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Abstract: The study of genetic regulatory networks has received a major impetus from the recent
development of experimental techniques allowing the measurement of spatiotemporal patterns of gene
expression in a massively parallel way. This progress of experimental methods calls for the development
of appropriate computer tools for the modeling and simulation of gene regulation processes. These
tools should be able to deal with two major difficulties hampering modeling and simulation studies,
viz. incomplete knowledge of the biochemical reaction mechanisms and the absence of quantitative
information on kinetic parameters and molecular concentrations.

We present the Genetic Network Analyzer (GNA), a computer tool for the modeling and simulation
of genetic regulatory networks. The tool is based on a qualitative simulation method that employs
coarse-grained models of regulatory networks. The use of GNA is illustrated in a study of the network
of genes and interactions regulating the initiation of sporulation in Bacillus subtilis.
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Genetic Network Analyzer: Un Outil pour la Simulation Qualitative
de Réseaux de Régulation Génique

Résumé : L’analyse des réseaux de régulation géniques est fortement stimulée par le développement
récent des méthodes expérimentales permettant de mesurer en paralléle les profils spatio-temporels
de l'expression génique. Pour tirer profit de ces progrés, il est nécessaire de développer des outils
appropriés pour la modélisation et la simulation de processus de régulation génique. Ces outils doivent
étre capables de surmonter deux problémes majeurs. D’une part, les mécanismes sous-jacents aux
interactions du réseau ne sont pas bien connus. D’autre part, des informations quantitatives sur les
paramétres caractérisant les interactions et les concentrations moléculaires sont rarement disponibles.

Nous présentons un logiciel pour la modélisation et la simulation de réseaux de régulation géniques,
appelé Genetic Network Analyzer (GNA). Cet outil est basé sur une méthode de simulation qualitative
utilisant des modéles de trés agrégés. L’utilisation de GNA est illustrée par une étude du réseau des
génes et des interactions contrélant 'initiation de la sporulation chez Bacillus subtilis.

Mots-clés : réseaux de régulation géniques, modélisation mathématique, simulation, bioinforma-
tique, sporulation, B. subtilis
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1 Introduction

It is now commonly accepted that most interesting properties of an organism emerge from the inter-
actions between its genes, proteins, metabolites, and other constituents. This implies that, in order to
understand the functioning of an organism, we need to elucidate the networks of interactions involved
in gene regulation, metabolism, signal transduction, and other cellular and intercellular processes.

The study of genetic regulatory networks has taken a qualitative leap through the use of modern
genomic techniques that allow the simultaneous measurement of the expression levels of all genes of an
organism [15, 23]. In addition to experimental tools, formal methods for the modeling and simulation
of gene regulation processes will be indispensable. As most networks of interest involve many genes
connected through interlocking positive and negative feedback loops, an intuitive understanding of
their dynamics is difficult to obtain and may lead to erroneous conclusions. Formal modeling and
simulation methods, especially when supported by computer tools, allow the behavior of large and
complex systems to be predicted in a systematic way [7, 16].

Modeling and simulation of genetic regulatory networks are currently hampered by two major
difficulties [3]. First of all, the biochemical reaction mechanisms underlying regulatory interactions are
usually not or incompletely known. This prevents the formulation of detailed models of the kinetics of
a regulatory system, such as the models developed for the genetic switch controlling phage A growth
[17] or the feedback mechanisms regulating tryptophan synthesis in E. coli [26]. The first problem is
aggravated by a second problem, namely the general absence of quantitative information on kinetic
parameters and molecular concentrations. As a consequence, traditional methods for numerical analysis
are difficult to apply.

In response to the above problems, several approaches based on coarse-grained and/or qualitative
models of genetic regulatory networks have been proposed. Boolean network models [13, 30| and their
generalizations [19, 35| discretize the possible states of activation of a gene, and describe the regula-
tory structure of the network in terms of Boolean or multi-valued logic. Related approximations of
regulatory interactions underlie various classes of piecewise-linear differential equation (PLDE) models
of genetic regulatory networks [9, 20, 29]. The PLDEs have mathematical properties that favor the
qualitative analysis of the steady-state and transient behavior of regulatory systems. More gener-
ally, qualitative simulation methods [14] have been applied to the modeling and simulation of genetic
regulatory networks described by means of qualitative abstractions of ordinary differential equations
[11, 36].

We have developed a qualitative simulation method that achieves a synthesis of the above ap-
proaches [5, 6]. The method recasts the mathematical analysis of PLDE models of genetic regulatory
networks in terms of formal concepts and algorithms developed within qualitative simulation. By
tailoring the simulation method to a particular class of models, we avoid the severe upscaling prob-
lems often encountered in applications of qualitative simulation. The simulation method has been
implemented in a publicly available computer tool, called the Genetic Network Analyzer (GNA).

The aim of this paper is to present the computer tool and illustrate its use in the context of
a regulatory network of biological interest, consisting of the genes and interactions regulating the
initiation of sporulation in the Gram-positive soil bacterium Bacillus subtilis [10, 12]. Under conditions
of nutrient deprivation, B. subtilis can decide not to divide and form a dormant, environmentally-
resistant spore instead. The decision to either divide or sporulate is controlled by a complex network
of interactions integrating various environmental, cell-cyle, and metabolic signals. We have simulated
the sporulation network using a model constructed from published reports of experiments [4]. The
simulations reveal that the salient features of the initiation of sporulation are reproduced, but that an
additional interaction, hypothesized in the literature before, may be involved.

In the next section, we specify the differential equation models used to describe genetic regulatory
networks, and we briefly summarize the working of the simulation algorithm. Section 3 discusses the
implementation of the method, while section 4 illustrates the application of GNA in the case of the

RR n° 4262



4 fidae ae Jong , Johannes Gewseimann , Céline Hernanaez , Michel Fage

initiation of sporulation in B. subtilis. The paper concludes with a discussion of the simulation tool
and an outline of ideas for further work.

2 Qualitative simulation method

2.1 Differential equation models

The dynamics of a genetic regulatory network can be described by a class of differential equations
suggested by Mestl et al. [20], extending ideas originally proposed by Glass and Kauffman [9]. The
equations have the general form

where = [z1,...,z,) is a vector of cellular protein concentrations. The state equations (1) define
the rate of change of the concentration z; as the difference of the rate of synthesis f;(x) and the rate
of degradation g;(x) z; of the protein. Constant input protein concentrations can be defined by setting
z; = 0.

The function f; : RY; — Ry is defined as

fig) = kuba(m) > 0, (2)

leL

where i > 0 is a rate parameter, by : RS, — {0,1} a regulation function defined in terms of step

functions, and L a possibly empty set of indices of regulation functions. A regulation function by ()
is the arithmetic equivalent of a Boolean function expressing the logic of gene regulation [25]. In the
simplest case, fi(z) = k; sT(z},0;), with

1, z; >0,
0, T; < 9]'.

5T (z4,05) = {

The function says that below a threshold concentration #; > 0 gene i is not expressed, whereas above
this threshold it is expressed at a rate k;. If protein J is a negative regulator of gene %, we have
fi(®) = ki s~ (zj,0;), with s~ (z;,0;) = 1 — s*(z;,60;). More complex regulation functions can express
the combined effects of several regulatory proteins (section 4).

The function g¢;() allows the regulation of protein degradation to be modeled. The function is
defined analogously to (2), except that we demand that g;(x) is strictly positive. In addition, in order
to formally distinguish degradation rates from synthesis rates, we will denote the former by «y instead of
k. Notice that with the above definitions of f;() and g;(), the state equations (1) are piecewise-linear.

In the absence of numerical values for the threshold and rate parameters in (1), it is not possible to
numerically simulate the behavior of a genetic regulatory network. Instead of precise numerical values,
we specify qualitative constraints on the parameter values that can usually be inferred from biological
data. These constraints, having the form of algebraic inequalities between parameters, are exploited
by the simulation method to predict the qualitative dynamics of the regulatory system.

In general, a protein encoded by a gene will be involved in different interactions at different thresh-
old concentrations. We can order the p; threshold concentrations of gene i, yielding the threshold
inequalities

0<b:1<...< Oi,pi < max;. (3)

The parameter maz; denotes a maximum concentration for the protein encoded by gene 1.
The n — 1-dimensional threshold hyperplanes xz; = 6;;., 1 < k; < p;, divide the phase space
into rectangular regions, so called regulatory domains [20]. Within each regulatory domain, the step
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function expressions in (2) evaluate to 0 or 1, and hence f;() and g;() reduce to (sums of) rate constants.
More precisely, f;() simplifies to some p; € M; = {fi(z) | 0 < & < max}, and g;() to some v; € N; =
{gi(z) | 0 < & < maxzx}. The sets M; and N; collect the different synthesis and degradation rates of
the protein in different domains of the phase space.

It can be easily shown that all trajectories in a regulatory domain monotonically tend towards
a single, stable steady state @* = p/v, the target equilibrium, lying at the intersection of the n
hyperplanes z; = u;/v; [9, 20, 29]. The target equilibrium level u;/v; of the protein concentration z;
gives an indication of the strength of gene expression in the domain.

As in the case of threshold parameters, exact numerical values for the rate constants k and - are
usually not available. However, biological data often does allow the possible target equilibrium levels
of z7 in different regulatory domains to be ordered with respect to the threshold concentrations. The
resulting equilibrium inequalities define the strength of gene expression in a regulatory domain in a
qualitative way, on the scale of ordered threshold concentrations. More precisely, for every u; € M;,
v; € N;, we specify some [;, 1 < [; < p;, such that

i1, < pi/vi < 01,41, (4)
or we set 0 < p;/v; < 051 or 0;p, < pi/vi < maz;.

2.2 Qualitative simulation

In each regulatory domain, the system behaves in a qualitatively uniform way, in the sense that
the solution trajectories monotonically approach a target equilibrium = p/v. As a consequence,
each regulatory domain is associated with a qualitative state of the system, defined by a qualitative
value for the concentration variable and its derivative [6]. The qualitative value for a concentration
variable is given by the inequalities specifying the threshold bounds of the regulatory domain (e.g.,
Oi k; < x; < 0,41, for some k;, 1 < k; < p;). The qualitative value for the derivative of a concentration
variable is given by the inequality specifying the sign pattern of the derivative in the regulatory domain
(i.e., 2; <0, ; > 0, or &; ; 0, with Z; § 0 meaning that ; < 0, ; = 0, and #; > 0 in different parts
of the domain).

With the above definitions, the basic idea of the qualitative simulation algorithm described in [6]
can be summarized as follows. Given initial qualitative values guv,, describing the initial protein con-
centrations @, the simulation algorithm computes the initial qualitative state gsg, and then determines
possible transitions from gsg to successor qualitative states that are consistent with the threshold and
equilibrium inequalities. The generation of successor states is repeated in a recursive manner until all
qualitative states reachable from the initial qualitative state have been found.

The qualitative states and transitions generated by the simulation algorithm form a state transition
graph. The graph may contain cycles and states without successors, which are together referred to as
attractors, and which may correspond to steady states and limit cycles of the differential equations (1)
[9, 20, 29]. Since the number of possible qualitative states is finite, every path in the state transition
graph will eventually reach an attractor. Each path running from the initial qualitative state gsg to
an attractor forms a possible qualitative behavior of the regulatory system.

3 Genetic Network Analyzer (GNA)

The qualitative simulation method has been implemented in Java 1.3 in a program called GNA (Genetic
Network Analyzer). The graphical user interface VisualGNA assists the user in specifying the input
of the simulator, controlling the simulation process, and analyzing the output (Fig. 1). GNA and
VisualGNA can be downloaded from the authors’ web site.

The simulation of a genetic regulatory network requires that the user specify a text file containing
the state equations and the threshold and equilibrium inequalities. In addition, a text file with the
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initial conditions must be provided. The syntax of the model and the initial conditions is defined by
a Backus Naur Form (BNF) grammar which can be found in the GNA documentation. Fragments of
the input files for the sporulation network are shown in App. A. A graphical model editor is currently
under development.

A model describing a regulatory network can be selected by means of the Read Model option in the
Model menu. GNA reads and parses the file, and from the resulting internal representation it generates
a graphical display of the network. The user can choose between different algorithms to optimize the
placement of the vertices and edges of the graph.

= Wisual Gnad. 1 [
File Model Simulation Results 7

E phosphobac23.gna with phosphobac23.d

e [H
max_sin|™} -

sisictr=—— 111
E phosphobac23.gna with phusphohn"id'l Eles B

Zisind 1T 1T 1 LI I
W1OWE VI OWE WG WIT VI3 V4 E
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t_spods_ 27 I I I I T T spobA
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Figure 1: Modeling and simulation of a genetic regulatory network by means of GNA. The left window
show the genes and interactions of the sporulation network, the middle window the state transition
graph resulting from simulation of the network under initial conditions expected to induce sporulation,
and the right window the temporal sequence of qualitative states in one selected path in the state
transition graph.

A simulation can be started by choosing a file containing the initial conditions in the Simulation
menu. The program determines in an iterative manner the state transitions that are possible from the
specified initial conditions. This is achieved by an inequality reasoner tailored to the mathematical
form of the state equations and parameter inequalities [5]. Alternatively, GNA can be instructed to
perform a simulation for all possible initial conditions by means of the option Complete Analysis in
the Simulation menu.

After completion of the simulation, GNA displays the state transition graph (Fig. 1). The attractors
and their basins of attraction can be highlighted in the graph. By clicking on a sequence of states,
partial and complete qualitative behaviors can be selected, and then studied in more detail by choosing
the option Display States in the Results menu. The resulting chart shows how the qualitative state of
the regulatory system changes over time in the selected behavior (Fig. 1).

4 Initiation of sporulation in B. subtilis

The use of the computer tool will be illustrated by modeling and simulating the regulatory network
underlying the initiation of sporulation in B. subtilis. While nutrients are plentiful, B. subtilis divides
as fast as possible in order to efficiently compete with its neighbors. However, when conditions become
unfavorable, the bacterium protects itself by forming environmentally-resistant spores [10, 12, 31].
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On the basis of the extensive literature on B. subtilis sporulation, and information contained in the
database Subtilist [21], a model of the regulatory network controlling the initiation of sporulation has
been constructed. A graphical representation of this network is shown in Fig. 2, displaying key genes
and their promoters, proteins encoded by the genes, and the regulatory action of the proteins.

The network is centered around a phosphorylation pathway, the so-called phosphorelay, which
integrates a variety of environmental, cell-cycle, and metabolic signals [10, 12]. Under conditions ap-
propriate for sporulation, the phosphorelay transfers phosphates to the Spo0A regulator via a sequence
of phosphorylation steps modulated by kinase and phosphatase proteins. The phosphorelay has been
simplified in this paper by ignoring intermediate steps in the transfer of phosphate to Spo0A. However,
this simplification does not affect the essential function of the phosphorelay: modulating the phosphate
flux as a function of the competing action of kinases and phosphatases (here KinA and SpoOE) [24].

When input signals in favor of sporulation arrive, the concentration of Spo0A~P reaches a threshold
value above which it activates various genes that commit the bacterium to sporulation. In order to
produce a critical level of Spo0A~P, signals arriving at the phosphorelay need to be amplified and
stabilized. This is achieved by a number of positive and negative feedback loops controlling the activity
of the phosphorelay by transcriptional regulation of its components.

The decision to enter sporulation is thus not determined by a single gene, but emerging from a
complex network of genes and regulatory interactions that integrates a variety of external stimuli. We
have simulated this network to see whether salient features of the choice between vegetative growth
and sporulation can be reproduced from the model [4].

4.1 Modeling of sporulation network

In order to model a genetic regulatory network, the functions f;(x) and g;(z) in (1) need to be defined.
Recall from Sec. 2 that the functions are weighted step function expressions describing the regulatory
logic of protein synthesis and degradation.

The use of step functions in gene regulation models has been motivated by the observation that the
rate of activation of a gene, as a function of the concentration of a regulatory protein, often follows a
steep sigmoidal curve [38]. That is, in the case of a repressor of transcription, below a certain threshold
concentration of the protein, the gene will be maximally expressed, whereas above this threshold its
expression rapidly falls down.

The use of step function approximations can be generalized to regulatory pathways in which proteins
are modified through interactions with other proteins and small molecules. Consider the simplified
phoshorelay, consisting of a phosphorylation/dephosphorylation cascade with SpoOA the substrate,
KinA the protein kinase, and SpoOE the protein phosphatase. The product of the phosphorelay,
Spo0A~P, activates the transcription of abrB [8, 32]. Analysis of a kinetic model of the simplified
phosphorelay [28] shows that the rate of expression of abrB depends in a sigmoidal fashion on the total
concentrations xg, of Spo0A, zk, of KinA, and x4 of SpoOE (Fig. 3).

In terms of step functions, the regulation of spo0E, a gene encoding a protein phosphatase involved
in the phosphorelay, is described by

Tse = Kge 3_($ab59ab1) 3+($aa9a1) — Vse Tse-

The differential equation states that spoOE is transcribed at a rate kse from a o-promoter when the
concentration x4 of its repressor AbrB is below the threshold concentration 6y, (i.e., s~ (Zgp, 0ap,) = 1)
[32]. In addition, for transcription to commence, the sigma factor o4 encoded by sigA needs to be
available at a concentration above the threshold 654, (i.€., s7(Zsq,05q,) = 1). Nothing is known about
the regulation of SpoOE turnover; therefore a degradation rate proportional to the concentration of the
protein has been assumed (—7yseZse).

The gene abrB is transcribed from two o-promoters and is regulated by Spo0OA~P and AbrB.
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Figure 2: Genetic regulatory network underlying the inititation of sporulation in B. subtilis. For every
gene, the coding region and the promoters are shown. Promoters are distinguished by the specific o
factor directing DNA transcription. The regulatory action of a protein tending to activate (inhibit)
expression is indicated by a ‘+’ (-’). The numbers in the figure are references to the literature giving
genetic and molecular evidence for the structure of the genes and for the regulatory interactions: [1]
Jaacks et al. (1989), J. Bacteriol., 171(8):4121; [2] Predich et al. (1992), J. Bacteriol., 174(9):2771;
[3] Fuyita and Sadaie (1998), J. Biochem., 124:98; [4] LeDeaux et al. (1995), J. Bacteriol., 177(3):861;
[5] Jiang et al. (2000), Mol. Microbiol., 38(3):535; [6] Chibazakura et al. (1991), J. Bacteriol.,
173(8):2625; [7] Strauch et al. (1992), Biochimie, 74:619; [8] Mandi¢-Mulic et al. (1995), J. Bacteriol.,
177(16):4619; [9] Bai and Mandi¢-Mulic (1993), Genes Dev., 7:139; [10] Strauch et al. (1989), EMBO
J., 8(5):1615; [11] Strauch (1993), In: Sonenshein et al., Bacillus Subtilis and other Gram-Positive
Bacteria, ASM Press, 757; [12] Gaur et al. (1988), J. Bacteriol., 170(3):1046; [13] Strauch and Hoch
(1993), Mol. Microbiol., 7(3):337; [14] Kallio et al. (1991), J. Biol. Chem., 266(20):13411; [15] Weir et
al. (1991), J. Bacteriol., 173(2):521; [16] Healy et al. (1991), Mol. Microbiol., 5(2):477; [17] Trach et
al. (1991), Res. Microbiol., 142:815; [18] Wu et al. (1991), Gene, 101(1):113; [19] Mandi¢-Mulic et al.
(1992), J. Bacteriol., 174(11):3561; [20] Burbulys et al. (1991), Cell, 64:545; [21] Hoch (1993), Annu.
Rev. Microbiol., 47:441; [22] Perego and Hoch (1988), J. Bacteriol., 170(6):2560; [23] Yamashita et al.
(1989), J. Gen. Microbiol., 135:1335.
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Figure 3: Sigmoidal regulation functions in gene regulation. (a) Repression of a target gene (abrB)
by a phosphorylated regulatory protein (Spo0A~P). The plots in (b)-(c) show expression of abrB as a
function of the total concentration of the regulator (Spo0A), kinase (KinA), and phosphatase (SpoOE)
in arbitrary units. In each plot, two of the concentrations are varied while the third is set to a constant
value (the third plot has been omitted). The plots have been produced by solving the steady-state
equation of the kinetic model in [28].

ZTab = Kab 3_(1'(11); 9(11)2) 3+(Iaa 00.1) (1 — s (wsaa Osal) st (-’Ekaa ekal) 3_(-'1386; 0583) 3+(-77sa 951)) — Yab Lab

abrB transcription is beginning to be inhibited at low concentrations of Spo0A~P and at high con-
centrations of AbrB [8, 32]. As a consequence, for abrB to be transcribed at a rate kq, the concen-

tration of AbrB needs to be below the threshold ,,, above which negative autoregulation takes place

(s (Zapy Oap,) = 1). Moreover, in the presence of the external signal, represented by st (z5,6s,) = 1, the
concentrations s, and zx, of Spo0A and KinA must not lie above their respective thresholds 6,4, and

0rq, when the concentration x4, of SpoOE is below its threshold 6., since this would cause Spo0A~P to

attain a a level sufficient for shutting off abrB transcription (1—s1 (Zs4, 0sa,) ST (Tka, Okas) 8~ (Tses Oses) 8T (s, 0s,) =
1). The degradation rate of AbrB equals —vygpZqp-

AbrB has two threshold concentrations: 6,5, and 68,5,. The first threshold corresponds to the re-
pression of spo0E, sigH, and other early sporulation genes by AbrB. Repression is lifted in stationary
phase, when the AbrB concentration decreases [33]. The second threshold corresponds to the autoreg-
ulation of abrB during vegetative growth, when AbrB levels are at their highest. This motivates the
folowing threshold inequalities for AbrB:

0 < Oapy < Ogp, < mazqy.

Inspection of its state equation shows that x,, will either tend to 0, in regions where the gene is
repressed, or to Kqp/7Vap, in regions where the gene is transcribed at a rate kq. The equilibrium level
Kab/Yab 1s placed above the highest AbrB threshold, since otherwise the concentration of AbrB would
never be able to reach or maintain a level at which negative autoregulation takes place. This leads to
the equilibrium inequalities

gab2 < K/ab/’)'ab < Mazgp.

The state equations and parameter inequalities for the other proteins in the network of Fig. 2 have
been constructed analogously (Fig. 4). The 10 state equations comprise a total of 45 step functions
expressing the logic of gene regulation. For each of the proteins, 1 to 3 threshold concentrations and
1 to 3 equilibrium concentrations need to be ordered. Most of the time, the choice of appropriate
parameter inequalities is strongly constrained by biological data. If the threshold and equilibrium
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inequalities cannot be unambiguously determined on a priori grounds, they have been adjusted such
that the model predictions match the observed behavior.

jjka = Kka + Fkaz (1 - 8+ (x3a7 63@3) $+ (xkaﬂ ekas) 8_(55367 6361) 8+ (335, 631)) 8+ (.’L'h, 0’11) — Yka Tka
0< ekm < ekag < ekas < MATfq
Okas < (Kkas + Kkas)/Vha < MaTha, Okar < Kkar/Vha < Okas

Eh = Khy S (Tab, baby) ST (Ta,00,) — Yh Tk
0 < b, < mazy
On, < Kny /Y0 < mazp

Tse = Kgey S (xaba 0ab1) 3+(~Ta; 0a1) — Vse Tse
0 < s, <Osep <Ose, < Mazse
0< ﬂsel/’Yse < 9861

Tap = Kaby (]— - 5+($sa; osal) 3+($ka; okal) Si(wse; 0563) st (-Z's; 031)) s (mab; olle) 3+($a; eal) — Yab Lab
0< Gabl < Habg < Mazqp
aabg < Kaby /7ab < MATqp

'i'sa = Ksaq (1 - s+($sa; osas) 3+($ka; ekas) si(xsea 6361) 5+($sa 051)) (1 - S+($ST‘7 asm) s (xsi; 03i1)) s+(mh; 0h1)
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Figure 4: State equations and parameter inequalities forming the model of the sporulation network
discussed in Sec. 4. The model has nine state variables and one exogenous variable corresponding
to the concentrations of key proteins. An additional exogenous variable denotes the presence of an
external signal: z, (KinA), x5, (6%), zs¢ (SpoOE), 245 (AbrB), 25, (Spo0A), z, (Sinl), z, (SinR),
zhr (Hpr), 25 (o), 24 (0?), x5 (signal).

4.2 Simulation of wild-type and mutant bacteria

GNA has been used to simulate the network underlying the initiation of sporulation from initial
conditions reflecting a perturbation of the vegetative growth conditions. The perturbation consists in
an external signal indicating a state of nutritional deprivation, which causes KinA to autophosphorylate
(s* (25, 05,) = 1).

Simulation of the network takes less than one second to complete on a SUN Ultra 10 workstation,
and gives rise to a transition graph of 20 states, including two attractor states (Fig. 1). The attractor
states both correspond to the decision of B. subtilis to enter sporulation, because ¢, a transcription
factor encoded by the spolIA operon that is essential for the development of the forespore [31], is
present above its threshold concentration 6y, .
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Fig. 5(a) shows how the qualitative value of the proteins KinA, AbrB, Spo0A, and % evolves in a
typical behavior selected from the state transition graph. While the concentration of AbrB decreases as
a consequence of the accumulation of Spo0A~P, the concentrations of the phosphorelay components
KinA and Spo0OA increase, thus amplifying the flux of phosphate through the phosphorelay. The
increase of the KinA and SpoOA concentrations is to be expected, as AbrB directly or indirectly
represses their transcription (Fig. 2).

Much of what we know about the regulatory network underlying sporulation has come from the
analysis of B. subtilis mutants [10]. Mutants can be modeled by adapting the differential equations
in which the variable corresponding to the mutant gene occurs. A sinl mutant, for instance, gives
rise to a state equation &g = 0, where x4 denotes the cellular concentration of Sinl. Simulating the
behavior of the B. subtilis mutant under sporulation conditions produces a transition graph with 9
qualitative states and a single attractor state corresponding to vegetative growth (Fig. 5(b)). That is,
a sinl mutant is not expected to sporulate, an observation supported by biological data [1].

MaTsq Spo0A AT sq
[ T Tab T Tap
T Tsq e Oasy Tsq Osaa Oaby *
Osa, Osa, Spo0A
P .
bun, AbrB abs Osa, AbrB u
0 ——F A A 0 0ttt 0
Sl S2 S3 S5 S6 S17 S8 Sl4 SI5 SI 2 4'S8'S9 S7
t — PR
mazf mazxcp
MaTpg mazTyg
) * T z 6 T z
T Tka kas _ 0 ! T Tk e 0 !
Oray KinA I Okas KinA 71
Otar —F Ovar + 7
0 ——F 0 0 ——t—t—t—t+—+—t 0
S1 2 3 S5 S6 S17 S18 S14 S15 SI 2 4 B S9 ST
t - (a) t— (b)

Figure 5: Results of the simulation of the network in Fig. 2 under conditions favoring sporulation. In
(a) the results for a wild-type bacterium and in (b) the results for a sinl- mutant are shown. The graphs
show the qualitative evolution of selected protein concentrations in a typical qualitative behavior in
the state transition graph.

4.3 Analysis of simulation results

The simulated behavior of our network should reflect the essential biological characteristics of the
sporulation initiation process. In particular, we expect to observe two types of attractor states, corre-
sponding to vegetative growth and sporulation, and a controlled, all-or-non transition between these
states in response to external stimuli [2].

Our model of the regulatory system reproduces exactly these properties. For a wide range of initial
conditions, the simulations result in transition graphs with attractor states corresponding to vegetative
growth (low concentrations of 0¥ and SpoOA~P, high concentration of AbrB) or sporulation (high
concentrations of KinA and Spo0A~P, activation of spoITA). This tends to show that the connections
within a biological system are such that almost all perturbations, even when they are contradictory,
eventually return the system to a coherent pattern of gene activity representing a biological function
or property.

A second important aspect of the model is that it shows how an external stimulus can lead to a
transition from vegetative growth to sporulation. Low-amplitude signals from the environment are
amplified and stabilized through feedback loops in order to provoke the change in the pattern of gene
expression. When a cell in the vegetative growth phase receives a signal activating KinA, it will
change its genetic program and induce sporulation. Qur model of the network reproduces exactly this
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behavior: turning the signal on in the vegetative growth state leads to amplification of the signal and
conversion of the system to the sporulation state.

The available biological data on regulatory interactions constrain the topology of the core network to
the connections shown in Fig. 2. In a similar way, biological data constrain the parameter inequalities.
The (few) remaining freely adjustable orderings of threshold and equilibrium concentrations have been
chosen so as to reproduce the observed behavior of the sporulating bacterium.

Analysis of the parameter inequalities thus obtained suggests that an interaction may be missing in
the sporulation network of Fig. 2. In order to obtain results consistent with experimental data, we have
to assume that the expression of spo0E is quite weak. That is, the target equilibrium concentrations of
the SpoOE phosphatase have to be placed below its lower threshold concentrations (0 < Kse/Vse < se,
and Ose, < Kse/Vse < Ose,). This is troublesome, because it implies that SpoOE cannot exert any
influence on the decision to sporulate, as its concentration will not reach the threshold levels above
which it can block the phosphate flux through the phosphorelay. As a remedy, we could postulate that
an unknown signal decreases the activity of SpoOE at the onset of sporulation. Molecular studies of
the interaction of SpoOE with components of the phosporelay suggest the existence of such a cellular
factor which remains as of yet unidentified [22].

5 Discussion

We have presented a computer tool for the qualitative simulation of genetic regulatory networks and
illustrated its use in the analysis of the network of interactions controlling the initiation of sporulation in
B. subtilis. The computer tool implements a simulation method that is adapted to a class of ordinary
differential equation models that are biologically valid and have been well-studied in mathematical
biology [6]. Instead of numerical values, which are usually not available, qualitative constraints in the
form of parameter inequalities are specified. Both the state equations and the parameter inequalities
are obtained by directly translating biological data into a mathematical formalism.

Simulation of the sporulation network in Fig. 2 reveals that the essential features of the initiation
of sporulation can be reproduced by means of a model constructed from the experimental literature.
However, we also conclude that an additional interaction regulating the activity of the phosphatase
SpoOE may be necessary for the decision to continue vegetative growth or to enter sporulation. This
example demonstrates the potential of computer-supported modeling and simulation for discovering
new and missing interactions and guide further experimentation.

Several computer tools for the simulation of biochemical reaction networks by means of differential
equations are currently available [18, 27, 37]. GNA differs from these tools in an important respect: it
has been developed for the qualitative instead of numerical simulation of one specific kind of networks,
consisting of genes and their mutual regulatory interactions. The class of differential equations used
to describe genetic regulatory networks has favorable mathematical properties that allow large and
complex networks to be analyzed. GNA thus avoids the serious upscaling problems encountered by
more general qualitative simulators like QSIM [14]. In comparison with the logical method of Thomas
and colleagues [34, 35], which is based on comparable logical abstractions of regulatory interactions,
GNA has been developed for differential equation models. We believe that the latter formalism is
intuitively clear and of large generality. Moreover, it facilitates the integration of any quantitative
data becoming available through modern genomic measurement technologies.

Upscaling is an important issue for modeling and simulation tools, since the behavioral properties
of genetic regulatory networks emerge from the interactions among a large number of genes. Simulation
of the sporulation network takes less than one second to complete on an average PC. Moreover, it turns
out that of the 24576 possible qualitative states of the system only 20 are accessible from the initial
state.

Even though the number of accessible states often forms a small proportion of the number of
possible states, the exponential growth of the latter tends to make memory requirements the major
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bottleneck for upscaling. Simulation experiments with random regulatory networks on a SUN Ultra 10
workstation with 128Mb of RAM have shown that the current version of GNA can simulate random
regulatory networks involving up to 18 genes involved in complex feedback loops [5]. This number may
be considerably larger in the case of real biological networks, which often have a redundant structure
of interactions with robust behavioral properties.

The simulation tool produces gene expression profiles that can be directedly compared with ex-
perimental data obtained from quantitative RT-PCR and DNA microarrays. In fact, the qualitative
predictions are well-adapted to the state-of-the-art measurement techniques in genomics, which are
adequate for detecting qualitative changes in expression level, but usually lack quantitative precision.
We are currently working on extensions of the method to validate and identify models of genetic reg-
ulatory networks using gene expression data. Incorporation of these extensions into GNA would allow
the simulation tool to evolve into a more general tool for the computer-supported analysis of genetic
regulatory networks.
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GNA input files

The input of GNA consists of a file with the model description and a file with initial conditions. We
show here an extract of the model file for the sporulation network in Fig. 1, with the declarations, state
equations, and parameter inequalities concerning the state variable x4, (concentration AbrB), and the
file with initial conditions.

state-variable: abrB

zero-parameter: z_abrB

box-parameter: max_abrB
production-parameters: k_abrB_1
degradation-parameters: g_abrB
threshold-parameters: t_abrB_1, t_abrB_2
state-equation:

d/dt abrB =
k_abrB_1 * (1 - s+(spoOA, t_spoOA_1)
s+(kinA, t_kinA_1)
s-(spoOE, t_spoOE_3 )

s+(signal, t_signal_1))

* ¥ x |
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* s-(abrB, t_abrB_2)

* s+(sigh, t_sigh_1)
- g_abrB * abrB
threshold-inequalities:

t_abrB_1 < t_abrB_2;
nullcline-inequalities:

k_abrB_1 > g_abrB * t_abrB_2;

k_abrB_1 < g_abrB * max_abrB;

initial-conditions:
kinA > t_kinA_1; kinA < t_kinA_2;
sigH >= z_sigH; sigH < t_sigH_1;
spoOE >= z_spoOE; spoOE < t_spoOE_1;
abrB > t_abrB_1; abrB < t_abrB_2;
spoOA > t_spoOA_1; spoOA < t_spoOA_2;
sinl >= z_sinl; sinI < t_sinI_1;
sinR > t_sinR_1; sinR <= max_sinR;
sigF >= z_sigF; sigF < t_sigF_1;
sigh > t_sighA_1; sigA <= max_sigA;
signal > t_signal_1; signal <= max_signal;
hpr > t_hpr_1; hpr <= max_hpr;
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