
HAL Id: inria-00072250
https://hal.inria.fr/inria-00072250

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Insertion of a Random Bitask in a Schedule: a
Real-Time Approach

Cyril Duron, Jean-Marie Proth, Yorai Wardi

To cite this version:
Cyril Duron, Jean-Marie Proth, Yorai Wardi. Insertion of a Random Bitask in a Schedule: a Real-
Time Approach. [Research Report] RR-4337, INRIA. 2001, pp.20. �inria-00072250�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50452519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072250
https://hal.archives-ouvertes.fr

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
43

37
--

F
R

+
E

N
G

ap por t
de r ech er ch e

THÈME 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Insertion of a Random Bitask in a Schedule :
a Real-Time Approach.

Cyril DURON — Jean-Marie PROTH

— Yorai WARDI

N° 4337

Novembre 2001

Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Insertion of a Random Bitask in a Schedule :
a Real-Time Approach.

Cyril DURON
� † , Jean-Marie PROTH ‡ †

, Yorai WARDI §

Thème 4 — Simulation et optimisation
de systèmes complexes

Projet Sagep

Rapport de recherche n° 4337 — Novembre 2001 — 20 pages

Abstract: We consider a set of tasks defined by their duration and their due-date. They are performed by a single resource
and scheduled in order to minimize the sum of the delays. This schedule is given.

A task appears in the system at time 0. It is made of two subtasks separated by a fixed period. The duration of the
two subtasks and of the period are known only when the task appears. It is also the case for the due date that cannot be
violated. The goal is to insert this random task in the schedule while increasing as less as possible the criterion of the
initial schedule, that is the sum of the delays. The main difficulty is to insert the task in real-time, which implies that the
proposed method should manage to make most of the computation off-line.

Key-words: Real-time, Scheduling, Single resource

�

E-mail : duron@loria.fr
† Shared foot note
‡ Location : Inria / Sagep, UFR , Scientifique, Université de Metz, Ile du Saulcy, 57000 Metz, France. E-mail : proth@loria.fr
§ Location : School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA . E-mail :

ywardi@ee.gatech.edu

Insertion d’une bitâche aléatoire dans un ordonnancement :
Une approche temps-réel.

Résumé : Nous considérons un ensemble de tâches définies par leur durée et leur délai. Elle sont exécutées par une
ressource unique et ordonnancées de façon à minimiser la somme de leurs retards.

Une tâche apparaît dans le système à l’instant 0. Elle est constituée de deux sous-tâches séparées par une période
donnée. Les durées des deux sous-tâches et de la période qui les sépare ne sont connues qu’au moment de l’apparition
de cette tâche qualifiée d’aléatoire. Il en est de même du délai de cette tâche aléatoire, qui ne peut être violée. L’objectif
de ce papier est d’insérer cette tâche aléatoire dans l’ordonnancement existant en augmentant aussi peu que possible le
critère associé, c’est-à-dire la somme des retards. La difficulté majeure de ce problème est d’effectuer cette insertion en
temps réel, ce qui implique que la méthode proposée devra effectuer la majorité des calculs nécessaires en différé.

Mots-clés : Temps-réel, Ordonnancement, Ressource unique

Insertion of a Random Bitask in a Schedule : a Real-Time Approach. 3

1 Introduction

In this paper we consider the problem that consists of integrating an unexpected task in a given schedule so as to
minimize the increase of the total tardiness in the existing schedule and to complete the unexpected task by a given due
date. We assume that the resource in charge of operations is unique and that the tasks are non-preemptives.

The problem was suggested by the management of multifunction radars that performs repetitive tasks and should
manage to handle in real-time a new task that appears after the detection of an event (a new target for instance).

The unexpected tasks that are performed are in fact composed of two subtasks separated by an idle period. The
processing times of the first subtask, the second subtask and the idle period are known only when the new task arises. Our
point is to use the idle time for performing initial tasks. The idle period can be used to schedule the initial tasks.

The classical approach for solving this problem is to consider that we have to insert a unique task whose duration is
the sum of the durations of both subtasks and the idle period. Doing so, we waste the idle period in the sense that we don’t
take advantage of it to schedule some of the initial tasks.

Similar works related to the problem at hand are refered as multifunction radar problems. Many authors worked on
this important problem. As far as we know, Billeter (see

�
2 �) was the first to publish on multifunction radar. Orman et

al (see
�
6 � and

�
3 �) described multifunction radars and tried to propose an effective scheduling of the radar jobs under

real-time constraint. In their paper, which is a partial abstract of Orman’s thesis (see
�
4 �), some scheduling rules are tested

and a simulation model is proposed. Some interesting information may be found in
�
1� and

�
5 � .

Unfortunately, none of these works explores the use of the idle periods, which is the goal of the work presented
hereafter. The remainings of this publication is divided in two parts. The first one is devoted to the case when the
unexpected task is considered as a simple task whose duration is the sum of the duration of the subtasks and the idle
period.
In the first part of the paper, the problem is presented in section 2. Section 3 is devoted to the properties of the problem.
The real-time strategy is presented in section 4. Section 5 proposes a numerical example.

The second part of the paper explores the case where the goal is to take advantage of the idle period. The problem
is formulated in Section 6. Sections 7 and 8 highlight properties of the problem. Section 9 gives an optimal algorithm.
Section 10 proposes a first real-time heuristic. A second real-time heuristic is given in section 11. Section 12 presents a
numerical example. Section 13.3 contains the complexity of the four algorithms. Section 14 is the conclusion.

PART 1 : The unexpected task is a simple task

2 Formulation of the problem

A schedule that concerns n tasks denoted by a1 � a2 ��������� an is given. Their duration are t1 � t2 ��������� tn and their starting
times are µ1 � µ2 ��������� µn. The ressource is unique.

Indeed, µi � ti � µi 	 1 for i
 1 � 2 ��������� n � 1. The due dates of the tasks are denoted by d1 � d2 ��������� dn. We set ∆i

µi 	 1 �� µi � ti � , i
 1 ��������� n � 1. We also set ∆n
 � ∞. ∆i is the idle period that starts when ai is completed and ends when
ai 	 1 starts.

We also set : fi
 �
di ��� µi � ti � � 	 , i
 1 � 2 ��������� n where

�
a � 	 is the smallest integer greater than or equal to a. fi

represents the time task ai can be postponed without increasing the criterion of the initial schedule that is the sum Cn of

the delays: Cn

n

∑
i � 1

�
µi � ti � di � 	

The unexpected task, which is a simple task in this case , is denoted by A and defined by :

- D, which is an upper bound of its completion time.

- θ, which is its duration.

3 Properties of the problem

Assume that we insert the unexpected task A after task ak, k ��� 1 � 2 ��������� n � . The following result holds true.
Result 1:

1. Starting A as soon as ak ends minimizes the increase of criterion Cn for this position.

RR n° 4337

4 Duron & Proth & Wardi

2. Furthermore :

If
nk � 1

∑
s � 0

∆k 	 s
� θ �

nk

∑
s � 0

∆k 	 s, then ak 	 s , s
 1 ��������� nk are the only tasks that will be postponed and the starting time

of ak 	 s becomes : µ
�
k 	 s
 µk 	 s � � θ �

s � 1

∑
i � 0

∆k 	 i � � s
 1 � 2 ��������� nk

If θ � ∆k, none of the tasks is postponed.

Proof :

1. If A starts at time µk � tk � c � c � 0, it will be completed at time µk � tk � c � θ and task ak 	 1 will start at time µc
k 	 1

max � µk � tk � c � θ � µk 	 1 � . Similarly, if A starts at time µk � tk, ak 	 1 will start at time µ
�
k 	 1
 max � µk � tk � θ � µk 	 1 � .

Thus µc
k 	 1 � µ

�
k 	 1, and µc

k 	 1 � tk 	 1 � µ
�
k 	 1 � tk 	 1. As a consequence � µc

k 	 1 � tk 	 1 � dk 	 1 � 	�� � µ �k 	 1 � tk 	 1 � dk 	 1 � 	 .

It is easy to extend this inequality to : � µc
k 	 s � tk 	 s � dk 	 s � 	 � � µ �k 	 s � tk 	 s � dk 	 s � 	 , for s
 1 � 2 � 3 ������� This completes

the first part of the proof.

2. This part of the proof is straightforward.

The second result proposes a formulation of the increase of the criterion Cn when A is inserted as soon as task ak is
completed.
Result 2 :
If A is inserted after ak, then the increase of the criterion Cn is :

Lk � θ �

��� �	 0 if ∆k

� θ
nk

∑
s � 1

� θ �
s � 1

∑
p � 0

∆k 	 p � fk 	 s � 	 if ∆k
� θ (1)

Proof :
The increase of Cn due to the postponement of ak 	 1 is :

Rk 	 1
�
 0 if θ � ∆k

� θ � ∆k � fk 	 1 � 	 if θ � ∆k
(2)

since :

- If θ � ∆k then A is completed before µk 	 1, and Rk 	 1
 0

- If θ � ∆k then ak 	 1 is postponed by θ � ∆k.
If θ � ∆k � fk 	 1, the due date of ak 	 1 is not violated, and Rk 	 1
 0, otherwise the increase due to the postponement
of ak 	 1 is θ � ∆k � fk 	 1.

Similarly, the increase of Cn resulting from the postponement of ak 	 2 is :

Rk 	 2

 0 if θ � ∆k � ∆k 	 1

� θ � ∆k � ∆k 	 1 � fk 	 2 � 	 if θ � ∆k � ∆k 	 1
(3)

The explanation of (3) is as follows. If θ � ∆k � ∆k 	 1, the starting time of the task ak 	 2 is not modified, as well as the
following tasks. If θ � ∆k � ∆k 	 1 then task ak 	 2 is postponed by θ � ∆k � ∆k 	 1. If θ � ∆k � ∆k 	 1 � fk 	 2, the due date of
task ak 	 2 is not broken and the increase of Cn is equal to 0. Otherwise, the increase of Cn is θ � ∆k � ∆k 	 1 � fk 	 2.

This result can be easily generalized as follows :

Rk 	 s

����� ���	 0 if θ �
s � 1

∑
u � 0

∆k 	 u

� θ �
s � 1

∑
u � 0

∆k 	 u � fk 	 s � 	 if θ � s � 1

∑
u � 0

∆k 	 u

(4)

This completes the proof.
As we can see from (1), Lk � θ � is an increasing, continuous and piecewise linear function. Assume that z1 � z2 ������� are

the quantities
s � 1

∑
p � 0

∆k 	 p � fk 	 s ordered in the increasing order. In this case, Lk � θ � is linear on each interval � zi � zi 	 1 � , and

the slope of Lk � θ � increases from one interval to the next one. Fig. 3 represents such a function.

INRIA

Insertion of a Random Bitask in a Schedule : a Real-Time Approach. 5

L (Θ)k

Θz z z z z0 1 2 3 4

Figure 1: Increase of the criterion.

The next result shows that it is not necessary to try all the possible locations of A to find the optimal one.
Result 3 :
Assume that ∆k 	 i
 0 for i
 1 � 2 ��������� h and ∆k 	 h 	 1 � 0. Then inserting the random task A as soon as ak 	 h 	 1 ends is never
worse than inserting A as soon as ak 	 i is completed, i � � 1 � 2 ��������� h � .
Proof :
Assume that we insert A after ak 	 i � i � � 1 � 2 ��������� h � . Then, tasks ak 	 i 	 r � r
 1 ��������� h � i � 1 are postponed by A, and the
following tasks are postponed so as to absorb a task of duration � θ � ∆k 	 h 	 1 � 	 .

If we insert A after ak 	 h 	 1, only the following tasks are postponed so as to absorb a task of duration � θ � ∆k 	 h 	 1 � 	 .
This completes the proof.
From result 3, we deduct an interesting corollary that will allow us to minimize the load of computing in most of the

cases.
Corollary 1 :
Let 0 be the instant when a random task of duration θ and deadline D appears, and let a1 � a2 ��������� aQ be the tasks already
scheduled, where Q is the greater integer such as µQ � tQ � θ � D

1. Let WQ
 � k � k � � 1 � 2 ��������� Q � and ∆k � 0 ��� � Q � . Then, the optimal position for the random task is just after one
element of WQ. In other words, it is not useful to take into consideration tasks ak such as ∆k
 0, except may be for
aQ.

2. If WQ
 /0 starting task A just after the end of aQ is optimal.

This corollary is a direct consequence of result 3.

4 Real-Time Strategy

The approach proposed in this paper aims at making most of the computation off-line, and to reduce as much as
possible the on-line computation. The algorithm presented hereafter consists of :

- Computing off-line the functions Lk � θ � for tasks ak, k
 1 ��������� n.

- Using these functions when the random task A appears. This is done in two steps :

- Computation of WQ (see corollary 1).

- Computation of min
k � WQ

Lk � θ � where θ is the duration of the random task.

This computation is illustrated in Fig. 2and detailed in algorithm 1.

Algorithm 1.

1. Off-line computation.

(a) Compute Lk � θ � for k
 1 ��������� n and θ � � 0 � � ∞ �
2. On-line computation.

RR n° 4337

6 Duron & Proth & Wardi

Arrival of random task A Random task A

D Time

Earliest starting time of A Latest starting time of A

i

ST ST ST1 2

θ

3

ST : Starting times of A to be checked

Figure 2: Limits of the starting times of A.

(a) Compute the greater integer Q such that aQ � tQ � θ � D

(b) Compute WQ
 � k � k ��� 1 � 2 ��������� Q � and ∆k � 0 ��� � Q �
(c) Compute the increase zA � θ �
 min

k � WQ
Lk � θ � Let k � be the value of k � WQ that leads to the minimum.

(d) Set the schedule up to date :

µ
�
k

� 	 s
 µk
� 	 s � � θ �

s � 1

∑
i � 0

∆k
� 	 i � 	 for s
 1 ��������� Q

According to the previous results, Algorithm 1 is optimal.

5 A Numerical Example

In this section we propose a numerical example on which we will apply algorithm 1. First, we provide the numerical
features of an existing schedule (see Table 1). This table provides ∆i and fi for i
 1 ��������� 30.

The first step of algorithm 1 (that is off-line computation) provides Lk � θ � for k
 1 � 2 ��������� n and θ � � 0 � � ∞ � . Remember
that these functions are piecewise linear and continuous.

When A arises, that is when θ and D are known, we can :

- Select WQ

- Compute Lk � θ � for each k � WQ

- Find k � � WQ such that Lk
� � θ �
 min

k � WQ
Lk � θ �

Thus, the optimal location of A is after ak
� .

Here, we will assume that we want to insert a task whose θ
 59 and D
 361.
We obtain
WQ
 � 2 � 3 � 5 � 7 � 8 � 10 � 11 � 15 � 16 �
The values of Lk � θ � for k � WQ are given in table 2.
Thus, A should start as soon as ak

� is completed, and k �
 15.
According to step 2 � d of the algorithm, the starting times of some tasks were postponed. See Table 3.

INRIA

Insertion of a Random Bitask in a Schedule : a Real-Time Approach. 7

Table 1: Example of Schedule

Task number i Starting time Processing time Due date ∆i fi

1 0 14 24 0 10
2 14 19 43 1 10
3 34 9 53 1 10
4 44 13 53 0 0
5 57 3 50 19 0
6 79 18 89 0 0
7 97 20 127 8 10
8 125 8 143 5 10
9 138 1 131 0 0

10 139 18 167 6 10
11 163 13 182 12 6
12 188 7 193 0 0
13 195 20 211 0 0
14 215 20 225 0 0
15 235 14 259 19 10
16 268 20 279 0 0
17 288 16 306 0 2
18 304 20 334 19 10
19 343 9 345 19 0
20 371 20 384 0 0
21 391 8 409 0 10
22 399 10 413 0 4
23 409 19 432 0 4
24 428 9 447 0 10
25 437 19 466 0 10
26 456 18 467 0 0
27 474 19 503 19 10
28 512 20 536 0 4
29 532 13 555 0 10
30 545 20 575 0 10

Table 2: Values of Lk � θ � of k � WQ

Task number k Lk � θ �
2 322
3 285
5 178
7 275
8 313
10 258
11 259
15 133
16 266

RR n° 4337

8 Duron & Proth & Wardi

PART 2 : The unexpected task is a bitask

6 Problem formulation

A bitask is composed of two subtasks denoted by A1 and A2, separated by an idle period of duration L. A bitask is
represented in figure 3.

Subtask A 1 Subtask A
2

Time

Lθ θ1 2 Deadline D

Figure 3: Representation of a bitask A.

The following notations are used :

n : number of already scheduled tasks denoted by 1 to n.
They are arranged in the increasing order of their starting time.

µi: initial starting time of task i
µ
�
i: new starting time of task i

ti : processing time of task i
di: due date of task i
θ1: processing time of subtask 1
θ2: processing time of subtask 2
L : idle time between subtasks 1 and 2
D: due date of the bitasks. This due date cannot be violated.

It’s easy to compute the increase Ck of the criterion, resulting of the insertion of the bitask right after the end of task k
:

Ck

r

∑
i � 1

��� µk 	 i � tk 	 i � dk 	 i � � � µk 	 i � µ
�
k 	 i � 	

where � A � 	
 Max � 0 � A � , � A � �
 min � 0 � A � and r is the number of tasks of the initial schedule that are postponed due to
the insertion of the bitask. The formulaes that give the new starting times µ

�
i, i � � k � 1 � k � r � , for the postponed tasks are

given in section 8
In the case of a bitask, and when we decide to insert A1 after ak, it may happen that the optimal solution does not

consist in starting A1 as soon as ak is completed. The reason is that the location of A2 is constrained by the location of A1

and that postponing A1 slightly may allow t insert one more task between the end of A1 and the beginning of A2, which
may decrease the criterion. Thus, we introduce the starting time z of A1. If we want to insert A1 after ak, then z � µk � tk.

The goal of this problem is to find the value of z that minimizes the increase of the criterion if we decide to insert A1

after ak. The results presented in section 7 reduces significantly the computational burden.

7 An upper bound for z

Result 4 :
If we decide to insert A1 after ak, the optimal solution is to start A1 at time z. z is such that µk � tk � z � z1 with

Table 3: New schedule

Task number k 6 7 8 9 10 11 12 13 14 15
Prev. starting time 79 97 125 138 139 163 188 195 215 235
New starting time 119 137 157 165 166 184 197 204 224 244

INRIA

Insertion of a Random Bitask in a Schedule : a Real-Time Approach. 9

Increase of the cost

Time
µ µ k+r+1k +t ks0= θ1+s s s s1 2 3 r

Figure 4: Increase of the criterion.

z1
 min � µk 	 r � tk 	 r � θ1 � L � D � θ1 � L � θ2 � where r is the greater integer such that
r

∑
i � 1

tk 	 i � L

Proof :

1. µk � tk � z is obvious since A1 is inserted after ak.

2. When z
 z1
 µk 	 2 � tk 	 2 � θ1 � L, tasks ak 	 1 � ak 	 2 ��������� ak 	 r are located in the time interval of length L between
the end of A1 and the beginning of A2, and it is impossible to insert one more task in this interval. Thus, if z � z1,
tasks ak 	 1 � ak 	 2 ��������� ak 	 r are postponed by z � z1, and tasks ak 	 r 	 1 � ak 	 r 	 2 ������� may be postponed also, which means
that the criterion of the problem cannot be lower than the one obtained for z
 z1.

3. When z
 z1
 D � θ1 � L � θ2, then A1 cannot start after z1, otherwise the deadline D would be violated.

To simplify the presentation, we still denote by r the number of tasks that are inserted between A1 and A2 in this case.
Result 5 :
The optimal solutions for z is one of the values � µk 	 i � tk 	 i � θ1 � L � i � 1 � 2 � � � � � r. If z
 µk 	 i � tk 	 i � θ1 � L, then ak 	 1 � ak 	 2 ��������� ak 	 i

are inserted between A1 and A2, and ak 	 i 	 1 � ak 	 i 	 2 ������� are performed after A2. If r
 0, that is if tk 	 1 � L, then z
 µk � tk
is optimal.
Proof :

1. If z
 µk 	 i � tk 	 i � θ1 � L, i � � 1 � 2 ������� � r � , then ak 	 i ends when A2 starts.
If z �� µk 	 i � tk 	 i � θ1 � L � µk 	 i 	 1 � tk 	 i 	 1 � θ1 � L � , only � ak 	 1 ��������� ak 	 i � are scheduled between A1 and A2, and
the increase of the criterion is an increasing function of z in this interval.
If z
 µk 	 i � tk 	 i � θ1 � L � ε, wher ε is as small as we want, only � ak 	 1 ��������� ak 	 i � 1 � can be scheduled between A1

and A2.Thus, the increase o the cost is greater than the increase of the cost for ε
 0.
Let us set si
 µk 	 i � tk 	 i � θ1 � L. Figure 7 provide the increase of the cost as a function of z.

2. If tk 	 1 � L, ak 	 1 cannot be inserted between A1 and A2, and thus the minimum of the criterion is obtained for A1

starting as soon as possible, that is as soon as ak is completed.

8 The new starting times

We first consider the tasks inserted between A1 and A2. Assume that z
 µk 	 i � tk 	 i � θ1 � L, i � � 1 � 2 ��������� r � According
to result 5, � ak 	 1 ��������� ak 	 i � are inserted between A1 and A2.��� �	 µ

�
k 	 1
 max � µk 	 1 � z � θ1 �

µ
�
k 	 j
 max � µk 	 j � µ

�
k 	 j � 1 � tk 	 j � 1 � if j
 2 ��������� i � 1

µ
�
k 	 i
 µk 	 i

(5)

RR n° 4337

10 Duron & Proth & Wardi

Let us now consider the tasks that are performed after A2. For these tasks, that is ak 	 i 	 s for s
 1 � 2 ������� ,�� 	 µ
�
k 	 i 	 1
 max � µk 	 i 	 1 � z � θ1 � L � θ2 �

µ
�
k 	 i 	 s
 max � µk 	 i 	 s � µ

�
k 	 i 	 s � 1 � tk 	 i 	 s � 1 � for j
 2 �������

(6)

9 Optimal Algorithm

To obtain the optimal solution, we test each one of the possible locations of the random task. For a location of the
random task after a task ak, we compute the increase of the criterion if we start A1 as soon as ak is completed. We then
check each one of the positions given in Result 5.

Algorithm 2 (n,µ,ti,di,θ1,L,θ2,D)

Data : The data required are those given in section 6, plus the following temporary variables.

Temporary variables :

overcost : integer, overcost we are computing
k : integer, index of the task after which we insert A1

kmax : integer, index of the last task after which we may insert A1

r : integer
rprime : integer, index of the first task processed after A2

f inished : boolean, regulation variable
beginning: boolean, regulation variable
µ
�
i : integer , new starting time of task i

Results :

overcost � : integer, smaller overcost found
µ �i : integer, starting times leading to the smallest increase of the criterion

BEGIN

1. Algorithm Initialisation
k = 1
kmax
 1
overcost � = +∞

2. Computation of kmax

(a) WHILE ��� µkmax � tkmax � θ1 � L � θ2 � D � AND � kmax
�

n ��� DO kmax
 kmax � 1

(b) IF � µkmax � tkmax � θ1 � L � θ2 � D � THEN kmax
 kmax � 1

3. Initialisation of the computation of the new starting times and overcost when inserting the bitask after task k � r � 1
r = 1
f inished = f alse
overcost = 0

4. Computation of the overcost and the new starting times for the tasks whose new location is between the two sub-
tasks.

(a) IF ((f inished
 true) OR (µk 	 r � tk 	 r � µk � tk � θ1 � L)) GO TO 5

(b) IF � r
 1 � THEN µ
�
k 	 1
 max � µk 	 1 � µk � tk � θ1 �

ELSE µ
�
k 	 r
 max � µk 	 r � µ

�
k 	 r � 1 � tk 	 r � 1 �

(c) IF (µ
�
k 	 r � tk 	 r � µk � tk � θ1 � L) THEN

i. f inished
 true

ELSE

i. overcost
 overcost � ��� µk 	 r � tk 	 r � dk 	 r � � � µk 	 r � µ
�
k 	 r � 	

INRIA

Insertion of a Random Bitask in a Schedule : a Real-Time Approach. 11

ii. r
 r � 1
iii. IF (k � r � n) GO TO 5

(d) GO TO 4

5. Keeping trace of the index of the first task following the bitask
rprime
 r
beginning
 true
f inished
 f alse

6. Computing of the overcost and of the new starting times of the tasks that are located after the bitask.

(a) IF f inished
 true GO TO 8

(b) IF � beginning
 true � THEN

i. µ
�
k 	 r
 max � µk 	 r � µk � tk � θ1 � L � θ2 �

ii. beginning
 f alse

ELSE µ
�
k 	 r
 max � µk 	 r � µ

�
k 	 r � 1 � tk 	 r � 1 �

(c) IF (µ
�
k 	 r
 µk 	 r) THEN f inished
 true

ELSE

i. overcost
 overcost � ��� µk 	 r � tk 	 r � dk 	 r � � � µk 	 r � µ
�
k 	 r � 	

ii. r
 r � 1
iii. IF (k � r � n) THEN f inished
 true

(d) GO TO 6

7. Optimization of the criterion.

(a) nbtache = 1
temps = 0

(b) IF ((temps+µk 	 nbtache < L)) THEN

i. temps = temps + µk 	 nbtache

nbtache = nbtache + 1
ii. GO TO 7b

(c) nbtache
 nbtache � 1

(d) This part is activated only if it is possible to insert an additional task between A1 and A2 by postponing A1. IF
(nbtache > origine) THEN

i. a jout
 nbtache � origine
ii. FOR cpt = 1 TO a jout STEP 1

A. maxy = origine � cpt
µ
�
k 	 1
 max � µk 	 1 � µk 	 maxy � tk 	 maxy � L �

ovcost2
 ��� µk 	 1 � tk 	 1 � dk 	 1 � � � µk 	 1 � µ
�
k 	 1 � 	

r = 2
B. µ
�
k 	 r
 max � µk 	 r � µk 	 r � 1 � tk 	 r � 1 �

ovcost2
 ovcost2 � ��� µk 	 r � tk 	 r � dk 	 r � � � µk 	 r � µ
�
k 	 r � 	

r = r + 1
IF r � maxy GO TO 7(d)iiB

C. f inished = f alse
r = nbtache+1
µ
�
k 	 r
 max � µk 	 r � µk 	 origine 	 1 � tk 	 origine 	 1 � θ2 �

D. IF (f inished = true) GO TO 7(d)iiF
E. µ
�
k 	 r
 max � µk 	 r � µ

�
k 	 r � 1 � tk 	 r � 1 �

IF µ
�
k 	 r
 µk 	 r f inished =true

ELSE ovcost2
 ovcost2 � ��� µk 	 r � tk 	 r � dk 	 r � � � µk 	 r � µ
�
k 	 r � 	

r
 r � 1
f inished
 f inished OR � k � r � n �

RR n° 4337

12 Duron & Proth & Wardi

F. SI (ovcost2 < overcost) overcost = ovcost2

8. If the overcost obtained when the bitask is inserted after ak is the smallest computed so far, we keep record of it.

(a) IF (overcost
�

overcost �) THEN

i. overcost �
 overcost

ii. FOR i
 1 TO k DO µ �i
 µi

iii. µ �k 	 1
 µk � tk � θ1

iv. FOR i
 k � 1 TO k � rprime � 1 DO µ �i 	 1
 µ
�
i

v. µ �k 	 rprime 	 1
 µk � tk � θ1 � L � θ2

vi. FOR i
 k � rprime TO k � r DO µ �i 	 2
 µ
�
i

vii. FOR i
 k � r � 1 TO n DO µ �i 	 2
 µi

(b) IF k
�

kmax THEN

i. k
 k � 1
ii. GO TO 3

END

10 First heuristic Algorithm

The first real time heuristic is based on the following idea : when the bitask arrives, we try to schedule a single task
whose length is equal to θ1 � L � θ2. We use Algorithm 1 to find the optimal insertion. Then we insert the bitask taking
advantage of its idle time at the position provided by algorithm 1.

The off-line part of the algorithm is the same than the one of algorithm 1. The on-line part of the algorithm is the
same than the one of algorithm 1, followed by the computation of the new starting times of the tasks, taking avantage of
the idle time of the bitask.

This algorithm may be summarized as follows :

Algorithm 3

1. Off-line computation.

(a) Compute Lk � θ � for k
 1 ��������� n and θ � � 0 � � ∞ �
2. On-line Computation.

(a) Compute the greater integer Q such that aQ � tQ � θ1 � L � θ2 � D

(b) Compute WQ
 � k � k ��� 1 � 2 ��������� Q � and ∆k � 0 ��� � Q �
(c) Compute the increase zA � θ �
 min

k � WQ
Lk � θ � Let k � be the value of k � WQ that leads to the minimum.

(d) Set the schedule up to date using the equations (5) and (6).

11 Second heuristic Algorithm

The second real time algorithm works as the optimal one (Algorithm 2), except that only the first possible starting time
of A1 is tested for each location. The difference with Algorithm 2 is that we do not execute step 7. In the remaining of this
paper we call this heuristic Algorithm 4.

12 Numerical examples

In this section we test the performance of the heuristic described in algorithm 3 versus the performance of algorithm
4 in term of quality of results. We compare with the optimal results provided by Algorithm 2.

We generate a schedule at random using the following rules :

- Processing times of the tasks are generated at random as follows :

INRIA

Insertion of a Random Bitask in a Schedule : a Real-Time Approach. 13

� Interval [1,8] is selected with a 0.3 probability.
� Interval [9,13] is selected with a 0.2 probability.
� Interval [14,20] is selected with a 0.5 probability.

As soon as the interval is selected, the processing time is chosen at random in the interval.

- Each task is followed by an idle period the length of which is generated as follows :
� 0 with a 0.5 probability.
� chosen at random in [1,20] with a 0.5 probability.

- The deadline of a task is selected at random in the interval
�
z � 1 � z � 10 � where z is the completion time of the task.

This schedule is given in Table 6
We try to insert random bitasks in that schedule. These bitasks are generated at random. θ1, L, θ2 are generated

respectively on [1,30], [1,50] and [1,20], using uniform repartition. The deadline D
 600 is the same for each bitask.
We consider 10 cases. They are described in table 4
We apply Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4 on each one of these cases. The results are presented

in table 7

13 Complexity

In this section, we compute the complexity of each proposed algorithm. We assume that any event (jump, operation,
test) has the same complexity. We only consider the worst case. We assume that there are n tasks in the schedule where
we want to insert the random task

13.1 Complexity of Algorithm 1

13.1.1 Off-line complexity.

The better algorithm we can use to compute � 1 � is given straightforward : FOR i = 1, n DO

FOR j = 1, i DO

Xi � j
 0
Yi � j
 0

FOR j = i+1, i DO

Xi � j
 Xi � j � 1 � ∆ j � 1

Yi � j
 Xi � j � 1 � f j � 1

The complexity associated to this algorithm is C1
o f f

n

∑
i � 1

�
i

∑
j � 1

2 �
n

∑
j � i 	 1

4 � � 3n2

13.1.2 On-line complexity.

The algorithm 1 may be detailled as follows for a better understanding

1. Q = 1
complexity : 1

2. IF aQ � tQ � θ � D THEN

Q=Q+1
GO TO 2

complexity :
6

∑
i � 1

6
 6n

3. Q
 Q � 1
WQ
 /0
complexity : 3

RR n° 4337

14 Duron & Proth & Wardi

4. FOR k=1, Q-1

IF (∆k>0) THEN WQ
 WQ � � ak �

complexity :
n � 1

∑
i � 1

4
 4 � n � 1 �

5. WQ
 WQ � � aQ �
Min
 LW 1

Q
� θ �

k �
 1
complexity : 3

6. FOR k=2, CARD � WQ �
IF (Min � LW k

Q
� θ �) THEN

Min
 LW k
Q
� θ �

k �
 k

complexity :
n

∑
k � 2

3
 3 � n � 1 �

7. FOR s
 1 � Q

µ
�
k

� 	 s
 µk
� 	 s � � θ �

s � 1

∑
i � 0

∆k
� 	 i � 	

complexity : The summations on the ∆k have already been computed off-line so there will only have
n

∑
i � 1

4
 4n

The total on-line complexity will be C1
on � 17n

13.2 Complexity of Algorithm 2

There has no off-line complexity to compute. The complexity of algorithm 2 is detailed step by step.

- Step 1 : 3

- Step 2 : 10n+8

- Step 3 : 3

- Step 4 : 32

- Step 5 : 3

- Step 6 : 29

- Step 7 : 8+(n-k)(60+20n)

- Step 8 : 2n+10

We only provide the basic complexity for each step, the number of time we will execute each step is function of the case.
In our case, the worst complexity arises when there is no task that can be located between the two subtasks of the bitask
(due to the completion time) and that the processing time of all the tasks that are after ak is less than or equal to L.

So, the complexity will be :

C2
on
 3 �

n � 1

∑
i � 1

32 � 3 �
n

∑
k � 1

� 8 � � n � k � � 60 � 20n ��� � 2n � 10

 34n2 � 6n � 11 � 30n3 � 20n2 � 38n

 30n3 � 54n2 � 32n � 11

INRIA

Insertion of a Random Bitask in a Schedule : a Real-Time Approach. 15

13.3 Complexity of Algorithm 3

This algorithm has the same off-line computations to perform than Algorithm 1 so, its off-line complexity will be :
C3

o f f
 C1
o f f � 3n2

The on-line complexity is given by the complexity of steps 2.a to step 2c of the on-line part of Algorithm 1, that is 13n.

Then, we have to run for one value of k the steps 3,4,5,6 and 8 of Algorithm 2. The complexity is 3 �
n � 1

∑
i � 1

32 � 3 � 2n � 10

34n � 19
And, finally C3

on
 13n � 34n � 19
 47n � 19 � 47n

13.4 Complexity of Algorithm 4

There is no off-line complexity to compute. The values of the complexity are given in section 13.2. Step 7 of the
algorithm is ignored.

C4
on
 3 � 10n � 8 �

n

∑
k � 1

� 3 �
n � k

∑
i � 1

32 � 3 � 2n � 10 ���
 34n2 � 6n � 11

The results on complexity are displayed in Table 5

14 Conclusions

The conclusions of this paper are the following :

- Algorithm 3 provides a value of the criterion that is always significantly better than the value provided by algorithm
1. It means that it is always better to take advantage of the idle period.

- The results provided by Algorithm 4 are slightly better than the results provided by algorithm 3.

A good trade-off between the complexity and the quality of the solution is Algorithm 3.
Further research concern the insertion of a bitask in a schedule of bitasks.

RR n° 4337

16
D

uron
&

P
roth

&
W

ardi

Table 4: The parameters of the bitasks.

Bitask number i θ1 θ2 L
1 30 19 13
2 30 9 55
3 1 17 36
4 5 12 41
5 30 12 10
6 6 12 31
7 22 11 9
8 26 12 16
9 30 10 41

10 14 10 47
11 30 1 23

Table 5: Complexity of the algorithms.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Complexity Off-line 3n2 0 3n2 0
Complexity On-line 17n 30n3 �

54n2 �

32n

�

11 47n 34n2 � 6n

�

11

IN
R

IA

Insertion
ofa

R
andom

B
itask

in
a

Schedule
:

a
R

eal-Tim
e

A
pproach.

17

Table 6: Example of Schedule

Task #i Start. time Proces. time Due date Idle time Task #i Start. time Proces. time Due date Idle time
1 0 17 11 0 26 465 20 495 0
2 17 8 32 0 27 485 20 514 15
3 25 20 41 0 28 520 3 531 0
4 45 13 53 0 29 523 13 543 0
5 58 15 83 0 30 536 15 547 11
6 73 8 76 0 31 562 20 592 19
7 81 17 105 0 32 601 12 606 15
8 98 14 122 19 33 628 8 639 1
9 131 17 158 3 34 637 8 643 8

10 151 13 165 8 35 653 19 672 19
11 172 13 194 0 36 691 20 707 0
12 185 8 186 0 37 711 13 717 10
13 193 20 220 14 38 734 17 742 14
14 227 13 236 0 39 765 15 781 0
15 240 7 257 15 40 780 13 794 16
16 262 20 278 15 41 809 9 825 3
17 297 13 305 19 42 821 20 836 15
18 329 10 344 0 43 856 12 875 19
19 339 8 337 0 44 887 15 903 0
20 347 20 377 15 45 902 13 912 18
21 382 15 407 0 46 933 5 939 0
22 397 8 415 0 47 938 13 952 0
23 405 2 403 19 48 951 12 973 0
24 426 8 424 18 49 963 13 976 0
25 452 13 468 0 50 976 8 994 0

R
R

n°
4337

18
D

uron
&

P
roth

&
W

ardi

Table 7: Results

Algorithm 1 Algorithm 2
bitask Id Inserted After Starting time Criterion Inserted After Starting time Criterion

1 15 247 103 23 407 42
2 15 247 344 8 112 14
3 23 407 66 6 81 0
4 15 247 84 12 194 0
5 23 407 56 23 407 15
6 23 407 44 6 81 0
7 23 407 25 23 407 3
8 23 407 66 23 407 13
9 15 247 229 15 247 15

10 15 247 155 17 310 0
11 23 407 66 23 412 16

Algorithm 3 Algorithm 4
bitask Id Inserted After Starting time Criterion Inserted After Starting time Criterion

1 15 247 103 23 407 42
2 15 247 36 8 112 14
3 23 407 6 6 81 0
4 15 247 8 20 367 0
5 23 407 15 23 407 15
6 23 407 1 6 81 0
7 23 407 3 23 407 3
8 23 407 13 23 407 13
9 15 247 15 15 247 15

10 15 247 23 17 310 0
11 23 407 17 23 407 17

IN
R

IA

Insertion of a Random Bitask in a Schedule : a Real-Time Approach. 19

References

[1] Huizing A. and Bossé E. A high-level multifunction radar simulation for studying the performance of multisensor
data fusion systems. Part of the SPIE conference on signal processing, Sensor fusion, and target recognition VII,
Orlando, Florida, April 1998.

[2] Billeter D.R. Multifunction Array Radar. Artech House, 1989.

[3] Orman A. J. Modelling for the control of a complex radar system. Computers Ops Res., Vol. 25, n°3, pp 239-249,
1998.

[4] Orman A. J. Models for scheduling a multifunction phased array radar system. PhD thesis, University of Southamp-
ton, 1998.

[5] Weinberg L. Scheduling multifunction radar systems. RCA Government Systems, Division Missile and Surface Radar,
Moorestown, N.J., 08057, <10-4A-EASCON77 to 10-4J-EASCON77>.

[6] Shahani A.K. Moore A.R. Orman A.J., Potts C.N. Scheduling for a multifunction array radar system. European
Journal of operational research, 90, pp 13-25, 1996.

RR n° 4337

20 Duron & Proth & Wardi

Contents

1 Introduction 3

2 Formulation of the problem 3

3 Properties of the problem 3

4 Real-Time Strategy 5

5 A Numerical Example 6

6 Problem formulation 8

7 An upper bound for z 8

8 The new starting times 9

9 Optimal Algorithm 10

10 First heuristic Algorithm 12

11 Second heuristic Algorithm 12

12 Numerical examples 12

13 Complexity 13
13.1 Complexity of Algorithm 1 . 13

13.1.1 Off-line complexity. 13
13.1.2 On-line complexity. 13

13.2 Complexity of Algorithm 2 . 14
13.3 Complexity of Algorithm 3 . 15
13.4 Complexity of Algorithm 4 . 15

14 Conclusions 15

INRIA

Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

