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Abstract: We consider an infinite capacity buffer receiving fluid at a rate depending on
the state of an M/M/1 queue. We obtain a new analytic expression for the joint stationary
distribution of the buffer level and the state of the M/M /1 queue. This expression is obtained
by the use of generating functions which are explicitly inverted. The case of a finite capacity
fluid queue is also considered.
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Solution stationnaire d’une file d’attente fluide alimentée
par une file M/M /1

Résumé : On considére un réservoir de capacité infinie recevant du fluide selon un taux
dépendant de I'état d’une file M/M /1. Nous obtenons une nouvelle expression analytique de
la distribution stationnaire jointe du niveau du réservoir fluide et de I’état de la file M/M/1.
Cette expression est obtenue par le biais de fonctions génératrices qui sont explicitement
inversées. Le cas de la file d’attente fluide de capacité finie est également considéré.

Mots-clé : File d’attente fluide, file M/M/1, fonctions génératrices.



Stationary Solution to the Fluid Queue Fed by an M/M/1 Queue 3

1 Introduction

Markov modulated fluid flow models have turned out to be very useful to analyze perfor-
mance issues in telecommunication systems. These models are composed of a buffer and a
continuous time Markov chain that controls the input and service rates of the fluid in the
buffer. In most studies dealing with the analysis of such fluid queues, the state space of the
background Markov chain is supposed to be finite, see for instance [4, 8] and the references
therein. We consider here an infinite capacity fluid queue where the input rate is a function
of the state of the server in an M/M/1 queue and where the service rate is constant. As
suggested in [10], this model might represent a Poisson stream of packet arrivals, where the
packet length is exponentially distributed. This stream is buffered in a queue and served
with a constant rate. The output process of this M/M/1 queue forms the input process of
the fluid queue.

The stationary behavior of that fluid queue has been analyzed in several papers. Al-
though approaches are different, the fluid level distribution is generally obtained as an
integral expression. First, in [10]|, Virtamo and Norros solve the well-known infinite diffe-
rential system by studying the continuous spectrum of a key matrix. Secondly, Adan and
Resing [1] consider the background process as an alternating renewal process, corresponding
to the successive idle and busy periods of the M/M /1 queue. By renewal theory arguments,
the fluid level distribution is given in terms of integral of Bessel functions. They also obtain
the expression of Virtamo and Norros via an integral representation of Bessel functions.

More general input processes are applied to that fluid model. Van Doorn and Scheinhart
study in [9] a fluid queue fed by an infinite state birth-death process. They solve the infinite
differential system by the use of orthogonal polynomials with respect to a signed measure
which is explicitly given in the case of the M/M /1 queue and leads to the same integral
expression obtained in [10] and [1]. In [7], the authors consider a fluid queue driven by a
general Markovian queue with the hypothesis that only one state has a negative drift. By
using the differential system, the fluid level distribution is obtained in terms of a series and
coefficients computed by means of recurrence relations. Moreover, this study is extended to
the finite buffer case in [6]. Finally, the transient distribution of that fluid queue and the
convergence to the stationary distribution has been analyzed in [2].

In this paper, we obtain a new analytic expression for the joint stationary distribution of
the buffer level and the state of the M/M /1 queue. This expression is obtained by writing
the solution in terms of a matrix exponential and then by using generating functions that
are explicitly inverted. In the following section, we present the model and a matrix analytic
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4 N. Barbot & B. Sericola

expression of the solution in terms of a series. In Section 3, we derive the generating function
associated with the successive powers of a key matrix used in the solution. Next, in Section
4, by using the method developed in 3|, this generating function is explicitly inverted and
we obtain a very simple expression of the joint distribution. In Section 5, we use these
results and those of [6] to obtain a similar expression for the case of a finite capacity fluid
queue.

2 Formulation of the model

We consider a fluid queue with an infinite buffer for which the service rate is a constant
¢ > 0, and the input rate is governed by an M/M/1 queue with arrival rate A and service
rate u. During the busy periods of the M/M/1 queue, the input rate in the fluid queue is
positive, denoted by r, while during the idle periods no fluid enters the queue. We suppose
that r > ¢ to avoid the trivial case where the queue remains always empty.

We denote by {X;, ¢ > 0} the continuous time Markov chain counting the number of
customers in the M/M/1 queue. Its infinitesimal generator is denoted by A. The non-zero
entries of the matrix A are Agg = —A, Ap; = A and for j > 1,

Ajia=p Ajj=—A+p), Ajj =\

The drifts of that fluid queue represent the difference between the input and service rates.
Let d; be the drift when the M/M/1 queue is in state j. We thus have dy = —c and
d;j =1 —c, for every j > 1. We denote by D the diagonal matrix containing these drifts.

Since we are concerned by the stationary behavior of that fluid queue, we suppose that
the stability condition is satisfied, that is

_/\7‘
=

P <1

Y

where p is the traffic intensity. We denote respectively by X and @) the stationary state of
the Markov chain {X;,¢ > 0} and the stationary amount of fluid in the buffer.

Let Fj(xz) = Pr{X = j,Q < z}. It is easy to see that for j > 1, we have F;(0) = 0 and
it has been shown in [7] that Fy(0) = 1 — p. It is well-known, see for instance [10], that the
functions Fj satisfy, for > 0, the following system of differential equations

—cFj(x) = —=AFy(x)+ pFi(x) 1)
(r= OFla) = AFyi(e) — A+ )5 (@) + uya (o) for j > 1,

INRIA



Stationary Solution to the Fluid Queue Fed by an M/M/1 Queue 5

where Fj(z) denotes the derivative of Fj(x) with respect to z. Let F'(z) be the infinite row
vector containing the Fj(z). This system can also be written as F'(z) = F(z)AD™" and its
solution is given by

F(z) = F(0)exp(AD 'z). (2)

Let I be the identity matrix. Using a method similar to the uniformization technique, we
introduce the matrix 7 defined by T =1 + AD /6, where § = (A + u)/(r — ¢). We then
have, from (2), for every j > 0,

Fi(x) = (1—p)(exp(AD™'x))o,
= (1= p)exp(—0z)(exp(0Tx))o,
= (1- p)Zexp(—Hﬂ:)@ To.; (3)

n!
n=0

where T¢'; denotes the (0, j) entry of matrix T™.
In what follows, we focus on the calculation of 7'; using generating functions.
3 Generating functions

In this section, we first we recall the definition and properties of the generating functions
which are then used in a second subsection to obtain the generating function associated
with the matrix 7.

3.1 Definition and properties

Let us consider the complex matrices M indexed on N x N. We define

v(M) = supz | M|

ieN 42
and denote by M the set of infinite complex matrices M such that v(M) is finite. v is a

norm on M and (M, v) is a Banach algebra. With each M € M, we associate the complex
function ®,,, called potential kernel of M or generating function, defined by

Dy(z) = Z MFEZF
k=0

RR n"4281



6 N. Barbot & B. Sericola

for all z such that |z| < 1/v(M). Note that for M € M and z such that |z| < 1/v(M), we
have ®/(2) € M since v (Pp(2)) < 1/(1 — |2z[v(M)) < +o0.
The following lemma is a classical straightforward result, so we give it without proof.

Lemma 1 For every matriz H, H®,, is the only solution to the matriz equation
X(z)=H+zX(2)M
for all z such that |z| < 1/v(M).

We shall also need the following result which will be used along with Lemma 1.

Lemma 2 For every M and N in M, we have
Dprin(2) = Ppr(2) + 2@prin(2) NPy (2)
for all z such that |z| < min{1/v(M),1/v(M + N)}.
Proof. See [3]. |

Let us now introduce some notation. We define the infinite matrices V, W, R, S and P
as
Vii = Tivrj; Wi =l Rijg=Tioloj; Sij = lialog

for i and 7 € N and

A
P=I+—.
A+ 1

The matrix P is referred to as the transition probability matrix of the uniformized Markov
chain associated with the M/M/1 queue. If p and ¢ are defined by

and g = L,
A+ u A4 p

p o}
then the non-zero entries of P are
Poo=¢q, Phby=pandfori>1, P; 1 =¢q, P;1=p.

The stability condition p < 1 and the fact that » > ¢ implies that A < p and so p < q.

INRIA



Stationary Solution to the Fluid Queue Fed by an M/M/1 Queue 7

Lemma 3 We have T = P + U where U = (pR — ¢S)r/c.
Proof. From the definition of 7', it suffices to write A and D~ as

A= (A+p(P-1I)
pt = ! (1-1R)

r—=¢C C

and to use the fact that PR = qR + ¢S. [ |
It is easy to check that
v(T) = max{1 +pr/c,p+ q(r —c)/c} > 1.
Using Lemma 2, we obtain
D (2) = Pp(2) + 207 (2)UPp(2) (4)
for all z such that |z| < 1/v(T), since v(P) = 1. We define the matrix L(z) as
L(z) =U®p(z).

For |z| < 1, we have

_ e XU _ g
V(L) = vU@p(2)) < 70 = cq

so for |z| < ¢/(gr + ¢) we have |z| < 1/v(L(z)) and L(z) € M. Thus, we may apply
Lemma 1 to Relation (4) with X (2) = ®¢(z), H = ®p(z), M = L(z) and we get

Or(z) = p(2)Pr()(2) (5)
for |z| < ¢/(qr + ¢).

3.2 Calculation of @7

In this section, we derive a simple expression of the potential kernel ®; given in Relation (5).
We first recall the expression of ®p that has been obtained in [3].

RR n~"4281



8 N. Barbot & B. Sericola

The Catalan numbers ¢, are defined for every n € N by

(271) 1
Cn = )
n/n+1

The generating function associated with the sequence of these numbers

Cz) =) cpz"

n=0

converges for all z such that |z| < 1/4 and can be written as

C(z) = 1-vi—-4z "22_42 ) (6)

Lemma 4 Let |z| < 1 and n(z) = C(pgz?). Let X(z) and Y(z) be the infinite matrices
defined by

Xi;(2) = (¢zn(2)) (p2n(2)),

and
Y(z) =) WEX(2)V*
For all z such that |z| < 1/2, we have
22) =1(2) (V) + 120X (o) )
Proof. See [3]. |

Theorem 1 For all z such that |z| < 1/2, we have

_ 1) s
1) = A2 —ux), ®)
and
Pry(z) =1+ #ML(Z) : (9)

INRIA



Stationary Solution to the Fluid Queue Fed by an M/M/1 Queue 9

Proof. Let us fix z such that |z| < 1/2. Since RW = SW = 0, we have by definition of
X(z) and Y (2)

RY(z) = RX(z)
SY(z) = SX(z),

which gives, by definition of matrix U,
UY(z) =UX(z).
The definition of L(z) and Lemma 4 lead to
L(z) = U®p(2)
= (2) (UY(Z) + %UX(Z))

1 — qzn(

= () (1 + %Z))) UX(2)

1—qzn(z
n(2)

which proves (8).
Consider now the successive powers LF(z) of matrix L(z). Observing that

X(2)RX(2) = X(2) (10)
X(2)SX(z) = pan(2)X(2) (11)

we easily get

() = (%) UX(2))?

1 —gqzn

_ rn(z) ’ o) — 22
— (8 ) wRx () - gsX ()

c(1—qzn
— L(Z) i —aznlz zZ)— z
— (G2 ) - an() GRX() - aX(2)
TPU(Z)L(Z)

= pgqn(z)L(z).

RR n~"4281



10 N. Barbot & B. Sericola

It follows by induction that for every k£ > 0,

LMY(2) = (pan(2))* L(2).

Since |z| < 1/2, it is easy to check from Relation (6) that |n(z)| < 2 and so that |gzn(z)| < 1.
Thus, we get

Opy(z) = Y LF(2)2

= I+2) (pgzn(2))"L(2)

k=0

z
= I+——IL(2),
1 — pgzn(2) )

which completes the proof. |

Theorem 2 For |z| < min{1/2,¢/(qr + ¢)}, we have

a=n*(2) ((1+ p = pazn(2))X () - WX(2)) ) -

(1 —qzn(2))(1 — pgzn(z))

@r(z) = n(2) (Y(Z) +

Proof. Let z be such that |z| < min{1/2,¢/(¢r + ¢)}. Replacing Relations (7) and (9) in
Relation (5), we obtain

r(z) = n(z) (Y(z) + %ﬂ@) (1 + #ZW)L(Z)) . (13)
Now, since VR = 0 and V.S = R, we obtain from Relations (10) and (11)
Y(2)RX(2) = X(z)
Y(2)SX(z) = pan(z)X(z) + WX (z).

We get from (8),

YOLE) = (o S OVRX() - ¥ ()SX ()
= X () - WX () (1)

INRIA



Stationary Solution to the Fluid Queue Fed by an M/M/1 Queue 11

and using (10) and (11),

X(ILE) = o) (pX(IRX () - X (S X()

= pn(2)X(z). (15)

Putting (14) and (15) in (13), we obtain

Br(2) = WY+ [ YL
qzn?(2) s q2°n*(2) N2
T g Ot T gm(2)a — gy
Ay o PEE) rgzn’(2) B
= @AY+ pqzn(Z)X( ) c(1—qzn(2)(1 - pqzn(Z))WX( )
qzn*(2) P2’ (2)
1 — gzn(z) =) (1 —qzn(2))(1 - pqzn(Z))X(Z)
= () - e PO
c(1 —qzn(2))(1 — pgan(z))
qzn*(z)(1+ p — pgzn(z)) X(2)
(1 —qzn(2))(1 — pgzn(2)) ’
which is the desired result. [ |

4 Explicit solution

We obtain in this section a closed-form expression for 7§'; and so for F;(z). For that purpose,
we need the following well-known lemma which gives an analytical expression of the powers

of n(z).

Lemma 5 For every k > 1 and |z| < 1/4, we have

Ck(2) = Z s(k,n)z"

n=0

RR n~"4281



12 N. Barbot & B. Sericola

where 0 Eo 1)
n+k—1)!
sthm) = k= )

Proof. See [5], page 154. |

The integers s(k,n) are referred to as the ballot numbers.

Theorem 3 For every j > 0,

0 ifn <y,
Tn — , 1252
0 = i

=g > s(n—2k+ 1L, k)pFg (1 — p" 7R ifn >,
k=0

where |u| denotes the largest integer less than or equal to the real number u.

Proof. Let z be such that |z| < min{1/2,¢/(¢r + c)}. Since the first row of the matrix
W X (z) has all its entries equal to zero, we have from Relation (12), for every j € N,

_ gz’ (2)(1 + p — pgzn(z))
(Pr(os = MEWos )+ (T n@)T = pgan()

By definition of X (z) and Y (2) we easily check that

Xo4(2) = Yo,i(2) = (pan(2))’-
So, we obtain o
P (2)
D7 (2))o,; = .
(0 = = gan@) (1~ pgen(2)
For |z| < 1/2, we have |¢gzn(z)| < 1 and therefore, using the Cauchy product of two series,
we obtain

A (2)
(1 —qzn(2))(1 = pgzn(2))

= P (2) Y (pgzn(2))* (gzn(z))"

n=0 k=0

(@7(2))o, (16)

INRIA
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P AP (2) & n n
- PO e - o
n=0
p] - n_n. ntl n—j+1
= gz (z)(1=0p
=D () )
From Lemma 5, we have
nn—l—l( ) Cn—l—l pqz ZS n+1 k pquZQk
k=0
which leads, by changing the order of summations, to
Ic n+k n—|—2k n—j+1
(D1 (2))o,, 1_ quan—Hk (1 — p"=Ith
k=0 n=j
— Z Z n_2k+1 k) k n k n(l—pn_2k_j+1)
k=0 n=2k+j
Exchanging again the order of summations, we get
(Br(2))og = = 32" Y s(n—2k+1,k)pFg" (1 — pn 1),
1= &= =
which completes the proof. [ |
Using Relation (3) and Theorem 3, we obtain, for every j € N and = > 0,
_ p] - 0 (H‘T)n L%J 2% 1.k k n—k 1 n—2k—j+1 17
_EZGXP(_ 2)= 1 ’;S(n— + 1L, E)p*q" (1 —p ) (A7)
n=j =
that is,
F _ jd - ) (933)n i n—2k+1(n\ , . 4 1 n—2k—j+1
j(l')—gngjexp(— I)W ;m )P (1—0p )-

RR n 4281



14 N. Barbot & B. Sericola

For i,j € N and ¢t > 0, we denote by P, (¢, A, i) the transition probability at time ¢ of
the M/M/1 queue with arrival rate A and service rate y, that is

Pt A p) = Pr{Xy = j | Xo =1}.
It has been shown in [3] that
Py i(t, A\ p) = Zexp t)i'Zs(n—Qk—i—l E)pFq"*, (18)
n!
k=0

and, in particular, for j = 0,

Ln—l

(A + p)™t" 2 2k\ pFtigk
n! k k+1'

Poo(t, A #)—1_—ZGXP (A +w)t)

n=1

In the following corollaries, we show that the distribution of the stationary buffer content
of the fluid queue can be expressed as a function of the transient behavior of the M/M/1
queue.

Corollary 1 For every j € N and x > 0, we have

. A A
- () o (- (5 2) ) a2 ).

Proof. The proof is immediate from Relations (17) and (18). |

Corollary 2 For every x > 0, we have

Rlr)_cllp)

—C T—¢C

Pr{Q <z} =

Proof. Consider the differential system (1). By summing over index j, we get

(e}

—cFy(z) + (r —¢) ZF]’(Z‘) =0.

=1

INRIA



Stationary Solution to the Fluid Queue Fed by an M/M/1 Queue 15

Integrating from 0 to x, we obtain
(r=¢) ) (Fj(x) = F5(0)) = ¢ (Fy() = Fo(0)) -

Since F;(0) =0 for j > 1 and Fy(0) =1 — p, we have

- 1
HQ <) = LRl = 1 (rFile) == )
The result follows by using Relation (17) for j = 0. [

5 Finite buffer case

We consider in this section the case where the capacity B of the buffer is finite. We denote
by Qp the stationary fluid buffer level and we define Fj g(z) = Pr{X = j,Qp < z}. The
following result gives an interesting relation between F} g(x) and Fj(x).

Theorem 4 If p < 1, we have for every j € N and 0 < x < B,

Fj(z)

Proof. See [6]. |

Using this result and Corollary 2, we easily get, if p <1 and 0 <z < B,

(1 =X/ p)(rFy(x) —c(1 - p))'

Pr{Qp <z} = (r —c)Fo(B)

The overflow probability is thus given by

Pr{Qp = B} =1 — Pr{Qp < B} = C(:__C”) (11;0(2/)“ - 1).

RR n~"4281
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