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Abstract: When estimating hydraulic transmissivity the question of parameterization
is of great importance. The transmissivity is assumed to be a piecewise constant space
dependent function and the unknowns are both the transmissivity values and the zonation,
the partition of the domain whose parts correspond to the zones where the transmissivity
is constant. Refinement and coarsening indicators, which are easy to compute from the
gradient of the least squares misfit function, are introduced to construct iteratively the
zonation and to prevent overparameterization.
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Indicateurs de raffinement et déraffinement pour la
paramfrisation adaptative: application a ’estimation de
transmissivité hydraulique

Résumé : Dans ’estimation de transmissivités hydrauliques le choix de la paramétrisation
joue un grand réle. La transmissivité est ici supposée étre une fonction constante par
morceaux et les inconnues sont & la fois les valeurs de la transmissivité, ainsi que la zonation,
c’est & dire la partition du domaine dont les parties sont les zones ou la transmissivité est
constante. Des indicateurs de raffinement et de déraffinement, faciles & calculer & partir du
gradient de la fonction écart, sont introduits, permettant ainsi de construire itérativement
la, zonation tout en minimisant le nombre de parameétres.

Mots-clés : Estimation de paramétres, paramétrisation adaptative, écoulement en milieu
poreux



Refinement and coarsening indicators for adaptive parameterization 3

1 Introduction

When estimating hydraulic transmissivities, which are space dependent coefficients in a
parabolic partial differential equations, we minimize an objective function defined as a least-
squares misfit between measurements and the corresponding quantities computed with a
chosen parameterization of the transmissivities.

One of the difficulties in solving this problem is that, because of the high cost of experi-
mental measurements, the data is usually insufficient to estimate the value of the hydraulic
transmissivity in each cell of the computational grid. Therefore we have to find a pa-
rameterization of the transmissivity which reduces the number of unknowns. We refer to
[Sun, 1994, Eppstein-Dougherty, 1996] for a presentation of the parameterizations which are
the most commonly used in hydrogeology.

Lately multiscale parameterizations [Liu, 1993, Chavent-Liu, 1989] have provided a first
answer to the problem of choosing the discretization of distributed parameters. With such
an approach the parameter estimation problem is solved through successive approximations
by refining the scale at which the transmissivities are described and the process is stopped
when the refinement of the scale does not induce a significant decrease of the misfit function.
This method has already brought interesting results in various problems of parameter esti-
mation [Chardaire-Riviére et al., 1990, Chardighy et al., 1996]. However, when going from
the current scale to a finer one, degrees of freedom are added uniformly in the domain of
calculation, and so this approach can lead to overparameterization in the case where only a
few local refinements are needed.

The method using refinement and coarsening indicators, that we present in this paper,
tries to avoid such a drawback. At a given refinement level the parameters are estimated by
minimizing the least-squares misfit to the data. Then we compute refinement and coarsening
indicators which indicate the effect on the optimal data misfit of adding or removing some
degrees of freedom and use these indicators to make a decision concerning the next refinement
level. A variant of this method has already been presented in [Chavent-Bissel, 1998].

We apply this technique to the estimation of the distributed transmissivity parameter T'
in the partial differential equation

Saa—(f +div (—T grad ®) = Q in Q, (1)

where ) is a domain in R?. This equation governs a two-dimensional groundwater flow in
an isotropic and confined aquifer, subject to initial and boundary conditions

®=%;0onTp, (—Tgrad ®)-n=gqqonTly,

&(0) = d, in Q, ®
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4 Ben Ameur, Chavent & Jaffré

where {TI'p, 'y} is a partition of the boundary of € supporting respectively Dirichlet and
Neumann conditions and where

® = piezometric head,

S(z,y) = storage coefficient,

T(z,y) = hydraulic transmissivity,

Q(z,y,t) = distributed source term,

®4,qq given boundary piezometric head and source terms,
&, = given initial piezometric head,

n is the unit normal vector to (2.

The domain  is discretized with a mesh 7 and equations (1),(2) are approximated by a
mixed-hybrid finite element method, which is suitable to the case where the parameter T'
have discontinuities [Chavent-Roberts, 1997].

Our problem is to search for a piecewise constant hydraulic transmissivity 7. Both the
zonation (the partition of €2 into zones where T is constant) and the value of T' on each zone
are to be determined and our aim is to be able to explain the data with a number of zones
as small as possible.

We define our misfit function by

1
HT) = 5 D 18(Ts25,t) - @74 P, 3)
2%}

where ®7"; is the piezometric head measured at point z; at time t;, and ®(T';z;,t;) is the
model output for current transmissivity values.

In order to have an iteration computational cost independent of the number of transmis-
sivity values to estimate, we use the Quasi-Newton gradient algorithm (see [Bonnans et al., 1997]),
which is known to be efficient in the case of a large number of unknown parameters. The
gradient of J is computed by the adjoint state method [Chavent, 1974, Sun, 1994].

The code for the calculation of the piezometric head, the misfit function and its gradient
has been obtained through automatic program generation [Jegou, 1997].

2 Refinement and coarsening indicators

Usually the data are insufficient to estimate the unknown parameter in each cell of the com-
puting mesh 7. To every partition (zonation) Z of 2, we associate hydraulic transmissivities
T which are constant on each zone of Z. In practice we suppose that the boundary of a zone
in Z is made of edges or diagonals of cells of 7. The degrees of freedom of the transmissivity
to be estimated are the values of the transmissivity in each zone of Z. We want this number
to be significantly lower than the number of elements in 7.

We introduce refinement and coarsening indicators in order to construct Z with the lowest
possible number of zones. For this purpose, we need to define these indicators in such a way
that, given a current parameterization, they will tell where to insert new discontinuities of
the transmissivity and which ones can be removed.

INRIA



Refinement and coarsening indicators for adaptive parameterization 5

2.1 Refinement indicators

We shall describe refinement indicators on an example. Let (P;) be an initial problem
where the hydraulic transmissivity is constant in all the domain (Figure 1(b)). So we have
only one value of the transmissivity to estimate, which is done by minimizing the misfit
function J with respect to this single variable. We denote by (P,) the parameter estimation
problem corresponding to a tentative partition of €2 into two zones Z; and Z, having different
transmissivities (Figure 1(c)). We denote by T* = (T}, T5) the solution of (P;) obtained
by minimizing the misfit function with respect to the corresponding two variables. If B =
Ty — T were known, then the solution of minimizing J under the constraint Ty — 15 = B
is necessarily T* = (T, T5), the solution of (Pz). But for B = 0 the T = (T, T§) solution
of the corresponding constrained problem is obviously the solution of (P ).

Z
Za
@ (b) ©
Computing Partition Z! associat- Partition Z2 associat-
mesh T ed to problem (P;) ed to problem (P2)

Figure 1: An example of parameterization refinement

To the problem of minimizing the misfit function under these constraints,
J(T*) = min J(T),
we associate the Lagrangian function defined by
Le(T,\)=J(T)- <\ AT — B > (4)

where A is the Lagrange multiplier associated to the constraint AT = B. Then the Lagrange
condition ensures that 7™ satisfies

L5 7+ x7) = VI(T*) - AT =,
oT

If we denote by J5 = J(T*) = Lp(T*, A*) the optimal misfit associated to the right hand
side B of the constraint, we deduce from (4) and (5) that

oJ3 oL
6—§|B=0 = T;(T*,A*)|B=o =" (6)

RR n° 4292



6 Ben Ameur, Chavent & Jaffré

Therefore the Lagrange multiplier gives us the sensitivity of the optimal data misfit Jg to
the perturbation B. For this reason we call \* a refinement indicator. It can be easily
deduced from equation (5). In our example, the refinement indicator associated to splitting
the single zone in Figure 1(b) into two zones in Figure 1(c) is

8:7 *\ 6J * _ * *
_6—T1(T )__6—T2(T ), where T' = (15, Tg’). (7)

A*
Without solving (P2), this indicator indicates through its absolute value, if the suggested
refinement in Figure 1(c) is likely to induce an important decrease of the optimal misfit
function.
One can see that we define such a refinement by introducing a curve (the boundary of Z,
in Fig. 1(c)). We shall call such a curve a cut. It divides the domain into only two zones of
different transmissivities. In practice, we will use only the families of cuts shown in Fig. 2.

@ (b) © (d) ()

Figure 2: Four elementary families of cuts: (a) vertical, (b) horizontal, (¢) checkerboard,
(d), (e) oblique

The suggested refinement may also consist in dividing the domain in four zones of dif-
ferent transmissivities like in Fig. 3. Then discontinuities between values of transmissivity

Z1 Za

Figure 3: A four zone parameterization partition

in different zones can be written:

o12=T1 =Tz, 024=To—Ty, 034=T3-Ty, 013="T1—T;3.

INRIA



Refinement and coarsening indicators for adaptive parameterization 7

These four equations are not independent, as we have 012 — 03,4 = 01,3 — 02,4. Therefore
they correspond to only three independent constraints which we write as

(T +T3) = (T +Ty) = ov
(T1+T)-T3+Tu) = om (8)
(T\+Ty)— (Tx+T3) = oc.

The first equation (8) corresponds to a refinement given by a vertical line (77 = T3,T» =
T4) dividing our domain into two zones. The second one corresponds to a horizontal cut
(Ty = T»,T5 = T4) and the third one corresponds to a checkerboard cut (Th = Ty, T2 = T5).
The matrix A corresponding to constraints (8), is now

1 -1 1 -1
A=|1 1 -1 -1
1 -1 -1 1

Using the first equation in (5), we deduce that the associated Lagrange multiplier A* =
(AY, A3, Ac)™ satisfies
oJ

Ay + A +AG = 6_T1(T*)’
oJ
=AY+ A AL = (T,
oT,
EY; 9)
Ay — Ay — Az = 6—T3(T*)’
* * * oJ *
=AY A FAC = 6—T4(T )s
where 0J o7 a7 0J 87
Oza—ﬂ(T)+8—1“2(T)+3—1’3(T)+6—ﬂ(T)=6_T(T) (10)

since T* is the minimizer for problem (P;) where the parameter is constant over the whole
domain. The refinement indicators Aj,, A}; and A% associated respectively to the vertical,
horizontal and checker board cuts are easily computed from formula (9) and (10).
So we see that in all cases, refinement indicators can be computed easily from the partial
oJ
derivatives ﬁ(T*) of the misfit function with respect to transmissivities which are constant
J
over some subzones of the current zonation. In practice, the optimal transmissivity 7* on
the current zonation Z is computed by applying a gradient algorithm to the minimization
of J.
Hence not only T* = (T*;,Z; € Z) are available, but also the partial derivatives
6_T(T*)’Zi € Z, which are equal to zero at a minimizer. The key is to compute these
i
partial derivatives (i.e. the gradient of J for the current parameterization) by the adjoint

approach which provides, at no additional cost, all the partial derivatives 6T(T*)’ where
K

RR n° 4292



8 Ben Ameur, Chavent & Jaffré

K is the elementary cell or element of the discretization of the problem. Summing these
elementary partial derivatives inside each zone of the current zonation Z provides the gra-
dient of J which is required to run the minimization algorithm for the determination of 7.

oJ
But once T* is calculated, summation of these 6T(T*) over all K inside any subzone of
K

Z will provide, at almost no cost, the partial derivatives

8; (T*), Z; € Z required for the
determination of refinement indicators A . '
Hence the indicators A associated to a large number of tentative cuts can be evaluated,
and only the few with the largest absolute value are selected. The misfit function is then
minimized for each of the refined parameterization obtained by implementing the cut cor-
responding to one of the selected indicators.

Finally, the refinement Z' of Z which corresponds to the cut providing the largest de-
crease of J is implemented. Z' has only one more degree of freedom than Z, but produces
a significant decrease of the objective function.

2.2 Coarsening indicators

Consider the example shown in Fig. 1, and suppose that in a first step the cut represented in
Fig. 1(c) is selected: the partition Z contains two zones, an interior zone Z; and an exterior
zone Z», with the corresponding optimal values of transmissivity 77 and 7. Suppose
that refinement indicators corresponding to various positions and forms of cuts have been
computed and that two cuts C; and Cs in the interior zone have been selected (Fig. 4 left),
which both correspond to an indicator A with a strong modulus. This indicates that there
are two quite different ways of dividing the current interior zone Z; into two subzones,
which each are likely to give a strong decrease to the least squares fit J. Rather than
selecting arbitrarily one of these cuts, a natural thing would be to think of implementing
them simultaneously, thus dividing the current interior Z; into three subzones Z; 1, Zi 2
and Z; 3 (Figure 4, right), and hence adding two degrees of freedom to Z.

But before choosing definitively this new zonation, one wants to make sure that the four
degrees of freedom Z; 1, Z, 2, Z1,3 and Z, are not overabundant. To do that, one checks
whether the current discontinuity 77 — 75 between Z; and Zy could be set to zero on some
part of 0Z; N0Z, without increasing the optimal misfit J*(T},Ty). Therefore we would like
to define coarsening indicators Aj,J =1,2,3 such that the first order variation of J* is given
by AJ; = =Xi(TY = T5),j = 1,2,3. In order to do this we notice that minimizing the misfit
function of two variables J(T1,T>) over the current parametrization of Fig. 1(c)is equivalent,
to minimizing J(T1 1,712, T1,3,T2), a function of four variables, over the parametrization of
Fig. 4 right under the constraints

TiZ-T, = 17 -1y,
The—-Ty = Ty -1y,
Tvy—T» = Ty -Ty.

INRIA



Refinement and coarsening indicators for adaptive parameterization 9

-

Z3

Two selected cuts Parametrization to study

Figure 4: A refinement for Figure 1(c)

We can write these constraints in matrix form as

1 00 -1 ?’1 Ty — T3

010 -1 Tm =| Tr-1T3

00 1 —1 13 T} —Ts
T,

Aggregating for example the two zones Z] and Z» is equivalent to set to 0 the righthand
side of the first constraint:

Ty,-T, = 0,
Tio=T, = Ty -1y,
Tys—-Ty, = Tr-T;.

The effect, at first order, of this aggregation on the optimal data misfit is measured by the
corresponding Lagrange multiplier

oJ

AT = o1 1

(T7, T3).

Similarly the effects of aggregating Z; » with Z, and Z; 3 with Z, are measured respectively
by

oJ oJ
)‘2 6T1’2( 1>+2 )a /\3 6T1,3( 1> 2)
Notice that one has
oJ oJ
AN+ = — (T, T = ——(T7,T) = 0. 11
11T Ay + A3 6T1( > Ty) (9T2( 5 Ty) (11)

Multiplying (11) by T — T we see that
AJF +AJs +AJ; =0.

RR n° 4292



10 Ben Ameur, Chavent & Jaffré

Hence one at least of the AJ} is negative, so that aggregating the degrees of freedom 7, ;
and Z3 for which AJ} < 0 will lower the number of degrees of freedom and enhance - at least
at first order - the fit to the data. After this coarsening indicator step, the new zonation Z’
will have only one more degree of freedom than Z (if only one of the AJY is negative), or
even the same number of degrees of freedom (if two of the AJ ¥ are negative as this will be

the case in the first numerical example below).

2.3

Algorithm

We have used the refinement and coarsening indicators introduced above, for several numer-
ical studies according to the following algorithm:

1. Choose an initial parameterization partition Z.

2. Do until data are satisfactorily fitted:

3.

4.

Estimate the transmissivity with the current parameterization partition Z by minimizing .J.
For every zone Z; of Z do

Compute all the refinement indicators I corresponding to the chosen family of cuts.

Enddo

. Compute I, the largest absolute value of all computed refinement indicators in all parts

Z;. Select all cuts corresponding to refinement indicators which are larger than 80% of I,,44
(this percentage can be adjusted)

. If some of these cuts generate subdomains with more than one connected component then

Compute the refinement indicators corresponding to the subcuts associated to each con-
nected component (this will be the case each time checker board cut is selected!).
Update the set of selected cuts according to the 80% rule.

Endif

. If the selected cuts or a priori information suggest a refinement pattern to the user then

Compute the corresponding refinement indicator, and update the set of selected cuts.

Endif

. If two or more selected cuts divide the same part Z; then

Compute the corresponding coarsening indicators.
Aggregate the subdomains where coarsening indicators allow it.

INRIA



Refinement and coarsening indicators for adaptive parameterization 11

Endif
9. If there is at most one selected cut in each zone then

Minimize J successively with all parameterizations associated to all selected cuts.
Keep only the cut which induces the largest decrease of J

Endif
10. Update the current partition according to the selected refinement or coarsening.

Enddo

Remark 1 It is possible to skip step 7 and go directly to step 8 in order to obtain an auto-
matic procedure. This will necessitate the calculation of a few extra coarsening indicators.

3 Numerical experiments

3.1 Case of full observations

Numerical experiments have been performed in several simple situations. They correspond
to synthetic examples in which we try to recover two or three transmissivity values and
the zones where they take these values (the range of these values go from 5 to 20). In all
examples boundary and initial data are zero and the righthand side @ of equation (1) is
constant in space and time. The piezometric heads are measured in the whole domain and
at all time.

3.1.1 Case of a central inclusion

We begin our numerical study by the case of a central inclusion (Fig. 5). We suppose that
the initial transmissivity is constant in the whole domain (Fig. 6) and minimize the misfit
function according to this parameterization. The different absolute values of refinement
indicators are represented in Fig. 7. The largest values (flat part of the curve at its left)
correspond to four checkerboard cuts, so we go to step 6 of the algorithm, and we compute
the refinement indicators corresponding to corner subcuts of the checkerboard cuts (there
are four corner subcuts for each checkerboard cut).

Four of these subcuts, represented by the symbols *, x, e and o, are selected, their ge-
ometry is shown in Figure 8, and the corresponding absolute value of the indicators are
shown by the form *, x, @ and o symbols in Figure 7. Then we notice that Figure 8 suggests
to "aggregate" the four corner cuts into a "rectangle cut", and, according to step 7 of the
algorithm, we compute the corresponding refinement indicator (symbol O on Fig. 7). We
observe that it has the largest absolute value of all computed refinement indicators. There-
fore we select it and we obtain at the end of this first iteration the partition shown in Fig. 9.

RR n° 4292



12 Ben Ameur, Chavent & Jaffré

Figure 5: Exact transmissivity: unknown of Figure 6: Initial transmissivity
the inverse problem

For the second iteration we begin by minimizing the misfit function, considering the
partition of Figure 9 obtained at the first iteration. This gives the two zone transmissivity
shown in Figure 11. Then we compute again all refinement indicators in each zone and we
observe that their highest absolute value corresponds to two cuts which divide the central
zone into three parts (Fig.11). The three corresponding coarsening indicators are computed.
Figure 10 shows that removing the transmissivity discontinuity between the exterior zone
and both the top and bottom parts of the central zone will decrease the misfit function,
which is not the case if we remove the transmissivity discontinuity between the middle part
of the central zone and the exterior zone. Therefore only the middle part, is selected and
we obtain the new partition shown in Fig. 12.

At the beginning of the third iteration, after minimization, the misfit function vanishes
up to machine precision, with transmissity values that correspond to the exact ones (Fig. 13).

25

1.53)‘)<
n
05
0O 1‘0 2‘0 3‘0 4‘0 56 60 1 2 3 4 5 6 7
o: Top left, x: Bottom left
e: Top right, *: Bottom right
Figure 7: Computed absolute values of re- Figure 8: The 4 corner cuts correspond-
finement indicators in decreasing order ing to the largest absolute values of

computed refinement indicators

INRIA
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Figure 9: Partition obtained at the end of the first iteration

o

ef 3

o

2

2r ° °

00 0‘.5 i 1‘.5 é 2.‘5 C‘i 3.‘5 1‘1 11 2 3 4 5 6 7
Figure 10: Values of the misfit func- Figure 11: Computed transmissivity calcu-
tion corresponding to the three computed lated on the partition shown in Fig. 9 and
coarsening indicators selected cuts

Let p; be the ith singular value of the Jacobian of ® with respect to transmissivity pa-
rameters, the singular values being indexed with decreasing values, and let pmax be the
largest of these singular values. The number of the singular values is equal to the number
of zones in the zonation. To estimate the conditioning of the minimization problem we

consider the ratio which is plotted in Figure 14 for three cases with a logarithmic

scale on the vertica/itrg)?i};. In the first two cases the constant initial transmissivity and the
exact transmissivity are parameterized with one unknown per grid cell while in the third
case the exact transmissivity is parameterized with the exact zonation represented in Figure
12. We observe that, as expected, the conditioning of the minimization problem is better
when considering the two zone parameterization than when considering the one zone per
grid cell parameterization. This demonstrates the interest of our algorithm which tries to
minimize the number of zones used in the parameterization.

RR n° 4292



14 Ben Ameur, Chavent & Jaffré

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Figure 12: Partition obtained at the end of Figure 13: Optimal transmissivity comput-
the second itération ed with partition shown in fig. 12 is equal

to the exact transmissivity

oL

107k 0

20 ~

107 F ~

10’25 L L L L L L L

0 5 10 15 20 25 30 35 40

dotted line: constant initial transmissivity with one unknown per grid cell
continuous line: exact transmissivity with one unknown per grid cell

*: exact transmissivity with the exact two zone zonation in Fig. 13

i
HMmax

Figure 14: Case of a centered inclusion: ratio as a function of ¢

We also tested the behaviour of the algorithm with respect to noise on the measured
data. Even for high level of noise (80%) the true parametrization is recovered, thanks to
using a larger number of optimization iterations and a larger final number of zones (see fig.
15). This good results may be credited to the fact that a complete observation, in both
space and time, has been used to perform this inversion.

INRIA



Refinement and coarsening indicators for adaptive parameterization 15

0 10 20 3 40 50 60 70 80
% of noise
continuous line: number of optimization iterations

dotted line: number of estimated zones

Figure 15: Number of optimization iterations and number of estimated zones as functions
of the noise level

3.1.2 Case of an off-centered inclusion

Now we consider the case of an off-centered inclusion (fig. 16). We start with the same
constant initial transmissivity as in the previous case (fig. 6) and we proceed in the same
manner. Figures 17, 18, 19, 20, 21 show the partitions obtained at each iteration and the
transmissivity calculated on these partitions. We remark observing fig. 21 that the optimal
transmissivity is recovered with four zones instead of two. Even though the number of zones
(4) is not optimal, it is much smaller than the number of calculation cells (36), which again
shows the interest of the method.

7

Figure 16: Exact transmissivity: unknown Figure 17: Transmissivity computed as a
of the inverse problem constant

RR n° 4292



16 Ben Ameur, Chavent & Jaffré

iR
N
w
~
o
o
~

Figure 18: Partition obtained at the first Figure 19: Partition obtained at the second
iteration and the corresponding computed iteration and the corresponding computed
transmissivity transmissivity

7 7

6 6

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Figure 20: Partition obtained at the third Figure 21: Partition obtained at the fourth
iteration and the corresponding computed iteration and the corresponding computed
transmissivity transmissivity

As for the case of a centered inclusion we evaluate the conditioning of the minimization
problem by looking at the singular values p; of the Jacobian of ®. From Fig. 22, we observe
again that the the problem with the four estimated zones has a better conditioning than
that using one zone per discretization cell.

At the third iteration, one could proceed in a way which departs from the algorithm
presented in section 2.3 by considering, still using the selected cuts shown in Fig. 20, oth-
er partitions than that selected by the algorithm. Fig. 23 shows the two other partitions
which can be considered. The optimal values of the misfit function corresponding to these
two partitions are larger than that corresponding to the partition in Fig. 20, but the misfit
function value corresponding to Fig. 23(b) is not much larger. Using this last partition, we
continue the optimisation steps, and we compute the refinement indicators. Two cuts are
then selected (Fig. 24). The optimal value of the misfit function is smaller in the case of the

INRIA
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-10

10

107 f

-20 -

10 1 RN 4

25 . . . . . .
0 5 10 15 20 25 30 35 40

10”

dotted line: constant initial transmissivity with one unknown per grid cell
continuous line: exact transmissivity with one unknown per grid cell
*: exact transmissivity with the exact four zone zonation in Fig. 21
Hi

Figure 22: Case of an off-centered inclusion: ratio as a function of 4

Mmax

top cut, so we obtain the partition in Fig. 25 with three zones of transmissivity instead of

four as in Figure 21. Thus by allowing a small increase of the misfit function we obtain a
better final zonation.

Figure 23: Other possible partitions that can be considered at the third iteration

We have plotted in Fig. 26 the singular value ratio ol

obtained at the third and

Hmax
fourth iterations for both the regular algorithm (stars) and the above variant (circles). We
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18 Ben Ameur, Chavent & Jaffré

see that, surprisingly, the final three-zone parameterization obtained with the variant of
the algorithm gives a slightly worse conditioning that the four-zone partition given by the
regular algorithm.

Figure 24: Cuts corresponding to the Figure 25: Estimated partition and trans-
largest absolute values of the computed re- missivity obtained when using a variant of
finement indicators the algorithm
) ir @
. .5
0.4 @) 04
03 03 *
[ % 01f o *
Third iteration Fourth iteration
*: partition in Fig. 20 *: partition in Fig. 21
o: partition in Fig. 23 (b) o: partition in Fig. 25

as a function of ¢ for partitions shown in Figs. 20 and 23 (b) for

Figure 26: Ratio

o Pmax . : .
iterations 3 and 4 using the algorithm or a variant of it
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3.1.3 A three-zone case

The last case that we consider is shown in Fig. 27. There are three zones of constant
transmissivity, with a more complicated partition than that considered in the previous cases.
One of these zones is the union of the two dark disjoint rectangles in Fig. 27. We start
once again with a constant transmissivity (Fig. 6) and we follow the steps of the algorithm
described in section 2.3. We show the successive partitions obtained at each iteration and
the transmissivity computed on these partitions in Figures 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38 and 39. In this last figure the estimated partition has 6 zones. Note that, on these
figures, there is a drawing artefact because the drawing program that we used can represent
only constant values on rectangles and therefore cannot properly represent oblique cuts.

We observe that, like in the previous case, only a close approximation of the exact
partition and of the transmissivity values is recovered, but at all iterations the number of
zones is very small compared to that of the cells of the computing mesh.

Figure 27: Exact transmissivity: unknown Figure 28: Transmissivity computed as a
of the inverse problem constant

Figure 29: Partition obtained at the second Figure 30: Partition obtained at the third
iteration and the corresponding computed iteration and the corresponding computed
transmissivity transmissivity
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Figure 31: Partition obtained at the fourth Figure 32: Partition obtained at the fifth
iteration and the corresponding computed iteration and the corresponding computed
transmissivity transmissivity

Figure 33: Partition obtained at the sixth Figure 34: Partition obtained at the sev-
iteration and the corresponding computed enth iteration and the corresponding com-
transmissivity puted transmissivity

Figure 35: Partition obtained at the eighth Figure 36: Partition obtained at the ninth
iteration and the corresponding computed iteration and the corresponding computed
transmissivity transmissivity
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Figure 37: Partition obtained at the tenth Figure 38: Partition obtained at the
iteration and the corresponding computed eleventh iteration and the corresponding
transmissivity computed transmissivity

Figure 39: Partition obtained at the twelfth iteration
and the corresponding computed transmissivity

Figure 40 shows that the conditioning of our problem is much improved when consid-
ering the parameterization obtained by our algorithm (Fig. 39, 6 zones) compared to the
parameterization where the transmissivity zones are the calculation cells (100 zones).

3.2 Comparisons with other methods

We still consider the three-zone case of Fig. 27, with the same data, distributed in space
and time.

We first compare with the standard method searching for one unknown per grid cell. In
the noise free situation considered above, this method manages to retrieve the transmissivity
pattern of Fig. 27. However, the total computation time required by the standard method to
achieve convergence is seven times that required to perform the twelve refinement/coarsening
steps described in the previous section (Figures 28 through 39 ). In terms of conditioning of
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10° L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

dotted line: constant initial transmissivity with one unknown per grid cell
continuous line: exact transmissivity with one unknown per grid cell
*: estimated transmissivity with the zonation shown in Fig. 39

i . .
' as a function of i

Figure 40: Case of the three-zone zonation: ratio
Mmax

the final optimization problems, which indicates the stability level if noisy data were to be
used, Fig. 40 shows the corresponding ratio of singular values y;/ptmax- The conditionning
for our adaptive parameterization is of the order of 1073, to be compared to 10716 for the
parameterization with one unknown per cell.

We compare now our adaptive parameterization to the multiscale parameterization [Liu, 1993,
Chavent-Liu, 1989, Grimstadt et al., 2000, Yoon et al., 2000] where, at each step, regions
of constant transmissivities are divided into four. After four such divisions (see Figs. 41, 42,
43, 44) the multiscale algorithm produces the 64 zones of constant transmissivities shown in
Fig. 44, which is still far from the true values, despite the larger number of unknowns. If one
performs one more division, the multiscale parametrization produces the same discretization
as obtained with one unknown per grid cell. Hence in this example, the multiscale parame-
terization fails to reduce the number of unknowns required to explain the data, and is more
computationaly intensive that our adaptive refinement technique.

3.3 Influence of the number of observations

We investigate now the behaviour of our algorithm in the more realistic situation where only
partial measurements of the piezometric head are available. We still consider the three zone
case of Fig. 27.

We first kept one measurement point in each grid cell, but decreased the time sampling
of the data. This had little effect on the behaviour of the algorithm, which was able to
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Figure 41: Computed transmissivity with Figure 42: Computed transmissivity with
a one zone parameterization a four zone parameterization

16
14

12

Figure 43: Computed transmissivity with Figure 44: Computed transmissivity with
a 16 zone parameterization a 64 zone parameterization

retrieve the true transmissivities, as long as more than 3 measures, evenly distributed in
time, were available at each grid cell.

Then we returned to measurements at each time step, but decreased the number of
observation points, as shown in Figures 45 (one measure in every other cell) and 47 (one
measure in every fourth cell). In order to allow for comparison of the fit to the data achieved
with different numbers of observation points, we evaluate this fit as

1
Zi,j |®(T; 75, t:) — (I,sz|2 ’
¥, P

In the previous case of a full observation (one per cell), the final permeability distribution
of Fig. 39 explained 99% of the data.

In the case of the observations of Fig. 45, the algorithm of section 2.3 produces, after eight
refinement /coarsening steps, the the transmissivity distribution of Fig. 46, which explains
98% of the data. It is still quite close to that obtained with a full observation (Fig. 39), with
some zones even correctly retrieved.

Percentage of data explained = 1 — (
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In the case of the observations of Fig 47, where only 25 measurement points are available,
the same algorithm generates the distribution of Fig. 48, which explains 89% of the data.
As one could expect, it is less detailed than the true distribution, and reproduces only its
general trend, using only a small number of parameters.

2 4 6 8 10

Figure 45: Dark cells: location of observa- Figure 46: Computed transmissivity
tions

2 4 6 8 10

Figure 47: Dark cells: location of observa- Figure 48: Computed transmissivity
tions

Finally, we checked the effect of adding noise to the data in the last experiment. With a
noise level of 10%, the algorithm produces the same parameterization as in absence of noise
(Fig. 48), but at each step the refinement indicators decrease more slowly, which leads to
select a larger number of cuts in step 5 of the algorithm according to the 80% rule, and
hence to test a larger number of cuts in step 9. When the noise level is increased to 20%,
the algorithm fails to retrieve the true distribution.
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4 Conclusion

We presented an adaptive parameterization algorithm for estimating functions which are
piecewise constant on an unknown zonation. At each refinement step, this algorithm

e ranks new potential degrees of freedom accordingly to their first order effect on the
optimal data misfit using refinements indicators,

e nominates those with the largest refinement indicators,

¢ eventuallyy aggregates some of the nominated degrees of freedom with current ones
using coarsening indicators,

e selects, among the remaining nominated degrees of freedom, that which gives the best
actual decrease to the data misfit function.

The method has been tested on synthetic data with increasing complexity, with full or
partial observation, possibly in the presence of noise.
It has shown its ability to determine both

¢ a partition of the domain in zones,
e a constant value in each zone,

which are consistant with the available data. The way the degrees of freedom are introduced
have ensured in all cases that the final number of zones - and hence of parameters - was
close to that used to generate the data, and small compared to the number of grid cells.

On the considered examples, it outperformed in terms of computation time and condi-
tioning the parameterization with one degree of freedom per cell and the multiscale param-
eterization.
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