archives-ouvertes

Fast Redundancy Elimination Using High-Level
Structural Information from Esterel

Dumitru Potop-Butucaru

» To cite this version:

Dumitru Potop-Butucaru. Fast Redundancy Elimination Using High-Level Structural Information
from Esterel. RR-4330, INRIA. 2001. inria-00072257

HAL Id: inria-00072257
https://hal.inria.fr /inria-00072257
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00072257
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4330--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Fast Redundancy Elimination Using High-Level
Structural I nformation from Esterel

Dumitru Potop-Butucaru

N° 4330

November 2001

THEME 1

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

Fast Redundancy Elimination Using High-Level
Structural Information from Esterel

Dumitru Potop-Butucaru*

Théme 1 — Réseaux et systémes
Projet Tick

Rapport de recherche n® 4330 — November 2001 — 15 pages

Abstract: Esterel programs and SyncCharts hierarchical automata are compiled into flat
sequential circuits. The current compiling process often generates too many latches and
gates. We propose a compositional technique based on structural information that effi-
ciently removes redundant latches and gates, without adding extra logic. The transforma-
tion works in linear time and gives good practical results. The simplified circuit can be used
for simulation, verification, and optimisation.

Key-words: Esterel , synchronous language, latch oprimization, logic optimization, com-
positionality, hierarchical optimisation

* Ecole des Mines de Paris, CMA

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Utilisation d’informations structurelles de haut niveau
pour la simplification de specifications Esterel

Résumé : La compilation de programmes Esterel, ainsi que celle de spécifications visuelles
SyncCharts, produit des circuits séquentiels non structurés qui ont souvent beaucoup trop
de registres et de portes logiques. Ce rapport propose une technique compositionnelle pour
I’élimination d’éléments de circuit redondants en utilisant de I'information structurelle de
haut niveau. Les algorithmes sont (sous-)linéaires dans la taille du circuit et les résultats
sont bons. Le circuit simplifie peut étre utilise a des fins de simulation, vérification, et
optimisation.

Mots-clés : Esterel, langage synchrone, optimisation sequentielle, compositionalite, opti-
misation hierarchique

Fast redundancy elimination for Esterel 3

1 Introduction

We present a new latch and logic removal algorithm for the circuits generated by the Esterel
compiler [3, 4, 5]. The algorithm also applies to graphical hierarchical automata descriptions
such as SyncCharts [1].

The algorithm simplifies the state-encoding part of the circuit by removing redundant
circuit components. The process is based on structural information directly available from
the source Esterel program and already computed by the compiler.

The simplification algorithm is linear in the size of the state-encoding part of the circuit.
Therefore, the simplification is quasi-instantaneous even for the largest examples available.

The simplification essentially consists of removing redundant latches and the logic that
drives them. Decreasing the number of latches is useful for simulation, since the size of the
compiled simulation code decreases, and for verification and optimisation, since BDD-based
reachability algorithms are sensitive to the number of latches [9].

Using structural information from Esterel to improve the state representation is not a
new idea. Over-approximation of the reachable state space is used to multiplex registers in
[12, 14]. Efficient state encoding for C code generation is presented in [8]. Our technique is
orthogonal to those and it may improve their results.

In the next section we present the structural information we use and we show how to
extract it from the initial Esterel specification. Section 3 shows how to use this information
to remove latches and gates. Section 4 presents benchmarks and Section 5 concludes.

2 Structural information

Esterel is a synchronous language. The execution of an Esterel program consists in a se-
quence of reactions driven by the clock ticks. At each clock tick, input signals are read and
output signals are generated.

The language is imperative and the state is implicitly encoded in the program text. The
kernel constructs are as follows:

e empty statement:

nothing
e sequential and parallel composition, loop:
P3q pllq loop p end

e signal emission, signal presence/absence test, local signal declaration:

emit S present S then p else ¢ end
signal S in p end

e exception raising and handling

exit T trap T in p end

RR n° 4330

4 Potop-Butucaru

e preemption

suspend p when S abort p when S

e delay

pause

The full language contains many more user-friendly statements that are macro-definitions
over the kernel language. Therefore, we can reason on the kernel language only. For our
purposes, we shall use the following (artificial) example:

await A;
await B;
abort
await D
I
present E then
pause
else
await F
end
when C

where the await S macro-statement expands into

trap T in
loop
pause;
present S then exit T end
end loop
end trap

The program awaits the signal A from the environment, then awaits B. Then, it executes the
branches of the parallel statement. The first parallel branch awaits D and terminates. When
started, the second branch checks if signal E is present. If yes, it pauses for one clock tick
and terminates. If not, it awaits signal F and terminates. The parallel statement instantly
terminates when both branches are terminated. The abort...when C statement preempts
the execution of the parallel statement when C occurs, whichever state the parallel is in.

2.1 Esterel program state

The only kernel statement that takes time is pause. When the control reaches a pause
statement, it is retained there until the next clock tick. All the other kernel statements
handle the control in a purely combinational way and do not generate control flow delays.
Therefore, the state of the Esterel program between clock ticks is determined by the list

INRIA

Fast redundancy elimination for Esterel 5

of the explicit or macro-generated pause statements where the control has paused. We say
that these statements are selected.

The notion of selection inductively extends to arbitrary statements. We say that a
statement is selected if and only if it contains a selected pause. The parallel statement in
our example is selected if control pauses in one of the delay statements “await D”, pause,
or “await F”. The selection status is 1 if the statement is selected, 0 otherwise. It is easily
computed using the syntactic tree of the statement, which is as follows for our example:

;o#

await A await B abort

/

await D present #

pause await F

The selection status at a node is the disjunction of those of the children.

There is an important difference between parallel nodes and the other nodes: the statuses
of parallel branches are independent, while the statuses of children are exclusive for all the
other nodes. One cannot pause at the same time in the alternate branches of a test or
in different components of a sequence. This is pictured by the # signs on the nodes with
exclusive children.

In the circuit generated by the Esterel compiler, the selection structure is directly mapped
into a tree of registers and or-gates:

A pause statement generates a register that delays the control flow. The other nodes gen-
erate or-gates (the one-input or-gate generated by the abort statement has been simplified
away). Notice that or-gates associated with nodes having exclusive children can be replaced
by zor-gates.

The selection wires guard the execution of the resumption code — preemption tests and
state changes triggered by control resuming its flow from the registers where it paused. The
figure below shows how the selection status of the abort statement drives the preemption
test on signal C:

RR n° 4330

6 Potop-Butucaru

: eemption

1
' itest

preempt | resume|
parallel | parallel

When we resume the abort statement, we first check if the statement is selected. If it is, we
trigger the preemption test. If C is present, we preempt the parallel statement. Otherwise,
we resume it.

2.2 Redundant selection nodes
A commonly found structure inside Esterel programs is:
p=pillp2l| - - - |lpk

where the p;’s are non-terminating statements (e.g. infinite loops). The selection tree of the
statement p has the form:

When we start p, the p;’s start instantaneously. The statement p stops only when it is
globally preempted, for example by an enclosing abort statement. The p;’s all stop at the
same time. Therefore, the selection statuses of p and of the p;’s are always equal:

We use a traditional geometry notation to mark the equality relations in the selection tree:
equal wires are decorated with the same sign:

INRIA

Fast redundancy elimination for Esterel 7

We will say that a selection node always equal to its parallel parent is redundant.
We usually find equality relations at all levels in the selection tree. A good example is
the digital wristwatch programmed in Esterel [2].

The program itself consists of 5 non-terminating modules running in parallel, as pictured

above. For instance, the BUTTON module translates button presses into internal commands

addressed to the other modules. Here, the root nodes of the 5 sub-trees are redundant.
Nested within BUTTON, we find the following statement:

every LL do
emit NEXT_ALARM_TIME_POSITION_COMMAND
end
[
every LR do
emit SET_ALARM_COMMAND
end

Every push on the lower-left LL wristwatch button determines the emission of an internal
command signal. Pushing the lower-right LR button triggers another command. The two
parallel branches never terminate, so the selection tree of the statement is:

Each every statement generates exactly one hardware register. Then, the selection tree is:

A
11

to LL test B 2 to LR test

Since the values generated by the three gates are always equal, we can replace the entire

structure by a single latch:
toLL, LR tests ﬁq:]gzc

RR n° 4330

8 Potop-Butucaru

The general transformation will be described in Section 3. Notice it is not a simple retiming,
since the selection wires fanout to tests as explained in Section 2.1.
To determine that a parallel branch is redundant we use the following criterion:

- If a parallel branch cannot terminate, its selection status is always equal to the selection
status of the entire parallel statement.

The Esterel compiler computes the necessary information during the static analysis phase.
Not all parallel branches are redundant. By using our criterion we find parallel nodes
that have both redundant and non-redundant children. This will allow us to further simplify

the state representation in the next section.

In the following table, we compare the total number of parallel statement branches to
the number of redundant branches for several examples. Except for the toy wristwatch, the
examples come from industrial applications (avionics and circuit design).

example parallel redundant
branches branches
cabine 891 776
carburant 362 354
global 1500 1048
mmid 63 61
mmip 33 33
sequenceur 86 84
tcint 39 38
trappes 122 121
wristwatch 34 33

The table shows that redundancy is very frequent.

3 Circuit transformations

We now simplify the selection tree by reducing the redundancy in the state representation.
In doing this, we are subject to a strong constraint: most the selection statuses are used
somewhere in the complete circuit and cannot be simply discarded.

We use 3 types of transformations:

1. redundant fanin simplification
2. removal of gates that are equal to another gate
3. removal of a gate in a set of mutually exclusive gates, if we know their logical OR.

All the transformations can only decrease the number of gates and/or latches.
Also, they do not impose side-effects changes of the circuit outside the selection tree -
they simply replace the selection tree by a simpler circuit providing the same interface.

INRIA

Fast redundancy elimination for Esterel 9

3.1 Fanin simplification

Consider the following parallel selection node having both redundant and non-redundant
children:

The function computed by the parallel node is the same as the one computed by each
redundant child. Therefore, we can simplify the fanin of the parallel selection or-gate:

3.2 Equal nodes

We are now left with the following pattern:

P\ - B

Since all the p;’s selection wires are equal to that of p, it is enough to keep only one of them.
We illustrate the transformation with two small examples. We already saw the first one
in section 2.2. Here, we erase one register and the root selection node:

38

In the second example, we erase two or-nodes:

RR n° 4330

10 Potop-Butucaru

E:> A=B=C
Iia x

The choice of the node to keep is not obvious. For the benchmarks presented in Section 4,
we kept unchanged the sub-tree of minimal depth. Other choices may be explored, e.g.
choosing the sub-tree of minimal support.

3.3 Exclusive gates

A second gate-removing transformation erases one in a set of mutually exclusive selection
nodes of which we know the disjunction. We apply this transformation on exclusive selection
nodes equal to their parallel parent. Here is an example:

Here, we have A = B = C, while D and E are in exclusion and D V E = C. Thus, we can
compute D = B A —=E. The simplified circuit is:

The transformation of Section 3.2 can actually be seen as a particular case of the exclusive
gate transformation, by considering that a single node is a singleton set of mutually exclusive
nodes. This simplifies the implementation.

4 Results

First, we compared the resulting circuits with those of produced using other re-encoding
techniques.

INRIA

Fast redundancy elimination for Esterel 11

In remlatch [11], determining redundant registers is based on the computation of the
reachable state space (RSS) of the circuit. Other latch optimisation techniques are used in
addition.

In regtree [12], the exclusions given by the selection tree are used to re-encode the state
of the Esterel circuit. Basically, if two latch sets are in exclusion in the original circuit, they
are multiplexed on only one of the two original sets by using one extra latch for the choice.
The re-encoding process is applied in a bottom-up way.

As far as our techniques are concerned, we applied two simplification procedures:

Procedure 1 removes redundant fanin and then applies the equal nodes removal transfor-
mation in a bottom-up way.

Procedure 2 removes redundant fanin and then applies the transformation of section 3.3
in a bottom-up way.

The number of latches in the initial and simplified circuits is presented in the following table:

[example || init. [proc.l [proc.2 [remlatch |regtree |
cabine 910 703 450 - 896
carburant 465 378 195 - 412
global 1359 1110 893 - -
mmid 110 90 68 72 81
mmip 45 35 24 18 38
sequencer 154 130 100 - 118
tcing 82 68 59 47 35
trappes 157 123 81 43 -
wristw. 35 24 15 7 27

We also measured the variation in the number of literals (factored) in the simplified circuits,
after a sweep by SIS [10]:

[example || init. [proc.1 [proc.2 |remlatch [regtree |
cabine 25377 | 19736 | 19642 - 24145
carburant 9006 6399 6577 - 6422
mmid 2986 2556 2657 2889 2839
mmip 1175 943 980 1099 1064
sequencer 4451 3776 3841 - 3880
tcint 1201 928 966 1200 1424
trappes 1637 | 3845 | 3779 | 4241 -
wristw. 961 759 794 837 1077

The RSS computation limits the scope of remlatch to circuits of small and medium
size. On sequencer, it ran out of memory after 15 minutes of processing on a machine
with 1Gbyte of memory. On mmid, it ran for more than 2 hours before giving the results.
Its results in terms of latch removal are generally better than the results of our procedures.
However, the logic is significantly larger. We also recall that both the procedures 1 and 2
are quasi-instantaneous even on the largest examples available.

RR n° 4330

12 Potop-Butucaru

An implementation limitation prevents regtree from being applied on circuits containing
combinational cycles. This is the case for global and trappes. Preliminary results show
that the results of regtree can be improved by using the redundancy property we identified.

The tradeoff between logic and latch removal in our procedures is visible if we compare
the results of the procedures 1 and 2. The extra gates generated by Procedure 2 are the
and-gates produced by the circuit transformation of section 3.3. For the examples cabine
and trappes both the size of the logic and the number of latches decrease. In these cases,
the sweep of logic that used to feed erased latches is more effective.

We also were interested in evaluating the impact of our transformations, seen as a cheap
pre-processing phase, on some heavy optimization and verification algorithms. First, we
applied the blifopt circuit area optimization script of SIS on several examples and on their
simplified counterparts. The results showed no general significant difference in size, depth,

number of registers, or optimization time.

However, blifopt can only be applied on small examples, since it relies on RSS com-
putation. So, we did the same comparisons using the combopt|[13] combinational logic op-
timization script. The results are good, as seen in the following table. The pairs give the
number of registers and the number of literals (factored).

example original blifopt proc.2+ combopt
circuit -area combopt

cabine 910/25377 - - -
carburant 465/9006 - 171/2457 | 465/5997
mmid 90/2556 - 68/1322 110/1900
mmip 45/1175 | 12/236 | 24/456 45741
sequenceur 154/4451 - 100/1457 | 154/2421
teint 82/1201 | 43/220 | 58/474 82/808
wristwatch 35/961 11/195 15/415 35/660

Similar results are obtained if we use basicopt as optimizer. basicopt is a sequential
logic optimizer that is not as aggresive as blifopt and that takes less time to execute.

Next, we were interested in reachable state space (RSS) computation, using the TiGeR
BDD library. The RSS size is not changed, but its encoding, yes, as BDDs tend to be smaller
- having less variables.

Also, the simplifications we propose can transform certain sequential properties into
combinational ones, as proved by experiments conducted at Esterel Technologies.

5 Conclusion

By using the hierarchical nature of the Esterel program state encoding we highly simplified
the state representation in the automatically generated circuit.

The cost of the simplification is negligible. We only modified the sub-circuit which holds
the state representation. The transformations we applied are simple enough for the corre-
spondence between the initial and the simplified state representations to be straightforward.
Also, they are compositional.

INRIA

Fast redundancy elimination for Esterel 13

Our simplification procedure can be applied to other synchronous formalisms, and in par-
ticular to the graphical formalism SyncCharts [1]. The carburant example in our tables is
actually an Esterel program automatically generated from a UML/SyncCharts specification
[6].

We also intend to use the information presented in section 2.2 to generate a faster and
smaller sequential (C) code from the Esterel programs, in the spirit of [8].

Other Esterel compiling techniques [7, 8] may take advantage of the selection tree prop-
erties we identified in section 2.2.

Acknowledgements

I wish to thank Gérard Berry et Robert de Simone for taking the time of reading draft
versions of this paper and making lots of constructive remarks.

References

[1] Charles André. SyncCharts: A visual representation of reactive behaviors. RR 95-52,
13S, 1995.

[2] Gérard Berry. Programming a digital watch in Esterel v3.2. Available at
http://www.esterel.org/.

[3] Gérard Berry. Esterel on hardware. Philosophical Transactions of the Royal Society of
London, Series A, 19(2):87-152, 1992.

[4] Gérard Berry. The Esterel synchronous programming language: Design, semantics,
implementation. Science of Computer Programming, 19(2):87-152, 1992.

[5] Gérard Berry. The constructive semantics of pure Esterel. Draft book available at
http://www.esterel.org/, July 1999.

[6] Gérard Berry, Amar Bouali, Xavier Fornari, Emmanuel Ledinot, Eric Nassor, and
Robert de Simone. Esterel: a formal method applied to avionic software development.
Science of Computer Programming, 36:5-25, 2000.

[7] V. Bertin, M. Poizé, and J. Poulou. Une nouvelle méthode de compilation pour le
langage Esterel. In Proceedings GRAISyHM-AAA, Lille France, March 1999.

[8] Stephen Edwards. Compiling Esterel into sequential code. In Proceedings CODES’99,
Rome, Ttaly, May 1999.

[9] Gary Hachtel and Fabio Somenzi. Logic Synthesis and Verification Algorithms. Kluwer
Academic Publishers, 1996.

RR n° 4330

14 Potop-Butucaru

[10] Ellen Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon, Rajeev Mur-
gai, Alexander Saldanha, hamid Savoj, Paul Stephan, Robert Brayton, and Alberto
Sagiovanni-Vincentelli. Sis: A system for sequential circut synthesis. Memorandum
M92/41, UCB, ERL, 1992.

[11] Ellen Sentovich, Horia Toma, and Gérard Berry. Latch optimization in circuits gen-
erated from high-level descriptions. In Proceedings of the International Conference on
Computer-Aided Design(ICCAD), 1996.

[12] Ellen Sentovich, Horia Toma, and Gérard Berry. Efficient latch optimization using
exclusive sets. In Proceedings of the 84th Design Automation Conference (DAC), Ana-
heim, CA, USA, June 1997.

[13] The Esterel Team. The basicopt package documentation. Package available at
http://www.esterel.org/, June 1998.

[14] Horia Toma. Analyse constructive et optimisation séquentielle des circuits générés a
partir du langage synchrone réactif Esterel. PhD thesis, Ecole des Mines de Paris,
September 1997.

INRIA

Fast redundancy elimination for Esterel 15
Contents
1 Introduction 3
2 Structural information 3
2.1 Esterel program state Lo L o 4
2.2 Redundant selectionnodes o 6
3 Circuit transformations 8
3.1 Fanin simplification oL 9
3.2 Equalnodes e 9
3.3 Exclusive gates L 10
4 Results 10
5 Conclusion 12

RR n° 4330

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

