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Obtention de la loi fondamentale du trafic routier dans le cadre
de l’algèbre minplus

Résumé : On donne des modèles déterministes et un modèle stochastique du trafic sur une route
circulaire sans dépassement. La vitesse moyenne correspond à la valeur propre de matrices minplus
dans le premier cas et à l’exposant de Lyapounov d’une matrice minplus stochastique dans le second.
Les valeurs propres ou l’exposant de Lyapounov sont calculés explicitement. De ces formules on
peut déduire la loi fondamentale du trafic routier liant le flôt à la densité de véhicules dans ces
différents cas. On présente également des simulations numériques utilisant la boı̂te à outils maxplus
de Scilab qui confirment les résultats théoriques obtenus.

Mots-clés : algèbre maxplus, transport, mécanique statistique



Traffic law 3

1 Introduction

For simple traffic models we derive the relation existing between the average flow and the density
of vehicles called sometimes the fundamental traffic law. This law has been studied empirically and
theoretically using exclusion processes (for example see [3, 4, 5, 2, 9, 6]). Here we show that the
simplest deterministic model is purely minplus linear and that this fundamental law may be deduced
from the explicite computation of the minplus eigenvalue of the matrix describing the dynamics of
the system1.

Then we study the simplest stochastic model and show that the average speed is the Lyapounov
exponent of a stochastic minplus matrix. In general, it is very difficult to compute a Lyapounov
exponent. In our case, it is possible to characterize completely the stationary regime. From this
characterization it is straightforward to obtain the Lyapounov exponent. The fundamental traffic law
is easily derived from this result.

The traffic is modelled by N cars in a circular road of unitary length. In the deterministic case
the cars want to move at the given velocity v and must respect a security distance with the car ahead.
In the stochastic model the cars are allowed to move at velocities w and v (with w < v) chosen
randomly and independently with probability (µ, λ) . We consider here only the case where the cars
are not allowed to overtake other cars and we use discrete time dynamic models.

v

w

Figure 1: Traffic line without overtaking.

2 Deterministic Modelling

In this model, we consider N cars moving on a one way circular road of length 1. Each car indexed
by n = 1, · · · , N has a desired speed v, a size 0 (without loss of generality), and must respect a
security distance σ with the car ahead. A discrete time dynamic model is used where, at each time
step t , the driver tries to cover the largest possible distance, denoted x t

n, taking into account the
constraints imposed by the car ahead. In order to determine the dynamics of the system we have to
know at what precise instant the security distances have to be verified. We consider two cases :

1Here there is no asymptotic study, the computation can be done for a fix number of vehicles
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4 Pablo Lotito, Elina Mancinelli, & Jean-Pierre Quadrat

1. The move of the driver ahead is not anticipated then the covered distances by the cars are :

x t+1
n =

{
min

(
x t

n + v , x t
n+1 − σ

)
, if n < N ,

min
(
x t

N + v , x t
1 + 1− σ ) , if n = N .

(1)

2. The move of the driver ahead is anticipated then the covered distances are given by :

x t+1
n =

{
min (xn(t)+ v , xn+1(t + 1)− σ) , if n < N ,

min (xN (t)+ v , x1(t + 1) + 1− σ) , if n = N .
(2)

For these two models we want to derive the fundamental traffic law giving the relation between the
average car density and the average car flow.

3 Minplus Algebra

The fundamental traffic law may be derived easily from the eigenvalue computation of a minplus
matrix describing the dynamic of the traffic system. Before showing this result, let us make some
recalls about minplus algebra. The minplus algebra is, by definition [1], the set R ∪ {+∞} together
with the laws min (denoted by⊕) and + (denoted by ⊗). The element ε = +∞ satisfies ε ⊕ x = x
and ε ⊗ x = ε (ε acts as zero). The element e = 0 satisfies e ⊗ x = x (e is the unit). The main
discrepancy with the conventional algebra is that x ⊕ x = x . We denote Rmin = (R ∪ {+∞} ,⊕,⊗)
this structure. Rmin is a special instance of diod (semiring with idempotent addition).

This minplus structure on scalars induces a dioid structure on square matrices with matrix
product A ⊗ B , for two compatible matrices with coefficients in Rmin, defined by (A ⊗ X )ik =
min j

(
Ai j + B jk

)
. Then the unit matrix is denoted E. We may associate to a square matrix A an

incidence graph G(A) where the nodes corresponds to the columns and the rows of the matrix A and
the arcs to the nonzero entries (the weight of the arc ( j, i) being the non zero entry A j i ). Then the
weight of a path in G(A) is the sum of the weights of the arcs composing the path. We will use the
three following fundamental results.

1. If the weights of all the circuits C of G(A) (where A is a N × N matrix with entries in
Rmin) are positive the equation x = A ⊗ x ⊕ b admits a unique solution x = A∗ ⊗ b with
A∗ = E ⊕ A ⊕ · · ·⊕ AN−1 .

2. If G(A) is strongly connected, the matrix A admits a unique eigenvalue ρ satisfying ∃x ∈
RN

min : A ⊗ x = ρ ⊗ x which has the graph interpretation ρ = minc∈C |c|w/|c|l where |c|w
denotes the weight of the circuit c and |c|l denotes the arc number of the corresponding circuit.

3. The eigenvalue of A gives the asymptotic behaviour of the dynamic minplus linear system
X t+1 = A⊗ X t in the following sense. There exists T ≤ N and K such that for all k ≥ K we
have Ak+T = ρT ⊗ Ak .

INRIA



Traffic law 5

4 The Fundamental Traffic Law in the Deterministic Non An-
ticipative Case

Using minplus notation, the dynamics of the traffic in the non anticipative case may be written in
scalar form

x t+1
n =

{
v ⊗ x t

n ⊕ (−σ) ⊗ x t
n+1, if n < N,

v ⊗ x t
N ⊕ (1− σ) ⊗ x t

1, if n = N .
(3)

In matrix form we have

X t+1 = A ⊗ X t , (4)

where

A =




v −σ
. . .

. . .

. . . −σ
1− σ v



.

The precedence graph associated to A is given in Figure 2.

1 2

3N

−σ

−σ

−σ

1−σ

−σ






v

v

v

v

v

Figure 2: Precedence Graph.

The elementary circuits are the loops (of weight v) and the complete circuit (of weight 1− Nσ ),
so we have:

ρ = min

(
v,

1− Nσ

N

)
.

RR n◦ 4324



6 Pablo Lotito, Elina Mancinelli, & Jean-Pierre Quadrat

Considering that the minimal space needed by a car on the road is σ , the average car density d
is Nσ divided by the length of the road, taken equal to 1, therefore d = Nσ . The average flow is
equal to the car density times the average speed that is f = ρNσ . Using the eigenvalue formula we
obtain the fundamental traffic law :

f = min{ v
d
, σ (1 − d)} .

Using this minplus model, we find the results presented in [2].

5 The fundamental Traffic Law in the Deterministic Anticipa-
tive Case

Using minplus notations the dynamic of the traffic in the anticipative case may be written

X t+1 = B ⊗ X t+1 ⊕ C ⊗ X t . (5)

where

B =




ε −σ
ε

. . .

· −σ
1− σ ε


 , C =




v
. . .

. . .

v



.

This system is implicit, we have to compute X t+1 as a function of X t . The existence of B∗ is
verified if and only if 1− Nσ ≥ 0, which is true otherwise we could not have N σ -sized cars inside
a circular road of length 1. This condition being verified, the explicit form of the system may be
computed using the star operation :

X t+1 = B∗ ⊗ C ⊗ X t . (6)

The mean speed of the cars is the Rmin eigenvalue of B∗ ⊗ C which is equal to v.
This result could have been guessed without any computation. Indeed in this deterministic case,

all the cars may move with speed v (at the starting points the cars respect the security distance and
they can move all together at speed v respecting this security distance).

6 Stochastic Modelling

Now we consider that at each time step t , each driver n chooses his wanted speed v t
n randomly

between {w, v} with probability {µ, λ}, w ≤ v, that is the random variables {v t
n | n = 1, · · · , N; t ∈

N} are independent identically distributed Bernouilli random variables. We will suppose that –

INRIA



Traffic law 7

w = 0, without loss of generality, – the security distance is 0 (this means that two cars may be in
the same position), – the driver may anticipate the move of the car ahead. Then the dynamic of the
system is :

x t+1
n =

{
min

(
vt

n + x t
n , x t+1

n+1

)
, if n < N ,

min
(
vt

N + x t
N , 1+ x t+1

1

)
, if n = N .

(7)

This system is still linear in the sense of the minplus algebra but stochastic. Within this algebra the
formula (7) becomes

x t+1
n =

{
vt

n ⊗ x t
n ⊕ x t+1

n+1 , if n < N ,

vt
N ⊗ x t

N ⊕ 1⊗ x t+1
1 , if n = N .

(8)

Defining

X t =




x t
1
...

x t
N


 , A =




ε e
. . .

. . .

. . . e
1 ε



, B t =




vt
1

vt
2

. . .

vt
N




where the coefficients not stated are ε , we can rewrite the equations in a vectorial way

X t+1 = A ⊗ X t+1 ⊕ B t ⊗ X t . (9)

In our case A∗ is easy to compute

A∗ =




e e · · · e

1
. . .

...
...

. . .
. . . e

1 · · · 1 e



.

Then

X t+1 = Ct ⊗ X t (10)

with Ct = A∗ ⊗ B t

Using the fact that the matrices C t are all irreducible we know by Cor. 7.31 of [1] that :

lim
t

x t
n/t = v̄, ∀n .

Then v̄ is called the Lyapounov exponent of the stochastic minplus matrix C (with (C t )t∈N indepen-
dent samples of C).

Computing explicitly the Lyapounov exponent is a difficult task. In [8] explicit formulas involv-
ing computation of expectations are given. Here we are able to characterize the stationary regime of
X t and to compute explicitly the expectation appearing in v̄.

RR n◦ 4324



8 Pablo Lotito, Elina Mancinelli, & Jean-Pierre Quadrat

7 Jam Regime

In order to represent the state of the system we use diagrams where :

1. each segment outside the outer circle represents the amount of cars in that position;

2. the black [resp. grey ]segments between the circles are proportional to the proportion of cars
with wanted speed 0 [resp. v ];

3. the cars numbered 1, N/2 and N are represented by a light-grey, grey and dark dot respec-
tively.

In the Figure 3 we show the evolution of the system for 100 cars with speeds 0 and v = 1/3 , at
times t = 0, 10, 100, 1000

Figure 3: Example of evolution of the system (v=1/3).

In the Figure 3 we show the evolution of the system for 50 cars with speeds 0 and v = 0.3 , at
times t = 0, 10, 100, 500.

Figure 4: Example of evolution of the system (v=0.3).

Definition 1 1. A jam state is a state where the cars are concentrated in k possibly empty clus-
ters. The number k =

⌈
1
v

⌉
is the upper round of 1/v) {π1, · · ·πk} with πi+1 − πi = v for

i = 1, ..., k − 1. In such a jam state the distance between two clusteres is v except for atmost
one pair. When 1/v ∈ N we say that the jam state is regular) and the distance between the
clusters is always v.

INRIA
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2. When for all t ≥ T the system stays in jam states we say that after T the system is in a jam
regime.

Proposition 1 A jam state is characterized by dv(x) = 0 with :

dv(x) = min
h

(
∑

j 6=h

{
x j+1− x j

v

})
; with {x} = x − [x] , (11)

where [x] denotes the integer part of x and therefore {x} denotes the decimal part of x . For non jam
states we have dv(x) > 0. Moreover

dv(X
T ) = 0⇒ dv(X

t ) = 0, ∀t ≥ T ,

that is after to be entered in a jam state we stay in a jam regime.

Proof: It is easy to see that dv(x) = 0 for a jam state x . The question is then to show the converse.
Let us suppose that dv(x) = 0 by definition of dv there is an h0 such that

∑

j 6=h0

{
x j+1 − x j

v

}
= 0 ,

then for every j 6= h0 we have that
{

x j+1 − x j

v

}
= 0 .

So we are in a jam state.
After having reached a jam state the system stays in a jam regime because the wanted moving

size of the cars are v or 0. In a jam state only two clusters (at the most) h and h + 1 may be at a
distance different of v. After a moving of only one car there is only two possibilities : – the cluster
stays in the same position – the cluster h + 1 change in such a way that the distance of cluster h
and h + 1 becomes v. Then the new state is still a jam state with one cluster in a new position
πh+1 − πh = v and πh+2 − πh+1 ≤ v. �

The function dv(x) can be seen as a sort of distance to a jam regime.
Some numerical experiments (Figure 5) suggest the following result which is not proved.
Conjecture : The sequence

(
dv(X t )

)
t is non increasing.

Theorem 1 A jam regime is reached with probability one.

IIn order to prove that a jam regime is reachable, we construct a finite sequence of independent event
with positive probability after which the system reaches a jam state. Then this finite sequence will
appear with probability one in an infinite sequence of events.

The dynamic of the system is given by the matrix C(ω) = A∗B(v(ω)) where B is the diagonal
matrix of car wanted-speeds chosen randomly and independently between 0 and v. Let us consider

RR n◦ 4324



10 Pablo Lotito, Elina Mancinelli, & Jean-Pierre Quadrat
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t

d (X )tv

Figure 5: Evolution of dv(X t ) with t.

the matrix C j associated to the speed v = (0 · · ·0, v, 0 · · ·0) with v in position j . All the matrices
C j , j = 1 · · ·N have a strictly positive probability of occurrence.

Consider the finite sequence of independent events associated to the following matrix product

Ck
1Ck

2 ......C
k
N−2Ck

N−1 ,

it is easy to understand that after these events all the cars are together in only one cluster which is a
jam state. Then the proposition gives the result. �

This proof suggests that the time needed to reach a jam regime is very long, howewer there are
other jam states reachable with a higher probability. The particular jam state in the proof has only
the property to be easily characterized.

8 The Stationary Car Distribution

Let us determine the stationary distribution of the population of cars in the k clusters denotedN =
(N1 · · ·Nk).

Theorem 2 The stationary distribution ofN is uniform on the simplex :

S =
{
(n1 · · ·nk) |

∑

i=1,k

ni = N, ni ∈ N
}
.

Proof: Let us consider the Markov chain where the states belongs to the solution set of the previous
diophantic equation. Then we have {N+k−1

N nodes, where k is the number of clusters. Let us show
that for each output arc in a node with transition probability p there is an incoming arc with the same
transition probability (which show that the transition matrix is bistochastic). This property is clearly
a local balance property.

INRIA



Traffic law 11

To prove this local balance property let us consider the state (n1 · · ·nk) then all the possible
transitions following it are of the form

(n1 − d1 + dk, · · · , nk − dk + dk−1) with 0 ≤ d j ≤ n j

this means that there are d j cars that leave the cluster j to the cluster j + 1. The probability of that
event is

λ
∑

d jµ
∑
φ(d j ,n j ) where φ(d j , n j) =

{
0 if d j = n j

1 otherwise
.

If we consider now the state (n1 − d1 + d2 · · ·nk − dk + d1) then we can reach the state (n1 · · ·nk)

making leave d2 cars from the cluster 1, d3 cars from the cluster 3 and so on until the last one in
which we make leave d1 cars. Now the probability of this event is

λ
∑

d jµ
∑
φ(d j+1,n j−d j+d j+1)

but φ(d j+1, n j − d j + d j+1) = φ(d j, n j)and so we have the same probability.
To complete the proof we have to show that this construction which associates to each output

arc an input one is a bijective mapping. For that, since the mapping is injective, let us show that the
number of outgoing arcs from particular state N = (n1 · · ·nk) is equal to the number of incoming
arcs to this state. The number of outgoing arcs fromN is the number of elements of the set

{(d1 · · ·dk) | 0 ≤ di ≤ ni, i = 1 · · ·k} .
The number of incoming arcs toN is the number of elements of the set

{
(d1 · · ·dk) | 0 ≤ n′i − di + di−1 ≤ ni, n′i − di ≥ 0, i = 1 · · ·k} .

These two numbers are equal because

0 ≤ n′i − di + di−1 ≤ ni , n′i − di ≥ 0, 0 ≤ n′i ⇔ 0 ≤ di−1 ≤ ni .

�

9 Mean Speed Computation

Knowing the stationary measure we are able to compute explicitely the mean speed.

Theorem 3 If k
def= 1/v ∈ N then the mean speed satisfies

v̄λ(N, k) = λv

Nµ
(k − Sk(N))

with
(N + k)Sk (N + 1) = k − 1+ (N + 1)λSk(N), Sk(0) = k, ∀k, N ∈ N .

Moreover for large N we have the asymptotic

v̄λ(N, k) = λ

Nµ
+ o(1/N) .

RR n◦ 4324



12 Pablo Lotito, Elina Mancinelli, & Jean-Pierre Quadrat

Example 1 1. v̄λ(3, 3) = v(6λ+ 3λ2 + λ3)/10 .

2. v̄λ(4, 4) = v(λ4 + 4λ3 + 10λ2 + 20λ)/35 .

In Figure 6 we show a plot of the mean speed as a function of N and k when λ = 0.5.

v(N,k)

N k

Figure 6: v̄0.5(N, k).

Proof: Knowing the distribution ofN let us compute the mean speed in the following way : the
first car of a queue leaves with probability λ increasing the mean speed of v/N , then the second car
leaves this queue with probability λ2 increasing the mean speed of v/N and so on. Then the mean
speed v = E(V ) with

V =
k∑

s=1

(
Ns∑

j=1

λ j v

N

)
,

that is

V = λ v
N

k∑

s=1

1− λNs

1− λ =
λ

µ

v

N

(
k −

k∑

s=1

λNs

)
.

If k = 1 we easily obtain that

V = λ− λN+1

1− λ
v

N
.

Let us assume that k ≥ 2 and let us denote

Sk (N) = E
(

k∑

s=1

λNs

)
= 1

{N+k−1
N

∑
∑
s

Ns=N

λNs = 1

{N+k−1
N

k∑

s=1

N∑

h=0

∑
∑
j 6=s

N j=N−h

λh .

INRIA



Traffic law 13

Then counting we obtain :

Sk(N) =
Z (N)

{N+k−1
N

with Z (N) =
N∑

h=0

{N+k−h−2
N−h λh .

If we call z = 1/λ and Dz the derivative with respect to z we obtain that

Z (N) = λN

(k − 2)!

N∑

h=0

Dk−2
z zN+k−h−2 . (12)

Therefore

Z (N + 1) = λN+1

(k − 2)!

N+1∑

h=0

Dk−2
z zN+1+k−h−2 ,

Z (N + 1) = λN+1

(k − 2)!
Dk−2

z

(
zN+1+k +

N∑

h=0

zN+k−h−2

)
,

Z (N + 1) = λN+1

(k − 2)!

(
Dk−2

z zN−1+k +
N∑

h=0

Dk−2
z zN+k−h−2

)
,

but from (12) we have that

Z (N + 1) = λN+1

(k − 2)!

(
Dk−2

z zN−1+k + {N+k−1
N (k − 2)!λ−N Sk(N)

)
.

Computing the derivative and simplifying we obtain

Sk(N + 1) = k − 1

N + k
+ N + 1

N + k
λSk(N).

which proves the first part of th theorem.
To find the asymptotic we remark that Sk(N) goes to 0 when N goes to∞. �
In Figure 7 we show a simulation of X t/t converging towards the computed Lyapounov exponent

v̄.

10 Extensions and Numerical Results

The previous analysis of the stochastic model may be done also in the non anticipative case. It can
be extended to the case where the cars have a non negligible size σ . The models are still stochastic
minplus linear, for example in the latter case, we have :

x t+1
n =

{
vt

n x t
n ⊕ (−σ)x t+1

n+1 , if n < N

vt
N x t

N ⊕ (1 − σ)x t+1
1 , if n = N

RR n◦ 4324
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t

x /tt

v

Figure 7: Convergence of X t/t towards v̄.

The formula giving the mean speed can be extended to the case where 1/v 6∈ N and when
overtaking is allowed.

Then, using the formulæ obtained, or a simulator using the maxplus Scilab toolbox [11] we can
plot the fundamental traffic law in different cases.

Figure 8: Flow as a function of the density in the stochastic non anticipative case for a continuation
of λ when v = σ .

In conclusion we see that the stochastic model introduce mainly a smoothing of the deterministic
case and that the deterministic case is trivial to obtain in the framework of minplus algebra.

Thanks : We are grateful to : – V. Malyshev who propose the stochastic problem, – all the Maxplus
group for their useful comments and specially to S. Gaubert who gave us the idea of theorem 1.
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Figure 9: Flow as a function of the density in the stochastic anticipative case for a continuation of λ
when v = σ .

Figure 10: Flow as a function of the density in the stochastic non anticipative case for a continuation
of λ when v = 3σ .
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Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
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