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Abstract: Contaminant transport in a fractured porous medium can be modeled, under appropriate
conditions, with a double porosity model. Such a model consists of a parabolic equation with a cou-
pling term describing contaminant exchange between the fractures, which have high permeability,
and the matrix block, which has low permeability. A locally conservative method based on mixed fi-
nite elements is used to solve the parabolic problem, and the calculation of the coupling term, which
involves the solution of diffusion equations in the matrix blocks, is based on an analytic expression.
Numerical experiments show that this analytic method for the coupling term compares favorably to
several other methods.
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Une comparaison de méthodes calculant le terme source des
blocks matriciels dans un modèle double porosité

Résumé : Le transport de contaminants dans un milieu poreux fracturé peut être modélisé, moyen-
nant certaines conditions, par un modèle double porosité. Un tel modèle consiste en une équation
parabolique avec un terme de couplage décrivant l’échange de contaminants entre les fractures, qui
ont une perméabilité élevée, et les blocs matriciels, dont la perméabilité est au contraire très faible.
Une méthode localement conservative basée sur les éléments finis mixtes est utilisée pour résoudre
l’équation parabolique, et le calcul du terme de couplage, qui comprend la résolution d’équations
de la diffusion dans les blocks matriciels, est basée sur une expression analytique. Des expériences
numériques montrent que cette méthode analytique de calcul du terme de couplage se compare fa-
vorablement avec plusieurs autres méthodes.

Mots-clés : Milieu poreux, fractures, double porosité, elements finis mixtes
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1 Introduction

The transport in a porous medium of a contaminant dissolved in a single phase fluid is governed by
the transportation equation

� �������� div �
	��� � ��� ���������
� �����
� �����! �

(1)

where the unknown
�

is the concentration of the contaminant dissolved in the fluid; the coefficients� , � and � are the porosity of the medium, the diffusion and the Darcy velocity of the fluid, re-
spectively; the right hand side

� �
is the contaminant source term; and the initial condition

�  
is the

concentration of the contaminant at time
�"� � .

The Darcy velocity � is given by the flow equation which is Darcy’s law relating the fluid pres-
sure with the Darcy velocity �

� � 	�#$&% (2)

together with the law of conservation of mass

div � �'�)( (3)

Here, in Darcy’s equation, the effects of gravity have been ignored. The coefficient # is the per-
meability of the rock; more precisely it is the permeability * divided by the viscoscity + of the
fluid which might be dependent on the concentration. However here we neglect this dependence
so that # is constant in time. The elliptic conservation law statess that the fluid is supposed to be
incompressible.

By a fracture in the porous medium is meant a very thin portion of the domain with very large
permeability; very thin in comparison with the size of the domain and very permeable in compari-
son with the surrounding medium. Here we do not consider specific known fractures that might be
included individvually in the model but a network of small interconnected fractures. Also, a certain
degree of regularity in the fracture network is assumed. Aside from the fact that we do not have pre-
cise information about the form or location of such a network, the difficulty for numerical modeling
is a problem of scale. The scale of the fracture width and the scale of the distance between fractures
in the network are very small compared to the scale of the domain size. A model that could see
this kind of detail would be prohibitively large for performing calculations. However one can not
neglect these fractures. There is again a difference in scale in the permeability of the fractures and
the permeability of the neighboring domain so that the Darcy velocity is much larger in the fractures
and they play a major role in the flow in the medium: if, for example, the source term is located in
the network of fractures and vanishes after a certain time, in a first stage, the contaminant, in addition
to being convected and diffused in the network of fractures, is dispersed by diffusion into the blocks
of porous media, called matrix blocks, which act as reservoirs. Then in a second stage, after the
concentration of contaminant in the fractures has diminished, the matrix block acts as a source as
the contaminant is rediffused into the fracture system. These exchanges between matrix blocks and
fractures are very significant and modify the propagation time of the contaminant [1].
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4 Alboin, Jaffré, Joly, Roberts & Serres

These fractures must be taken into account by some sort of averaging process as in a double
porosity model. The double porosity model was first described in articles [2, 3], where the model
was a phenomenological model deduced from experimentation. The model was later derived via
homogenization [4, 5, 6, 7] and is recalled in Section 2. It consists of a transport equation in the ho-
mogeneized domain coupled with a diffusion equation through a source term representing exchange
between the homogeneized medium and the matrix blocks. Section 3 presents standard locally con-
servative numerical methods based on lowest order mixed finite elements.

However local conservation is required only in the homogeneized medium, but is not neces-
sary in the matrix blocks. So the core of this paper is devoted to a semi-analytic calculation of the
source term in the matrix blocks in order to decrease computational costs. A similar technique was
presented in [8] without the use of an equivalent for small time. Section 4 introduces the analytic
expression of the source term describing exchange between the fractures and the matrix blocks. This
source term is expressed in terms of a coupling operator which is discretized in time in Section 5.
All this is done under the assumption that the permeability is so low that the transport in the matrix
block is due only to diffusion. Section 6 contains numerical experiments and some conclusions.

2 The double porosity model

We consider a naturally fractured medium throughout which exists a system of interconnected frac-
ture planes. This medium is idealized as a periodic medium as shown in Figure 1.

Homogenization for this idealized medium is carried out with a parameter � equal to the ratio
of the period to the size of the domain. We obtain a medium which has the average properties
of the initial medium. The scale of heterogeneities is the microscopic scale and the scale of the
homogenized medium is the macroscopic scale. The resulting model is composed of a concentration
equation in a homogenized medium to which has been added a source term or a coupling term whose
value at point � and time

�
is obtained by solving a diffusion equation in a matrix block associated

with � . The solution acts in turn through a boundary condition as a source for the microscopic model
in the matrix block. This model is the double porosity model. Two sets of parameters describe
the homogenized medium: macroscopic parameters derived from the microscopic parameters in
the fractures and microscopic parameters in the matrix blocks from which the coupling term is
determined.

We denote by � the macroscopic variable in the homogenized medium
�

and by � the micro-
scopic variable in a matrix block ���� associated with the point � (Figure 2). We use the notation � �
for the matrix block ���� together with the surrounding fracture �
	� (Figure 3).

The calculation of the coupling term involves, at each point ��� �
and for each time

�
, the

solution of an equation modeling diffusion in a matrix block.
After homogenization, we obtain the following model: for each

�
and each �� � ,

� ���� � � div ��	��� � ��� ���"��� � 	
�� � � � ������ ��� �� � ��� ����� �
��� �� �
� � � � � �  (4)
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Figure 1: The double porosity model
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Figure 3: The fracture � 	 surrounding
a matrix bloc ��� and � � ���#" ��	

where the unknown
�

is the concentration in the homogenized medium. The scalar quantities � and���
, respectively the porosity and the given source term in the homogenized medium, are related to

the porosity � 	 and the source term
� 	� in the fractures by

� � � � � � ��	� �� � � � � 	 � � � � � � � �"� � ��	� �� � � � � 	� � � � (
The vector quantity � in the homogenized medium is related to that in the fractures � 	 by

� � �� � � � � $ � %� $ �'& ��� � �)( � � � � 	 �
where & � � � is the * by * matrix &,+�- . � � ��� �0/ +� � . with

/ + the solution to the homogeneous Laplace

equation in ��	� with a homogeneous Neuman boundary condition on
� � � and Neuman boundary

condition equal to 	1*2. , minus the 3 th component of the normal vector on
� � �� .
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6 Alboin, Jaffré, Joly, Roberts & Serres

The Darcy velocity � in th e homogenized medium is obtained from

� � 	�# �%
div � � � � (5)

where the permeability # and the source term
�

in the homogenized medium are given in terms of
the corresponding quantities in the fractures, # 	 and

� 	 :
# � �� � � � � $ � %� $ �'& � � � � ( � � ��# 	 � � � � ��	� �� � � � � 	 (

The term �� � � � � � � � ��� ���� ��� � ��� �
��� ��� (6)

is the coupling term which represents the exchange between the fractures and the matrix blocks. The
unknown

� ��� � ����� �
� is the concentration at time
�

and at point � of the matrix block
� � associated

with � in
�

and is the solution of the contaminant transport equation on the microscopic scale. For� � � � � � ��� ��� � is the solution of a time dependent diffusion equation in � �� :
��� �� � ��� ����� �
� 	�� � � ����� � � ��� ����� �
� � � � � � � �� � �	� � �
� � � � � ���
� � � � � � � � �� �
� � � � � ��� �
� ��� ��� � �
� on

� � �� �
(7)

where � ��� � is the diffusion coefficient in the matrix block
� �� . Here the advection term has been

neglected as the permeability is assumed to be very low in
� �� .

In a numerical model, equation (7) must be solved at each point � of the discretized domain�
and at each time step which makes calculations with a double porosity model very costly with

standard discretization techniques, especially as the low diffusion in the matrix block renders the
problem quite stiff. This led us to calculate the coupling term analytically.

3 Numerical Approximation

We have three coupled equations to solve: the flow equation (5) and the transport equation (4) in the
homogeneized domain, and the diffusion equation (7) in the matrix blocks. As we have neglected
the transport term in the matrix blocks, there is no need to solve for the Darcy velocity there so we
do not approximate a flow equation in the matrix blocks.

We discretize the homogeneized domain
�

with a structured mesh of rectangles 
 ��� and we
denote by  ��� the edges of the mesh.

INRIA
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Let us consider first, the flow equation (5) in the homogeneized medium
�

which is an elliptic
equation. Because of our assumption that the fluid viscocity is not a function of the contaminant
concentration, this equation can be solved independently and only has to be solved once. To obtain
a precise approximation to the Darcy velocity and to have a locally conservative scheme we use a
mixed formulation with the lowest order Raviart-Thomas spaces [9, 10]. The approximate pressure
%�� lies in the space

� � of functions constant on each cell 
 � � , and the approximate velocity� � lies in the space ��� of vector functions which are bilinear on each cell 
 � � and continuous
through the edges �� � . The degrees of freedom of � � are the flow rates through the edges  � � .
Then the approximation equations for equation (5) are� � div � � � � � � ��� � � � �	� � � � � � � � 
�� � �� 
 #��  � � �	� � � 	 � 
 %�� div � � � � � ��
 �%�� ��� 
 ���&� � ��� ����� �
where � � and � 
 are respectively the outward normals to the boundary of 
 and to that of

�
. Here�% is a pressure given on the boundary of

�
.

The transport equation (4) in the homogenized medium
�

is a diffusion-advection equation. This
is the equation for which local conservation is the most important. We rewrite it as

� ������&� div ��� ��� �"����� 	
�� � � � � � � � ��� �� � ��� ����� �
��� ���� � 	��� ���� � � � ( (8)

to separate the diffusion contribution from the advection contribution in order to treat these two terms
differently. We treat the diffusion term again with a mixed finite element method and the advective
term with a first order upstream scheme. Concerning time discretization

���
denotes the time step

and we use Euler finite differences, the diffusive term being treated implicitly and the advective term
being treated explicitly. On the interval ��� * 	 � ����� � * � �
� the concentration is approximated by a
function

�	�� � � � and the vector function � � by � ��!� �"��� . Then equation (8) is approximated by� � � � �$# � 	 � � �� � � � � � ��� % � �$# �!� � � � � � �� � � � �'&��	� � � � � � � ( ��� 	 �� � � � � � � � ��� ���� � � � ��� �
��� �*) � � �

 � ���� 
 ���  � �!� �+� � � � 	 � 
 � �'# � div � � � � � � ��
 �� �'#  � � ��� 
 �,� � � �-� � ��� � �

where
� �� denotes the upstream concentration with respect to the velocity � � and

� �'# � a given
concentration on the boundary of

�
.

Finally the source term (6) must be calculated at each time step and at each point of discretization
so we need to solve the matrix block equations (7). In addition to the fact that this equation must
be solved .0/21 � times, where .0/ is the number of time steps and

�
the number of discretisation

RR n° 4280



8 Alboin, Jaffré, Joly, Roberts & Serres

points, the fact that the coefficient � is in general quite small renders the problem stiff. Standard
discretization techniques could be used to approximate the solution of equation (7). However, in or-
der to minimize computational costs, and since local conservation is not necessary for this equation,
and since actually only the coupling term (6) is required, we will present an analytical evaluation of
it. This is possible since in equation (7) the coefficients as well as the data are constant in space and
the geometry of � �� , a rectangle, is simple.

4 Analytic expression of the coupling term

We now give an analytic expression of the coupling term in terms of a convolution kernel written as
a series. For simplicity’s sake, we have taken � �� to be a square instead of a general rectangle.

With �� � � � ����� �
��� � � � � � ��� �
� 	 � � � � �
� , �� � is the solution of
� �� �� � ��� ����� �
� 	�� � � ��� � �� � � � ����� �
� � ���

��� � � � �
� � � � � �� � � � � ��� � ��� � ��� � � � 	 � ��� � � � in ������ � ��� � ��� �
� � � on
� ���� (

If � �� is identified with
� 	 * � � * �����

, the function �� � may be expressed in terms of the spectral basis� �	� - 
�� % � � � � � � ��� � �� , where ��� - 
 ��� ��� �	� � �  � � 
 ��� � � and �	� is the solution on
� 	 � � � � � � of

	 ��� �� ��� � % �
* � �	� � ��� �
	 * � �"� ��� � * � �"� � �

with coefficients �� �� - 
 solutions of the ordinary differential equation

� �� �� - 
��� ��� � �
� � � � - 
��� �� - 
 � � � �
�"� 	
���
��� ��� � �
� + � - 
 �

with

� � - 
 � � � �
* � ��% � � ��� � and + � - 
 � � � � � �	� - 
 ( (9)

Thus we have

�� � ��� ����� �
������ - 
��  �� �� - 
 � � � �
� � � - 
 � � � � (10)

with

� � � � + ���
����� ����

� �
*�� �"! � % � � +* �

if % is even� �
*�#%$ � � % � � +* �

if % is odd, &
� � � � �

INRIA
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and �� �� - 
 ��� � �
�"� 	 + � - 
�� � / ���
��� � � � � ��� �����	� 
�� / ���� �,� � � ��� �
� ��� �����	� 
 /�� (

A simple calculation then shows that the coupling term is given by� � � � ��� ���� � � � ��� �
��� � � � � - 
 + �� - 
 � � - 
��
� /
 
���
��� ��� � � ��� �����	� 
�� / ���� �,� � � � � �
� ��� �����	� 
 /�� �

or, defining the convolution kernel # � � �
� �
# � � �
�"� � � - 
 + �� - 
 � � - 
 � �����	� 
 / � (11)

by � � � � ��� ���� � � ����� �
��� � � � /
 
���
��� � � � � � # � � � 	 � � �,� � � � � �
� � # � � �
� (12)

Even though we have an analytic expression for � � � ��� we do not have a closed form expression.
Thus in addition to deciding whether this term should be treated implicitly or explicitly we must
approximate the time intergral in the convolution term, approximate the time derivative in this term,
and approximate the convolution kernel which is given as an infinite sum. We first investigate some
of the properties of the kernel # � and of the operator � � .
Lemma 1 The series, # � converges on

� � � ��� � and converges uniformly on the subinterval
� � � ��� �

for each
� � � . Moreover # � has the following behavior, for � ��� # given,

# � � �
�"���
� � � � � �� � 	

��� �� ��� � �
� ( (13)

PROOF:
First, calculating that

+ � - 
 � �� � � !% � � � if % and
�

are odd

� otherwise
�

we see that + �� - 
 � � - 
#" � � ! �� � (
Thus

# � � �
� " � � ! �� � �� - 
 �  � ��� �	� 
 / " � � ! �� � � � � �%$ � / �
and we see that # � � �
� is a series that converges on

� � � � � and converges uniformly on
� � � � � for

each positive
�
.

RR n° 4280



10 Alboin, Jaffré, Joly, Roberts & Serres

Then a straightforward calculation shows that

# � � �
�"� 	
���
� �
�
� � � �
� with

�
� �
�"� �� �  + �� � ���%$ � � � / (

One can now rewrite
�
� �
� as follows:

�
� �
� �

��� �
� � � � � ��� �
� � ���

where � ����� �
� is the solution of
� ���� 	��

� � �� � � � � � 	 *��
� " � " *�� � �

� �����
� � � 	 � � 	 *��
� " � " *�� � �

� � � *�� � � �
� � � (
Then � ����� �
� can be identified with the restriction to the segment

� 	 *�� � � *�� � � of the solution �� � ��� �
�
of � ����� 	 �

� � ��� � � � � � � � � � � � � �
�� � ��� � ���
	����

	�� �  ��	 � � 	 #
�� � � 	�� * � � � � � (

One may also write �� � ��� �
� as an infinite sum:

�� ����� �
�$� 	����
	�� �  ��	 � � 	 #

 � 	 ����� �
�
with � 	 � ��� �
� the solution of

� � 	��� 	 �
� � � 	� � � � � � � ��� � � � � �

� 	 � ���
� ��� � � � 	�� * � � � � ���
that is

� 	 ����� �
�$� ���� � � �
��� 	 # ��� �
� 	 � ��� � � �������! #"

�$&%(' �!) (
Introducing

�
	 �
�
�"� � �*� �

� �*� � � 	 � ��� �
� � ���
INRIA
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one has

�
� �
�"� 	����

	�� �  ��	 � � 	 #
 �
	 �
�
� (

If
) � � � * 	 *�� � � � * � *�� � � and � � � 	 *�� � � *�� � � , then *��&��	 � � " ) 	 � " *��&� � � � , so that� �

	 �
�
� � " * �� � � � � � � � � � � � � " �$ % ' (

Thus �
	 � � �

�
	 �
�
� � " * �� � � � � �

	 � � � � � � � � � � " �$&%(' " * �� � � � � �
	 �  � � �

� � �$&%('
" * ���� � � � � � � �$ % ' �

	 �  � � �
�
� � � � � "$ % ' (

Since for � � �
we have � � 	 � � �

� ��	 � � and we obtain

�
	 � � �

�
	 �
�
� � " * �� � � � � � � � �$ % ' �

	 �  
� � � � � �$ % ' " * ���� � � �

� � � �$ % '� 	 � � � �� %(' (
As one clearly has the same upper bound for

�
	�� � � �

�
	 �
�
� �

one can conclude that
�
$ 	 $ � � �

�
	 �
�
� �

is �  on� � � � � with all of its derivatives vanishing at � .
We next consider

�  and
� �  . The function

�  is given by

�  � �
�"� �� � � � �
� ��� �
� ��� �

��� ��� �
��� � � � � ���! " �$&% ' �!) � �

or, denoting by � and 	 respectively,
) 	 � and

) � � ,

�  � �
� � �� � � � �

 ���
 
� � #��
� � � � ��

�$&%(' � 	 � � � � � �
�

� � � � �� � #�� � ��
�$ % ' � 	 � ���

� �� � � � �

 ���
 
� �  �$&% ' � � � 	 � � �

�
� �  �$&% ' ��� 	 �

* ��� � � (
Now letting � � � � � � one obtains

�  � �
� � �� � � � �

 � � � �� %('

 
� ��� �$ � �,� 	 � � �

� � �� %('
�� % ' � ��� �$ � � � � � 	 �

* ���,� � (
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Thus, as � �� % '
 

� � � �$ � ���&� 	
�
� � � � �$ % ' 	 � �

and ����� � � �� % '
�� % ' � � � �$ � � � � � 	 �

* � �,�
����� " � � � �$&% '

����� � � �� % '
�� %(' � � � �$ � � � � � 	 �

* � �,�
�����

" � � � �$&% ' � * �� � � � �
one can conclude that

�  � �
� 	 � � �� is �  on
� � � � � with all of its derivatives vanishing at � .

Similarly one may show that
� �  � �
� 	 � � �� is �  on

� � � � � with all of its derivatives vanishing at

� .
There remains to calculate

�
 :

�
 � �
�"�

���� � � �
����� �
� ��� �

����� �
� ��� � � � � ���! "

�$&%(' �!) � � (
With � and 	 as before one has

�
 � �
� � �� � � �


 � �
 
� � � �
 

� �� �$ % ' � 	 � � � � � �
�

� � � � �� � � � �  �$ % ' � 	 � ���
� �� � � �


 � �
 * � �  �$&%(' � � 	 � �

 
� �� �$&%(' � � � � (

We note that � �
 
� �� �$&%(' � � � � �

� ��� � 	 � � �$ % '�� (
As before letting � � � � � � one obtains� �

 * � �  �$ % ' � � � *
� � �

( � 
 
� ��� �$ ��� 	 � 

�� %(' � ��� �$ �,� ) (
Now, as � 

 
� ��� �$ �,��� � �
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and � 
�� %(' � ��� �$ �,� � � � �� %('

�� % ' � � � � �% ' *� � � �

one obtains � �
 * � �  �$ % ' � � " * � � ��� � � 	 � � � �% ' *� � �

� (
and

�
 � �
� 	 * �

��� / �$ is �  on
� � � � � vanishing along with all of its derivatives at � .

Thus one may conclude that
�
� �
� � * 	 � � � �� is �  on

� � � � � vanishing along with all of its

derivatives at � .
The following lemma describes the behaviour of # � � �
� for large

�
.

Lemma 2 As
�

increases away from 0, the kernel # � decreases rapidly,

# � � �
� " 
 � � � '�� � %� �
�
� (

(14)

This lemma is an immediate consequence of the definition of the kernel (11),(9).

In practice, expression (13) for # � is very useful for evaluating # � in a neighborhood of the
singularity at 0 since the series in (11) converges very slowly for small

�
. Estimate (14) indicates

that, for large
�
, calculating only a few terms of this series is sufficient.

As in [11] one can express the coupling term (12) in terms of a coupling operator � � . For � a
function from

�
to � # , let � � be the operator

� � ���  � � �
	 �
� � � � �
� 	� � � � � ��	 ��� � � � �
�
� 	� � � � ��� (15)

where

� � � ��� ��� � �
� � � /
 
���
��� ��� � � � # � � � 	 � � �,� � � ��� � � � # � � �
� (

With this notation, problem (4) can be rewritten as follows:
���
���&� div � � 	�� � � �  � � � � ��� � � � � � � � ��� �����
� � � �
� � ���  ��� � ( (16)

RR n° 4280



14 Alboin, Jaffré, Joly, Roberts & Serres

Remark 1 As in [12], one can show that the operator � � is pseudo-differential in time of order
� � � ,

in the sense that, for all
��� � ,

� � � � �� � # �
� � � � ��� 	� �  � �� � � # �
� � � � �
� (
Remark 2 The operator, � � , is also semi-positive in the sense that for almost every � � ����

 � � � ��� � � � � � � ��� � � � ��� � � ( (17)

Another usefull property is that � �
 � � � ��� � � � � � ��� ��� � � �� � �,� � � ( (18)

Either of (17) and (18) suffices to show that problem (16) is well posed.

5 Numerical approximation of the coupling operator

5.1 Time discretization

Let
��� � 	. / , 	 the final time of the experiment, be the the length of the time step in the homoge-

nized medium. The semi-discretization in time of equation (16) is given by

� �$#  	 � ���� ��� � � ��	��  � �$#  � � � � � � ��� � ��� �$# �� ��� �'# � � (19)

where the approximation ��� � ��� �$# �� of the coupling term, at a point �� � , is given by

��� � ��� �$# �� � � � � � ��
. �  

# � . � � . #  ��� � 	 � . ��� ��� � # � �  � � � � �� � � � � (20)

and where for all *�� * � � � ( (�( � .0/ 	 � �
# � . � � � �$#  � � /� � / � � . #  � � /

. � / # � � � 	 � �� ���
� � ��� � � �	� * � � � ( (�( � * 	 � �
# � � � � � �$#  � � /� � / � /� � / # � � � 	 � �� ���
� � �,� � � �
# � � � � �$#  � � /� � / # � � �
���� � � (
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This discretization in time is chosen in order to guarantee the stability of the scheme. In fact, the
discretization in time of the coupling term satisfies the stability condition� % � �� �  � � � ��� �$#

�� �+�$#  � � � 	 �	� � � ���� ��� � � ( (21)

This inequality may be checked by setting

� � / ��� � �
� � � %�
	��  

� 	 � � ��� 	 � �
� � (22)

where
�
	 is a hat function; i.e. the piecewise linear function on

� � ��	 �
determined by

�
	 � 3
���
� �� . - 	 � 3 � � � ( (�( � . / ( and noting that

��� � /��� ��� � �
� � � % � �
	��  

� 	 #  ��� � 	 � 	 ��� ����
�
	 #  � � � �
� � (23)

where
�
	 #  � � � �
� is the characteristic function

�
	 #  � � � �
� ��� �

on
� � ��� � �&� � � ����� �

� otherwise
(

From (18), we have ���
 � � � � � / � ��� � �
� ��� � / � � � �
���� � � � � (

If we substitute for
� � / and

��� � /��� their expressions given in (22) and (23), we obtain inequality (21).

5.2 Truncation of the kernel ���
In practice, the expression for ��� � ��� �'# �� ��� � given in (20) is still not suitable for calculation: the
expression for # � involves an infinite sum. However, for

�
very large, # � is sufficiently small (see

(14)) that we can replace # � by 0. We replace the sum

��
. �  

by

��
. � � �
	 in (20):

��� � ��� �'# ��	 ��� �"��� ��
. � � �
	 # � . � � . #

 ��� � 	 � . ��� ��� � # � �  � � ���� �� � � � � (24)

and
�

becomes a parameter of approximation. We also point out that though the expression in (20)
for ��� � ��� �'# �� ��� � seems to require the storage in memory of the concentration at each time step, this
is in fact not the case as we have set # � � � for

�
large which implies # � � � � for * not close to * .
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We conjecture that the discretized coupling term expressed with the truncated kernel satisfies as
well the stability condition � % � �� �  � � � ���

�$# ��	 � �$#  � � � 	 � � � � ���� ��� � � (
6 Numerical experiments

We present two numerical experiments. The first numerical experiment validates the numerical
model by comparison with the Grisak laboratory experiment. In the second numerical experiment
we compare the analytic method presented above with standard space-time discretization methods
for the calculation in the matrix blocks.

6.1 The Grisak experiment

This experiment consists in injecting a chloride tracer into a cylinder of quasi-regular fractured
porous rock [13]. The fractures are distributed along two orthogonal directions, one parallel to
the axis of revolution of the cylinder. The cylinder is saturated with water and the velocity of the
fluid is maintained constant and parallel to the axis of revolution of the cylinder. The tracers are
injected into the network of fractures at one end of the cylinder, the relative concentration depending
on time is measured at the other end of the cylinder. The microscopic parameters, characterizing
the rock and the network of fractures are given in Table 1. The period of simulation is

�
days

Parameters Matrix block Fracture network

Darcy velocity ( ����� ��� ) 0
� ( � �	��
 � � � �

Longitudinal dispersion ( ��� ) - 4

Transversal dispersion ( ��� ) - 0

Molecular diffusion

 � � �� 
 � � ��

( ������� ��� )

Porosity 0.35 -

Fracture aperture ( ��� ) - ! � � � �
Space between fractures ( ��� ) - 4

Table 1: Parameter values for Grisak’s experiment

discretized with
� 
 � � time steps. Figure 4 shows the calculated relative concentration at the outflow
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Calculating the matrix block source term in a double porosity model 17

end of the cylinder and compares it with an analytical solution given in [13] and with experimental
measurements. One can observe that there is good agreement of the three curves, especially that
calculated with the double porosity model and that calculated from an analytic expression.
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Figure 4: Relative concentrations at the outflow end of the cylinder as functions of time in the Grisak
experiment

To illustrate the importance of the coupling term, we simulate the transport of tracers in two
cases, when neglecting the coupling term, that is without matrix diffusion, and when taking it into
account, that is with matrix diffusion. The results are shown in Figure 5, where the calculated
concentrations are shown at a given time, and in Figure 6, where the concentrations at a given point
are shown as functions of time. These figures show that for the given data the effect of matrix
diffusion is significant. The double porosity model actually smears the contaminant front which
would be too sharp if a single porosity model were used.
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Figure 5: Concentration at 4 days, on a cross-section of the homogenized medium for data given in
Table 1
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Figure 6: Relative concentration at a point of the homogenized medium for data given in Table 1

6.2 A comparison of different methods for calculating the coupling term

To compare different methods for calculating the coupling term, we consider a simple experiment
where a contaminant is transported in a square domain only by diffusion. Initially, we have a positive
concentration at the center of the domain. The data for this experiment are given in Table 2. They
correspond to a stiff problem, the ratio of the diffusion coefficients in the fracture network to that in
the matrix blocks being equal to 100.
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Parameters Matrix block Fracture network

Molecular diffusion
� � ��� � � � �

( ��� � � ��� )

Porosity 1 1

Fracture aperture ( ��� ) - � ( �
Space between fractures ( ��� ) - 10

Table 2: Parameter values for experiments comparing methods of calculating the coupling term

The period of simulation is
� ( 
 � �  seconds discretized with

� � � time steps. We compare the
run time and the memory space using four methods to calculate the coupling term: mixed finite
elements and cell-centered finite volumes with a uniform grid, a spectral method and the analytic
method described above. The first two methods are locally conservative while the two last ones are
only globally conservative. However local conservation is important only for the transport equation
in the homogeneized medium but not for the calculations in the matrix block which must be only
globally conservatives, so the last two methods are also appropriate for the matrix blocks.

One difficulty in this experiment is that in the matrix blocks located where the contaminant front
propagates we have to solve a parabolic problem with a large jump between the boundary concentra-
tion values and the concentration values inside the matrix block, giving rise to stiff boundary layers
(see Figure 7).

Space

C
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ce
nt
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tio

n

Figure 7: A stiff boundary layer problem arising in some matrix block calculations

For such problems, the mixed finite element method is not appropriate since it does not satisfy
the maximum principle and gives oscillations in the neighborhood of the boundary layer, unless a
large number of discretization points is put in the boundary layer. With the coarse discretizations
that we used it was not possible to get a reasonable answer, and this method was dropped from the
comparison.
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In Figure 8 we show a comparison between the analytic method, the cell-centered finite volume
method with a uniform grid and the spectral method. This comparison shows that the finite volume
method is slow to converge which makes it very expensive. On the contrary the spectral method
converges quickly since it naturally puts more degrees of freedom close to the boundary. This
comparison is somewhat unfair to the finite volume method since one could also use a nonuniform
grid with more points close to the boundary. However, even so, as we know, the spectral method
would be more acurate, being at its best in a problem like this one – homogeneous, with a simple
geometry and constant boundary data.
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Figure 8: Values of the coupling term as functions of time at some point of the domain
�

for various
methods of calculating the coupling term

Table 3 gives a comparison in terms of costs, computing time and memory. The last column
gives the relative � �

error over time of a coupling term calculated in one point by comparison to that
calculated analytically, and is a quantitative expression of what is shown if Figure 8. As we can see,
the analytical method presented above is much cheaper in terms of computing time. It is somewhat
more expensive in terms of memory space since for this stiff problem it is necessary to store the
concentration a large number of time steps.

We also looked at a smoother case where the diffusion coefficient in the matrix blocks is now only� � ��� (instead of
� � ��� before) so the the ratio of the diffusion coefficients in the fracture network

to that in the matrix blocks is now equal to 10 (instead of 100). The calculation with the analytic
method is now cheaper in terms of memory cost than in the stiff case since the number of terms in
the sum (24) required to calculate the coupling term is smaller (see Table 4). One should note that
in this case a much coarser grid can be used for the finite volume method.
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Method Run time Memory space Coupling term error

Finite volumes (10*10) 11’07” 16 Mo 0.28

Finite volumes (20*20) 1h47’ 19 Mo 0.1

Finite volumes (30*30) 8h26’ 25 Mo

 � � � �

Spectral method (9*9) 6’31” 16 Mo
� ( � � � � � �

Analytical method 2’23” 28 Mo -

Table 3: Comparison of different methods for calculating the coupling term (stiff case)

Method Run time Memory space Coupling term error

Finite volumes (10*10) 12’49” 16 Mo
� ( ! � � � �

Spectral method (9*9) 8’16” 16 Mo
� ( � � � � �

Analytical method 1’04” 19 Mo -

Table 4: Comparison of different methods for calculating the coupling term (smooth case)
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7 Conclusion

In a fractured porous medium with numerous interconnected fractures, the contaminant transfer
between matrix blocks and fractures may be very significant. This transfer is taken into account in a
double porosity model with a term coupling the homogeneized medium with matrix blocks. We have
shown how to calculate this term with an analytical method. Numerical experiments have shown the
efficiency of this new numerical procedure compare to standard discretizations which could be used
in the matrix blocks .
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