of Zy, b be a term and | be a list of variables.
F({b/z}a,l) 7 F(a,z-1)[F(b,1) - id]
Definition 4.6 Let P be a proposition of Zy. F.(P) denotes the proposition e(F(P)) of E€gs.
Proposition 4.7 For any propositions A and B of Zy,
Fs(AiB) H:-E - H;e FE(A) :>FE(B)
F.(AvV B) LR YR F.(A)V F.(B)
F.(AAB) 5 —c oy F(A)ANF(B)
FE(—|A) (—);e =L (—);E —|F5(A)
F.(Vz A) e~ 5. Vo F(A)
F.(3z A) o = oy, JTF(A)
Proof. We only consider the case F.(Vz A) < _ —¢ <5 Vo F.(4).
e(F (Vw P))
= ¢(VF(P,z))
- Vye(F(Pz)[y - id])
= Wye(F(Pa)[F(y) - id])
5. Vye(F({y/z}P)) (corollary 4.5)
5. Vye({y/z}F(P)) (lemma 4.3)
=  Vze(F(P))
O
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4.2 Preservation of provability

Proposition 4.8 If a sequent of Zj is provable (in sequent calculus) then the F.-translation of this
sequent is provable (in €.).

Proof. Let m be aproof of I' F A, we show by induction on 7 that there exists a proof of F (I') - F.(A)
in €gs.
In the case of an application of the rule V-1, 7 has the form:

o
I, {t/z}PF A

I,VxPFA vl

By induction hypothesis there exists a proof 7’ such that

!
™

F (D), F({t/z}P) - Fo(A)

Since, according to lemma 4.3,

e(F({t/z}P)) €5 e({F(t)/z}F(P))
we can extend 7' with the rule:

F.(I), {F(t)/x}F:(P) b F-(A)
F.(T),VzF.(P) F F.(A)

V-1 (-'L';FE (P) :F(t))

According to proposition 4.7: Vz F.(P) < _( . F:(Vz P); so we have obtained a proof of the
sequent: F.(T"),F.(Vz P) F F.(A)

In the case of the rule V-r the argument is the same except that a variable y is used instead of ¢.
The cases for the other rules are similar or trivial. O

As a consequence the following lemma holds:

Lemma 4.9 If P is a proposition of Z; provable under the axioms A, then there exists a proof of
F.(P), in €5, under the axioms F.(A).

4.3 Proof of conservativity
The converse of lemma 4.9 is more difficult to establish since a proof in €., may contain terms or

propositions not being F-translations.

Example 4.10 We give in €.5 a proof w of the F-translation of the sequent Vx x = x + Jy y = y.

c(alf] = ) F oGl = D
Vz e(z = z) F e(2[1] = 2[1])
Vee(z=z)FIyely=y)

(z,e(x = x),2[1])
3-r (y,e(y = y), 2[1])

Here the proposition e(z[1] = z[1]) is not a F.-translation, but we note that we can replace all
occurrences of the term z[t] by the term z and then all propositions and witnesses of this proof
are in the image of F. It is then easy to deduce, in Zy, a proof, isomorphic to w, of the sequent
Verx=ztF3Iyy=y.

We are going to prove that given a cut-free proof 7 in €.s of the translation of a sequent I' F A
from Zj, it is possible to transform 7 into a proof where all propositions and witnesses are in the
image of F; since this transformation does not change the structure of the proof, it is then simple to
translate the proof into an isomorphic proof of ' F A in Zj.

The reason why this transformation applied to a proof still gives a proof is that on the one hand
terms are not in the image of the translation only because some occurrences of their variables are not
in the image of the translation, and on the other hand these same occurrences are only appearing
as witnesses in the quantifier rules; in other words such occurrences can’t be bound. This way the
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transformation consists in replacing these occurrences altogether with the environment they appear
under (as in the example).

We now define the transformation function ¢ on the propositions/terms in normal form for the
rewrite relation —,.. We first need to characterize terms in normal form.

Lemma 4.11 Partial characterization of the terms of sort o or set in normal form for —,.
A term in normal form has one of the following forms:
e i where i is an index.
e i[Y] where i is an index and Y a variable of sort subst.

e i[Y os| where i is an index, Y a variable of sort subst and s a term of sort subst in normal form
distinct from id.

e x where x is a variable of sort set or o.

e z[s] where z is a variable of sort set and s a term of sort subst.

e z[s] where z is a variable of sort o and s a term of sort subst.

e ¢ where c is a constant of sort set or o.

e f(t1,...,t,) where f is a function symbol of rank (si,...,s,)s with s; and s € {set,o} and

where each t; is term of sort s; in normal form.

Proof. Simple induction on the definition of terms. O

4.3.1 The function ¢ and its properties

¢ has been designed to be a projection onto the image of F.

Definition 4.12 We define a function ¢ on normal forms, for —,_, of terms of sorts set and o and
then we extend this definition to propositions.

Let Xy be a variable of sort set. We are now assuming that X is never used as a bound variable.
i denotes an index, c¢ denotes a constant, f denotes a function symbol whose binding arity is
(a1,...,ap), and P,Q denote propositions.

¢n($set) = d)n(mset [S]) { Tset ifn=0

Zset[T"] ifn>0

bn(1) = i ifn>0andi<n
Xo[t™] ifi>n>1
(o) = dn(xo[s]) = 1
¢n(c) = C
¢n(f(t1y ) tp)) = f(¢n+a1 (tl)a R ¢n+ap (tp))
o(e(t)) = e(¢o(?))
(P =Q) = ¢P)=¢Q)
d(PAQ) (P) A $(Q)
p(PVQ) = ¢P)VeQ)
¢(—P) = —¢(P)
¢(Vz P) = Vz¢(P)
$EP) = 3w(P)

@(t) denotes ¢o(t) when t is a term. Since any term/proposition has a unique normal form, we
consider that ¢ is defined on any term/proposition.

The following proposition shows that ¢ is invariant on the image of F'.
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Proposition 4.13 If P is a proposition of Z; then
¢(F(P)) = F(P) and ¢(F.(P)) = F.(P).

Proof. Simple induction on P. O

The following lemma shows that the image of ¢ for atomic propositions is in the image of F.

Proposition 4.14 Let t be a term of sort set (resp. of sort o) in normal form, n be a natural number,
and 1 ...z, be variables not occurring in t and distinct from Xg. There exists a unique term (resp.
proposition) u of Zy such that

Fu,p...21) = ¢n(t)

Proof. Simple induction on . O

Lemma 4.15 Let t be a term of sort o or set, n be a positive natural number and p be natural
number.

Gt (17)]) 25 (BN (17)]

Proof. By induction on ¢, for all p.

e ¢ has the form f(ug,...,ux) where f is a symbol of binding arity as, ..., a.

We have
Grap(F (oo ttiy - JAPAM]) =oe F(- oy Pntpra (WlAPTH (M), - )

and

Sp(f(-suiy - DIPAM] =oe oy bpras (W) 7T (1)), - )

We conclude using the induction hypothesis: for each i,
Prtpta (Wil (AM)]) 5 Spra; (W) HFFH (1)

e t has the form z[s].

We have
Drtp(@[SIINP(1M)]) 2o Pnip(@s 0 NP (1™)]) = 2[1"77]

and

Sp([sDIN(1™)] = =[] (A")] =7, 2171,

e ¢ is an index i.

When p < i we have

Snap (117 (1)) =5, Snsp(itntp) = Xo[t""7]

and
Pp (1) (1™)] = Xo[1P]I07 (1™)] =5 Xo[t™H7]

Otherwise when i < p we have

Grp (A7 (T)]) 25¢ Pnip(i) =1

and

Pp(L)IMPA™)] =[P (17)] =5, 4

Corollary 4.16 Let t be a term of sort o or set and n be a positive natural number.

Pn(t[1"]) ©oc S(H)[1"]
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Lemma 4.17 Let t be a term of sort o or set, a be a term of sort set and n be a natural number.

o (t["(a - 1d)]) €5 Gnr (DN (¢(a) - 1d)]

Proof. The proof follows the argument of the previous one. The only particular case is when ¢ is the
index n+1: the following two series of equations hold

on(0+1[f"(a - id)]) =7, dn(a[t"])
Pni1(nt1)["(4(a) - id)] = n+1["(¢(a) - id)] =5 ¢(a)[1"]
and we conclude using corollary 4.16:

¢n(a[t"]) €5, S(a)[1"]

Corollary 4.18 Let t be a term of sort o or set and a be a term of sort set.

¢(tla - id]) &7, ¢1(8)[P(a) - 1d]

Proposition 4.19 Let {t;/x;} be a substitution where each z; is a variable of sort set and let t be a
term or a proposition of Zy.

({ti/zi} F(t)) = {(t:) /x: } F (t)

Proof. This proposition is a corollary of the following more general proposition: Let {t;/x;} be a
substitution where each x; is a variable of sort set and let t be a term or a proposition of Zy; Let n be
a natural number and [ a list of variables whose length is n. ¢, ({t;/z;}F(t,1)) = {do(t;)/z;}F(t,1).
The proof is done by induction on ¢t and uses corollary 4.16 when ¢ is z[1"]. O

Lemma 4.20 (¢ is compatible with ()
Let a and b be propositions. If a —. b then ¢(a) <5 _—cer;_ ¢(b).

Proof. We are reasoning by case analysis on the head rewrite step.
When a is e(Vt) and b is Vz e(¢[x - 1d]) we have

Pe(V) = e(g(Vt))
= e(Ve1(?))
—c  Vz e(pr(t)[z - id])
= Vze(di(®)[o(=) - id])
5. Vze(o(t[z - id])) (corollary 4.18)
= ¢(Vz e(t[z - id]))
The other cases are similar. O

4.3.2 Transformation of a proof in €.,
Definition 4.21
1. A F-term is a term (of sort set or o) in the image of F.
2. A F-proposition is a proposition of the form e(t) where t is a F-term of sort o.

3. A F.-proposition is a proposition of the form oF.(P) where o is a substitution the domain of
which contains only variables of sort set.

Lemma 4.22 Let '+ A be a sequent where each proposition is a F -proposition and which has a cut-

free proof . There exists a proof of the sequent ¢(T') F ¢(A) where all propositions are F-propositions
and all witnesses are F-terms.
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Proof. By induction on 7. We only give the details for the two important cases.
e In the case of an application of the rule V-1, # has the form:

o
L, {t/z}P'+ A

Do a V@ P with Q6 Ve P!

We know that Q' is a F-proposition so there exists a substitution 7 the variables of its domain

* *

being of sort set and a proposition @z of Z, such that Q" 7 _ ;. 7F:(Qz); so Vo P' 7,
7F:(Qz); there can be only one possibility: @z has the form Vz Q';. We have now Vz P’ &7 _ -
TF:(Vz Q%) <5 TV2F(Q%) = Vo 7F.(QY) and so P’ <7 TF(QY).

oeUL
We have just proved that mg is a proof of the sequent:

L {t/z}rF(Q7) F A  (S1)

where all propositions are F-propositions and all witnesses are F-terms.

Since « was bound in 7V F.(Q';) we know that « ¢ Var(r) so

{t/z}7Fe(Q) = {t/z; T}F(QY).
(S1) is then a FZ-sequent and we can apply the induction hypothesis: there exists a proof 7’ of
the sequent

o), o({t/; T}F(Q)) F o(A) (51

According to proposition 4.19,
¢({t/z;7}F(QY)) = {(t)/7;6(7)}Fe(Qy)
z not being in Ran(r) we deduce
{8(t)/z; $(1)}F(Q7) = {8(t)/2}$(T)F(QY)

7' can then be extended in the following way:

!

A0 BO/JAE@) F 3(8) ,
A0, Va frF- @) b o@) T (- 9IFe(Q),910)

3

Vz ¢(1T)F:(Q%) = ¢(T)Vz F(Q%) 5 ¢(T)F(Vz Q) holds, so we have just found a proof
of the sequent ¢(I'), ¢(7)F.(Vz Q') F #(A) in which all propositions are F-propositions and all
witnesses are F-terms.

e In the case of the rule axiom, 7 has the form:

TF(P)F 2F-(Q) axiom with 71 F. (P) Creur 7F(Q)

According to lemma, 4.20,
H(1iFe(P)) ¢5 0 9(1Fe(Q))

and according to proposition 4.19,
$(nF(P)) = ¢(n)F=(P) and ¢(r2F:(Q)) = ¢(m2)F:(Q)

So we have

SF-(P) F a(m)F-(Q) 2iom  With $(m)F(P) 05 iz ¢(r2)F(Q)
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Lemma 4.23 For any sequent I' - A of Zy, if there exists a proof  of its F-translation in €., where
all propositions are F-propositions and all witnesses are F-terms then there exists a proof of ' - A in
Zy.

Proof. By induction on 7. We only give the details for the rule V-1. Following the way the last proof
was carried on, we know that 7 has the following form:

7o
F.(), {F(t)/2}F:(P) F F-(A)
F.(T),Vz F.(P) F F.(A)

According to lemma 4.3, {F(t)/z}F:(P) <, . F=({t/z}P); so we apply the induction hypothesis
and we have a proof 7' of the sequent:

V-1 (man(P)aF(t))

L, {t/z}PF A
Since, according to proposition 4.7, Vx F(P) “oeuc Fe (Vz P), the proof
_T
L, {t/z}P+ A vl
LVt PFA
is the one we were looking for. O

Theorem 4.24 Let A be a theory expressed in the language Zy. The F.-translation of A into the
system €., is equivalent to A.

Proof.

1. Let P be a proposition of Z; provable in sequent calculus under the axioms A then, according
to lemma 4.9, F.(P) is provable in €.; under the axioms F.(A).

2. Let P be a proposition of Z; such that F.(P) is provable in €5 under the axioms F.(A). By
definition there exists a formula list ' of A such that F.(T') - F.(P) is provable. According to
theorem 3.15, there exists a cut-free proof of F.(I') - F.(P). According to lemma 4.22, there
exists a proof 7 of F(T") - F-(P) where all propositions are F-propositions and all witnesses are
F-terms. According to lemma 4.23, there exists a proof of I' F P. We can now conclude that
there exists a proof of P under the axioms A.

O

Now, we have to prove that the translation of the axiom schemes of Z; is equivalent to a (finite)
sub-theory of Z,.

4.4 Coding axiom schemes into €

In this section we prove the equivalence, in €,,, between the set composed of the translation of the
two schemes of Z; (equality and comprehension schemes) and a set composed of the two axioms A4;
and A, of Z., given below.

The two schemes of Z; are:
(S1) the comprehension scheme:

For any proposition P whose free variables are among z1,...,z,, 2,
Vo, ... Vo, VyVz(z € {z€y | P} & (z €y A P))

(S2) the equality scheme:

For any proposition P whose free variables are among z1, ..., Ty, 2,
Vi ... Vo, VaVy(z =y = ({a/2}P = {y/2} P))

The two axioms of Z., we consider are:
(A1)  VpVyVz (e(y € {2 | p}) & (e(y € 2) Ae(ply - id])))
(A2)  VpVaVy(e(z =y) = (e(p[z - id]) = e(p[y - 1d])))
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“Only if” direction We prove that a provable sequent (in €.;) under the axioms F.(S; U S») is
provable under the two axioms A; and A,. In order to do that, it is sufficient to prove the following
lemma which says that any proposition of F.(S;) is a consequence of A;.

Lemma 4.25 Let A be a proposition of F.(S1) (resp. F:(S2)), the sequent A; + A (resp. Ay F A) is
provable.

Proof. Two cases are possible:

e If A is an axiom of F.(S;) then there exists a proposition P of Z; whose free variables are among
T1,...,Tn,2 and such that A has the form

F.(Vz1 ... Ve ,VyVz(z € {z €y | P} & (z €y A P)))
which, using proposition 4.7 and corollary 4.5, is convertible to
Yy ... Ve, YyVz (e(z € {y | F(P,2)}) & (e(z € y) Ne(F(P,2)[z - id])))
This proposition can be written
Voy .. Ve, {F(P,z)]Y}VyVz (e(z € {y | Y}) © (e(z € y) Ae(Y[z - id])))

since y and z do not occur in F(P, z).

Thus, to prove the sequent
AFA

we apply a sequence of n V-r rules and we then have to prove the sequent
A F{F(P,2)]YNyVze(z €E{y | Y}) & (e(z € y) Ne(Y]z - id]))
which is done using a V,-1 rule and the axiom rule.
e If A is an axiom of F.(S;) then there exists a proposition P of Z; such that A has the form
F.(Vzq .. Va,VaVy(z =y = ({z/2} P = {y/2}P)))
which is convertible to

Yy ... Ve ,VaVy(e(z = y) = (e(F (P, 2)[z - id]) = e(F(P, 2)[y - id])))

the argument is then the same.

O

“If” direction Here we are following the same argument as in section 4.3.2: we are going to apply the
function ¢ to a proof that contains instances of axioms A; and A,. Previously this has been possible
since in a cut-free proof all propositions had the form ¢F.(P) and so ¢(cF.(P)) was convertible
to ¢(o)p(F-(P)). Here this invariant is not true but a finer one holds: each occurrence (in the
proposition) of a variable in the domain of ¢ occurs under an operator [1"] for a suitable n (such an
occurrence is said to be pre-cooked).

First we give the formal definition of the well-formedness criterion and prove that whenever a
sequent S for which that criterion holds, ¢(S) has a proof which is in the image of the F-translation.
Then we apply this result to proofs involving the encodings of the schemes.

The following predicate Pwfy expresses a criterion of well-formedness: it holds for any proposition
P such that all bound occurrences of variables of sort set and all free occurrences of variables of V' (of
sort set) are pre-cooked. This predicate is defined on normal forms for the relation —,.. Twfy, is its
counterpart on terms.
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Definition 4.26 We define Twfy,(t) where t is a term of sort o or set in normal form for —,., V a
set of variables of sort set and n a natural number.
f denotes a function symbol whose binding arity is (a1, - . .,ax)-
Twiy (Zset[s]) holds if x € V implies that s has the form 1".
TwEl, (¥se) holds if x € V implies n = 0.
Twfy (z,) holds.
Twty, (zo[s]) holds.
TWf"( ) holds (where i is an index).
Twi} (f(t1, ..., tx)) holds if for each t;, Twfjt* (t;) holds.
Twi7, (¢) holds (where ¢ is constant of sort set or o).

Definition 4.27 We define Pwfy (P) where P is a proposition and V a set of variables of sort set.

Pwfy (e(p)) holds if Twt, (p) holds.

Pwfy (A = B) holds if Pwfy (A) and Pwiy (B) hold.
Pwfy (A A B) holds if Pwfy (A) and Pwfy (B) hold.
Pwfy (A V B) holds if Pwfy (A) and Pwfy (B) hold.
Pwfy (—A) holds if Pwfy (A) holds.

Pwfy (L) holds.

Pwfy (Vsetx P) holds if Pwfy g,y (P) holds.

Pwfy (Jsetx P) holds if Pwfy g,y (P) holds.

For any proposition P, Pwf(P) denotes Pwiy(P).

For example Vye(V(z[t] = y[1])) is a F-proposition whereas Yye(¥(z = y[1])) is not. Pwf holds for
both propositions and Pwf, holds only for the first one.

Lemma 4.28 Let x be a variable of sort set, V be a set of variables of sort set, P be a proposition
and t be a term of sort set. If Pwfy 1 (P) holds then Pwfy (P) holds and if Pwf(P) holds then
Pwi({t/z}P) holds.

Proof. Trivial. O
Lemma 4.29 Let t and u be terms of sort set and x be a variable of sort set. For any natural number
n, if Twfy (u) holds then ¢, ({t/z}u) <»;_ {$(t)/z}dn(u).

Proof. By induction on u, for all n. The proof is almost the same as in proposition 4.19 except when
u is z[1?] with p # n, Twiy (2[1?]) is false.
O

Lemma 4.30 If Pwf,(P) then ¢({t/z}P) <, _ {¢(t)/z}o(P).

Proof. Simple induction on P, lemma, 4.29 is used in the case of an atomic proposition. O

Lemma 4.31 Let I' H A be a sequent of €., for which Pwf holds. Let © be a cut-free proof of this
sequent. There exists a proof of $(I' b A), where all propositions are F-propositions and all witnesses
are F-terms.

Proof. By induction on 7. We only give the details for the two important cases.

e In the case of an application of the rule V-1, © has the form:

___To
I, {t/z}PF A

T.OFA V-1 (z, P,t) with @ 7 Vo P

By hypothesis, Pwf(Q) holds (i.e. Pwf(Vz P) holds) so Pwf,(P) holds and then Pwf({t/z}P)
holds. We can then apply the induction hypothesis: there exists a proof 7' of the sequent

o), ¢({t/x}P) - ¢(A)

RR n° 4344



Stéphane Vaillant

where all propositions are F-propositions and all witnesses are F-terms.

Since Pwf,(P) holds, according to lemma 4.30 we have ¢({t/z}P) <;_ {$(t)/x}$(P) and we

can write: .

T
S(L), {¢()/2}9(P) F $(A) | |

¢(T), Ve ¢(P) - ¢(A)
According to proposition 4.14 there exists a term ¢z of Z; such that F(tz) = ¢(t) and according

to propositions 4.14 and 4.7 there exists a proposition Pz of Z; such that F.(Pz) = ¢(P). We
conclude using proposition 4.7: Vz ¢(P) <7 o F:(Vz Pz).

(z,6(P), 4(1))

e In the case of the rule axiom, 7 has the form:

m axiom with P HZ’E url Q

According to lemma 4.20, ¢(P) ©;_ . ¢(Q). We conclude using the fact that ¢(P) and ¢(Q)
are convertible to F-propositions (proposition 4.14).

O

We are now dealing with the schemes of Z.

Definition 4.82 The axioms A; and A, have the form VY A} and VY A}, so:
1. An instance of Ay (resp. As) is any proposition that has the form {t/Y} A} (resp. {t/Y}A}).

2. B is the set of propositions P such that: P Coeuc Vo(Q) where Q is an instance of A or A,.

Lemma 4.33

1. Let t be a term of sort set or o, n be a natural number and 1, ..., T, be variables (of sort set)
without occurrence in t. For any natural number k, wa’;hm’wn holds for t{f*(zy, - ... 1 - id)].

2. Let t be a term of sort set or o, n and k be natural numbers, x1,...,, be variables and y be a

variable without occurrence in t. If wa’;h“ _ holds for t[y - id] then wa’;j’.l“ . holds for t.

T » T

Proof. Simple induction on ¢, for all k. O

Proposition 4.34 Let P and P’ be propositions such that P —, P'. Then for any set of variables
V', Pwfy holds for P if and only if it holds for P'.

Proof. Consequence of the preceding lemma. O

Lemma 4.35 Pwf holds for any instance of A; and for any instance of A,.

Proof. We only process the case of the comprehension scheme; the argument being the same for the
equality scheme.

Let t be a term of sort o and z a variable of sort set which does not occur free in t. According to
the preceding lemma, we know that Twf? holds for ¢[z - id].

Let y be a variable that does not occur free in ¢; hence Tng,z holds for t[z - id]. Now, we have
that Pwf, . holds for e(¢[z - id]).

Then we conclude that Pwf holds for VyVz (e(z € {y | t}) & (e(z € y) Ae(t[z - id]))).

([l

Lemma 4.36 Let L be a list of propositions of {A;, A2} and I'; A be lists of propositions for which
Pwf holds. If L,T' F A has a cut-free proof w then there exists a list M of propositions of B and a
proof of the sequent M, ¢(T) - ¢(A).

Proof. By induction on 7.

e Rule for which the principal formula is in A or T.

The argument is the same as in the proof of the lemma 4.31.
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e Rule for which the principal formula is in L: it is necessarily a rule V-1. So 7 has the form:

To

{t/Y}P,L',T+ A
V,Y P,L' T+ A Vol (Y, Prt)

VoY P being one of the axioms A; A, according to lemma 4.35, Pwf holds for {t/Y}P. We
can apply the induction hypothesis: there exists a list M of propositions of B and a proof 7' of
the sequent M, ¢p({t/Y}P),d(T") - ¢(A). We then extend 7’ with a sequence of applications of
rules V-1 in such a way that the result is a proof of M,V¢({t/Y}P),#(T) - ¢(A).

We then check that Y¢({t/Y}P) is a proposition of B.

e In the case of an application of a weakening rule or of a left contraction rule on a formula of L
we just apply the induction hypothesis.

O

Lemma 4.37 BC F.(5; US»)

Proof. Let P be proposition of B. If P has been obtained from A, there exists a term ¢ of sort o such
that

P g uc Vo(Vy¥z (e(z € {y | 1}) & (e(z € ) Ae(t]z - 1d]))))

and we note that since propositions are considered up to a-conversion, y and z are not occurring in .
Applying the definition of ¢, this proposition is equal to

WyVz (e(z € {y | 1(1)}) & (e(z € y) Ae(g(t]z - 1d]))))

According to corollary 4.18, ¢(t[z - id]) ;. ¢1(t)[2 - id]; since z ¢ FV(t), according to proposi-
tion 4.14, there exists a proposition Pz of Z; such that, ¢1(t) <»;_ F(Pz, 2); and finally according to
corollary 4.5, F/(Pz, z)[z - id] ¢;_ F(Pz).

We then check that P is convertible to

F.(WyVz(z € {z €y | Pz} & (2 € y A Pg)))

which is the translation of an instance of the comprehension scheme since y does not occur free in Py.
The argument is the same if P has been obtained from A,. O

Lemma 4.38 Let P be a proposition of Zy,. If F.(P) is provable in €., under the axioms Ay, A then
P is provable in Zy under the axioms S; U S,.

Proof. By hypothesis there exists a list L of propositions of Ay, Ay such that the sequent L - F.(P)
is provable. According to lemma 4.36, there exists a list M of formulas of B such that M F ¢(F.(P))
is provable.

All the propositions of M are in F.(S;US3) and F. (P) is invariant by ¢. According to theorem 4.24,
P is provable under the axioms S; U Ss. O

Now, we conclude this section: we have given a translation (F.) from the language of Z; into the
language of €.5/Z¢s such that any proposition P is provable if and only if F.(P) is provable in €.
Then we have shown that, in €., we can express each scheme of Z; as one axiom of Z.s. So, we have
that the theory Z., conservatively interprets the theory Zy. The theory Z., is expressed in deduction
modulo but can also be expressed in first-order predicate logic as in section 2; this last presentation
being a conservative extension of Z., (see [DHK9S§] for a proof).
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Finite presentations of variants of Z; We have worked with Z; but we can give a presentation
of any Zy-based set theory. For instance it is immediate to give a finite presentation that include any
finite subset of the individual axioms of Z;: pairing, null set, sum set, powerset, infinity, regularity,
etc.

Axiom schemes must be handled one by one since we do not have a formal definition of what a
scheme is.

Now, we are going to show how to add the replacement scheme to our presentation. In first-order
predicate logic, this scheme is expressed using the following description:

(8S3) for any proposition P whose free variables are among z,y, 1 . . . Zp,

Vzy .. Ve,V (VaVyVz (P A {z/y}P) =y = 2))
= FyVu (u € y & Fv({v/z;u/y}P Av € 2)))

The encoding we give is (axiom Asj):

VPVz (Va2VyVz ((e(Plz -y - id]) Ae(Plz - 2 - id])) = e(y = 2)))
= FyVu (e(u € y) © Fv (e(Pfv-u- id]) Ae(v € ))))

It is easy to check that the results of section 4.4 also hold when we both add S3 to Z; and Aj to
Zes.

INRIA



A Finite First-Order Presentation of Set Theory

5 Comparison with von Neumann, Bernays and Godel’s set
theory

In this section we give an example to show how the encoding of propositions as classes works in the
system of von Neumann, Bernays and Gdédel. Only the part of the system we are interested in is
described; see [Men87] for the complete system.

NBG is expressed in first-order predicate logic, there is no function symbol and only two predicate
symbols: € and M(_). For our example we assume that there is also one binary function symbol
<, >

The objects of the theory are classes and are denoted by capital italic letters. A class X is also
a set whenever M (X) holds. = denotes a class X that is a set. Classes that are not sets are called
proper classes.

The following abbreviations are used (quantification restricted to sets):

Vz P stands for VX M (X) = {X/z}P
Jz P stands for 3X M(X) A {X/z}P.

We use the following abbreviations for encoded tuples:

<X > stands for X
<Xi,...,Xn, Xnt1> stands for <<Xi,...,Xp>, Xpy1>

Now, we give a skolemized version of the axioms of class existence:

(B1) VuYv (<u,v> € Esuevw)

B2)Vu (ue(XNY)e (ue XAuey))

B3) Vu (ue - X ud¢X)

(B4) Vu (u € D(X) & (v <u,v> € X))

(B5) YuVv (<u,v> € +(X) @ u € X)

(B6) YuVoVw (<u,v,w> € R(X) & <v,w,u> € X)
(B7) YuVoVw (<u,v,w> € S(X) & <u,w,v> € X)

In the two systems €.; and NBG we are now giving an encoding of:
“the class of the z such that Iy((Fz z € 2) A (Fz z € y))".

In NBG the encoding is the term: D(D(S(+(E))) N D(S(R(+(E))))). Let a be a set; using only
axioms B1-B7 we can prove that a € D(D(S(+(E))) N D(S(R(+(E))))) is equivalent to Jy((3z a €
2) A (3z z € y)); the details are given below:

a € D(D(S(+(E))) N D(S(R(+(E)))))

& 3y(<ay>€D(( (E))) A <a,y> € D(S(R(+(E)))))

& Ty ((Fz <a,y,2> € S(+(E))) A (Fz <a,y,2> € S(R(+(E)))))
& ((3z <a,z,y> € +(E)) A (3z <a,z,y> € R(+(E))))

& Jy ((Fz <a,z> € E) A (Fz <z,y,a> € +(F)))

& (Fz z € 2)AN(Fz <z,y> € E))

& (Fza€ez)N3z z€y))

In €., the encoding is the following term of sort o:
3B E1)AI(1E2)
Then we check that, for any term a of sort set, the proposition
e(3(3(B € 1) AI(1 € 2))[a-id])

reduces to
Jy((Fz e(a € 2)) A (Fz e(z € y)))
As we can see the encoding we provide is more straightforward. Moreover the axiom we have used
are already oriented, which is an important point concerning automated reasonning.
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Conclusion

We have given a finite first-order presentation of set theory whose syntax is very close to Z;. We have
shown how to obtain this presentation from Z; and proved that it conservatively interprets Z;, the
proof being done independently of the axioms used in the theory. Therefore the method holds for
variants of Zj.

The first-order presentation we have given can be expressed in deduction modulo where the part
of the theory dealing with the encoding is expressed as a congruence. We have used this presentation
as an intermediate system for the proof of equivalence but it may also be a suitable presentation for
proof search since the search space is restricted. From this point of view it seems to be worth trying to
convert some of the axioms of set theory into rewrite rules, for instance the translation of the powerset
axiom can be expressed as the rule: z € P(y) = V(1 € z[t] = 1 € y[t]). For automated theorem
proving it is important to try to have a set of rewrite rules as small as possible, therefore it might be
worth using another calculus of explicit substitution in place of Aoy but we have to keep in mind that
this calculus must enjoy confluence on terms with term meta-variables.

The encoding of NBG is not as straightforward as ours: in €4 the structure of propositions coded
as terms is preserved whereas it is not the case for NBG; this has been the consequence of using an
explicit substitution with de Bruijn indices. Nonetheless section 5 shows similarities between the two
systems and it would be interesting to do a detailed comparison.

We do not propose a general method for encoding schemes as a single axiom. For instance it doesn’t
seem to be possible, without modification of our system, to encode the reflection scheme [Kri98] in
which occur both a proposition P and P where the quantifiers are restricted to a class Y (e.g. Vx ...
becomes Vz(Y (z) = ...)).
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