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Sur la décidabilité de fragments du w-calcul asynchrone

Résumé : Nous étudions la décidabilité d’un probléme d’accessibilité pour plusieurs frag-
ments du w-calcul asynchrone. Nous considérons la combinaison de trois aspects principaux
: la génération de noms, la mobilité de noms et le contrdle non borné. Nous montrons que la
combinaison de la génération de noms avec ou bien la mobilité de noms ou bien le controle
non borné induit un fragment indécidable. D’autre part, nous démontrons que la généra-
tion de noms sans mobilité de noms et avec controle borné est décidable par reduction au
probléme de couverture pour les Réseaux de Petri.

Mots-clés : m-calculus, accessibilité, réseaux de Petri.



On the decidability of fragments of the asynchronous w-calculus 3

1 Introduction

We are interested in properties of the reduction relation such as reachability, deadlock,
liveness,. . . for process calculi based on the asynchronous m-calculus [2, 7, 1].

We recall that ‘asynchronous’ here refers to a communication mechanism where messages
are put in an unbounded and unordered buffer and that in the process calculus jargon this
amounts to disallow the output prefix. By opposition, the synchronous w-calculus forces a
synchronization between the sender and the receiver.

Our interest in the asynchronous 7w-calculus stems from the observation that the core
of concurrent programming languages such as P1ct [13], JOIN [4], or Tyco [17] are based
on it and the remark that object-oriented programming languages enjoy a rather direct
representation in these formalisms.

In this paper, we will mainly consider a minimal asynchronous, polyadic, simply sorted
m-calculus not including external choice and we will concentrate on three main ‘features’ of
this minimal calculus:

e Name generation, i.e. the possibility of generating fresh names (values, channels,. . .).
e Name mobility, i.e. the possibility of transmitting names.

e Unbounded control, i.e. the possibility of dynamically adding new threads of control.

In the absence of name generation, our formalism can be mapped to Petri Nets (see, e.g.
[15]). This encoding, that basically goes back to early work [5] on the translation of ccs
[11] to Petri Nets, settles most interesting decision problems for the fragment without name
generation. Therefore, the main issue that, in our opinion, remains to be clarified is whether
there exist decidable fragments that include some form of name generation.

So far, most decidability results we are aware of concern the synchronous m-calculus with
bounded control (see, e.g., [3, 12]). In the asynchronous case, our main results are as follows:

e The combination of name generation and name mobility leads to an undecidable frag-
ment even assuming the control finite.

e The combination of name generation and unbounded control leads to an undecidable
fragment even assuming that no name is transmitted (this refines a well-known unde-
cidability result for ccs).

e Name generation without name mobility and with bounded control is decidable by
reduction to Petri Nets. This is our main technical result which is based on an analysis
of the use of generated names. The analysis, which appears to be original, distinguishes
between ‘persistent’ and ‘temporary’ names and provides a method to reuse the same
name for generated temporary names which are alive at different times.

We regard these results as a first step towards the systematic introduction of approxi-
mated decision methods for languages including name generation. We expect that a fruitful

RR n°® 4241



4 Roberto M. Amadio  Charles Meyssonnier

approach is to understand these methods by factoring the approximation through a trans-
lation into Petri Nets. Once the behaviour is mapped to a Petri Net further standard
approximation techniques are available based, e.g., on semi-linear sets (see, e.g., [16], for an
up to date survey).

2 Asynchronous n-calculus

As usual, we assume given a denumerable set of names, that we denote a,b, ... Vectors of
names (possibly empty) are denoted @,b, ... We denote with [b/@] a substitution on names.
Ifd=ay,...,a, then we use (v@) as a shorthand for (vay) ... (va,).

We suppose that every name a has an associated sort st(a) and that names are used
consistently with their sort. We will just rely on simple sorts as defined by the following
grammar

su=o| Ch(s,...,s) (1)

where o is some ground sort.

We consider a polyadic, 51mP1y sorted, asynchronous m-calculus with the standard op-
erations of message creation ab, input prefix a(b) P, parallel composition P | @, name
generation (va)P, and parametric recursive deﬁmtlons. The latter is preferred to iteration
because it allows a better control on the creation and termination of parallel threads.

We denote with A, B, ... parametric process identifiers. A process is presented by a finite
system & of parametric equatlons A(@) = P and an initial configuration where we assume
that: (i) every process identifier is defined by exactly one equation, and (ii) the names
occurring free in P are included in {@}. It will be convenient to assume that every equation
has the following normalised shape:

A(@) = a(a)-(va")(Tiera;d; | TiesA;(d;)) - (2)

Such an equation specifies a process that inputs a message and then generates new names,
sends a number of messages, and runs a number of continuations. The sets I and J are
assumed finite (possibly empty, in which case the parallel composition reduces to the termi-
nated process 0). We note that in equation (2) the names &, ', and @ are bound. We will
assume that they are renamed so that they are all distinct.

Given a finite system of recursive equations as above, a configuration is a normalised
process of the shape:

(va)(Wicrai(a:) | ;e A;(d;))

where as usual ‘I’ stands for the parallel composition. Let P, Q be two configurations. We
write P = @ if P is syntactically equal to @ up to renaming of bound names, permutation of
name generations, and associativity and commutativity of parallel composition. We denote
with fn(P) the set of names occurring free in P.

Next we introduce the reduction relation on configurations. All we want to capture is

the usual reduction rule . .
ab | a(c).P — [b/dP

INRIA



On the decidability of fragments of the asynchronous w-calculus 5

allowed to take place under name generation and parallel composition, up to a suitable
structural equivalence. Our definition of reduction is a bit technical because it has to
evaluate the actual parameters, unfold a recursive definition to find an input prefix matching
a message, and then bring the name generations, the messages, and the continuations under
the input prefix at top level. The advantages of this approach, is that we can then limit the
structural rules to the ones stated above, give a compact normal form for configurations,
and provide a simple translation to Petri Nets.

Definition 2.1 If the equation associated to the process identifier A is (2) and
1. P=()(AD) | 2d) | Q),
2. the sets {@,a,a’"} and {0} U fn(P) are mutually disjoint,
3. o = [b/@,é/d),
4. and o(a) =c

then

P — (Wb, a")(Wieso (@) | e A (0d;) | Q) - (3)
We may wonder whether our normalised configurations can represent all usual processes
of the w-calculus, say:

p=ab|a(B)-p |(a®).p) | (va)p| (p|p) -

Indeed, this can be easily checked. We note that, up to structural equivalence, a process p
can always be written as:

p = (v@)(icr@:d; | Wjeya;(@;)-p; | Mrex(ak(@x)-pr)) -

We claim that we can build a configuration P and a set of equations £ whose behaviour
is equivalent to p’s. We proceed by induction on the structure of p to generate the set
of equations. For every process a;(@;).p; we introduce a fresh process identifier A;(...)
and the equation A;(...) = a;(@;)...., and we apply inductively the transformation to p,.
Similarly, for every process !(ar(@x).pr)) we introduce a fresh process identifier Ag(...) and
the equation Ag(...) = ap(@y).(Ax(...) | ...), and we apply inductively the transformation
to Pk -

Reassured about the expressivity of our formalism, we can now formally state the reach-
ability problem we address in this paper.

Definition 2.2 Given a system of equations £ containing a process identifier A and a related
initial configuration P, the reachability problem asks whet@er P reduces to a c_qnﬁgumtion
containing the process identifier A, i.e. P —* (va@)(...| A(b) | ...), for some @,b.

In section 3.4, we will relate this problem to the well known coverability problem for
Petri Nets.

RR n°® 4241



6 Roberto M. Amadio  Charles Meyssonnier

3 The fragment without name generation reduces to Petri
Nets

We consider the fragment where the equation (2) is restricted to having the shape:
A(@) = a(b).(iesad; | TiesA;(E))) - (4)
In this fragment no name generation is allowed. Given such a system of equations and an

initial configuration P we will recall below the standard construction of a Petri Net that
simulates the reduction of the process.

3.1 Parameterless systems of equations

First we recall the notion of parameterless system of equations (a notation used, e.g., in the
context of ccs [11]). In this case, all names have sort Ch() and an equation has the shape

A =Yrerar-(Ther @: | Mie s, Aj) (5)

where K is a finite set and ¥ stands for the external choice (external choice is just used here
to represent an intermediate step towards the translation to Petri Nets). If K is empty, we
take conventionally the left hand side as the terminated process 0. No renaming is allowed
and a process identifier is literally replaced by the right hand side of the equation defining
it.

3.2 From parameterless systems of equations to Petri Nets

We fix a system of equations without parameters of the shape (5). Let P be an initial
configuration. Without loss of generality, we may assume that P contains no name generators
v; otherwise we replace the names bound by v by fresh names. Let N be the collection of
names free in P. Since there is no name generation, these are all the names that can appear
in a reachable configuration.

(1) We associate a distinct place to every name a € N and to every process identifier A.
The intended interpretation is that a token at place a corresponds to a message @ while a
token at place A means that the control of a thread is at A. Following this interpretation
we determine the initial marking.

(2) To every equation we associate a set of transitions which are connected to the places
as follows. If A = ay...+ -+ + @y ... then we introduce n transitions t,...,¢, and for
k=1,...,n an edge from place A to transition ¢, and an edge from place a; to transition
tx. Moreover, if the continuation of a; has the shape

(Miera; | ey A;j)

then we add an edge from transition t; to place a; for ¢ € I and from transition t; to place
Aj forj e J.

INRIA



On the decidability of fragments of the asynchronous w-calculus 7

3.3 From systems without name generation to parameterless sys-
tems

We fix a system of parametric equations without name generation of the shape (4). For the
sake of notational simplicity we assume that all channels have a recursive sort s = Ch(s),
and that all process identifiers depend on k parameters. Then:

e for every pair of channel names a,b € N, we introduce a new channel name a; of sort

Ch).

e for every equation of the shape (4) and for every vector of names a € N* we produce
an equation
Ay =Spen(o(a)y -(iero(ci)ow) | HjesAj o)) -

where o = [d /@, V' /b).

To summarize, we transform a parametric system into a system without parameters but
with external choice, and in turn, we transform the latter system into a Petri Net.

3.4 From reachability to coverability, and back

In terms of Petri Nets, the reachability problem we have formulated in definition 2.2 amounts
to checking whether certain places, corresponding to a given process identifier, will contain
a token. This is an instance of the coverability problem for which Lipton [10] has provided
a 20(vn) gpace lower bound and Rackoff [14] a 20("1°8 %) gpace upper bound.

On the other hand, it is easy to see that the coverability problem for Petri Nets can be
reduced to the reachability problem 2.2. Given a Petri Net, for every transition ¢ taking, say,
one token from places aq,...,a, and putting one token in places b, ..., by, we introduce
the equations (we omit the parameters):

At = al.A% A% = U/2.At2 [N A;L_l = an.(B]_ | s | Em | At)

Thus a transition of the Petri Net is now simulated by serialising the reading of the tokens.
If we want to know, whether, say, the place a will ever contain a token we add the equation
A = a.B. Then the initial configuration contains the process identifier A; for every transition
t, a number of messages corresponding to the initial marking, and the process identifier A.
To determine whether the place a will contain a token it is then enough to check whether
the initial configuration reaches one containing the process identifier B.

This reduction is polynomial and it shows that even without mobility and without name
generation the reachability problem 2.2 we consider requires exponential space. We expect
that our reachability problem could be generalized mimicking what has been done for Petri
Nets [18]. On the other hand, the quest for decidability results on the equivalence problem
(trace, bisimulation,. . .) is discouraged by the negative results known for Petri Nets [6, 9].

RR n°® 4241



8 Roberto M. Amadio  Charles Meyssonnier

4 The fragment with bounded control is undecidable

We say that a configuration has bounded control if there is a natural number that bounds the
number of live threads running in parallel in any accessible configuration. One can imagine
various syntactic conditions that imply this property and are efficiently checkable. To show
our negative results, it will be enough to consider the fragment where the equation (2) is
restricted to having the shape:

A@) = a(d).(vd)(ic a:b; | A'(2))
A(@) = A1(d@1) ® Az(d2) -

where @ denotes the internal choice. This means that, up to internal choice, every control
point has exactly one continuation and thus the control is basically bounded by the number
of parallel threads present in the initial configuration.

Remark 4.1 It is well known that internal choice is definable from parallel composition and
name generation. In our case, there is just a little twist to fit the shape of the normalised
equations (2). Thus we replace the equation A(...) = A;(...) ® As(...) by the equations

A(..) =t(ve)(Ai(e,...) | As(e,..) e t)
Al(..) =cA(...) fori=1,2

where t is a ‘global’ channel provided in the initial configuration with o message t (the t
channel plays the role of the CCS T action).

A similar trick applies if we want to define the internal choice of two messages a1 @ as.
Then we introduce an identifier A and the equations:

A(..) =t(ve)(Al(e,...) | Ay(e,..) | 2| t)
Ai(..) =ca; fori=1,2

Proposition 4.2 The reachability problem for the fragment with bounded control is unde-
cidable.

PROOF. The proof is loosely inspired by the encoding of the computation mechanism of
Turing machines into a deduction system for Horn clauses without function symbols, also
known as DATALOG. Readers familiar with the latter might find it inspiring to look at an
‘existential’ Horn clause V7 (a(%) D 37b(F, 7)) as a recursive process A = a(Z).(v7)(b(F,7) |
a(Z) | A).

We now turn to the technical development. We simulate a 2-counter machine (see, e.g.
[8]) and reduce the halting problem to the reachability problem 2.2. We assume that the
2-counter machine contains instructions of the form:

(1) ¢ :Cr:=Cr+1; gotoq
(2) ¢ :(Cr=0)— goto q',Cy :=Cy — 1; goto ¢"

INRIA



On the decidability of fragments of the asynchronous w-calculus 9

where C1,C> denote the two counters. An instruction of type (1) increments the counter
k and jumps to another point of the control. An instruction of type (2) tests whether the
counter Cy is 0 and if it is the case it jumps to a control point ¢, otherwise it decrements
the counter and jumps to control point ¢”.

A counter is represented as a stack of cells where the bottom cell contains 0 and all the
others contain 1. Thus the value 2 is represented by the stack 011. For every state, we
assume a channel ¢ of sort Ch(). Moreover, for every counter C we assume channels

Top, of sort Ch(Ch(Ch(), Ch(), Ch())) and
Adj,  of sort Ch(Ch(Ch(), Ch(), Ch()), Ch()) .

Every cell of the stack is assigned a distinct channel a of sort Ch(Ch(), Ch(), Ch()). We asso-
ciate to every such channel three more distinct channels ag, a1, a; and a message a(ag, a1, a;).
Moreover:

e If the channel a refers to the bottom cell then we introduce a message ag, and otherwise
we introduce a message aj.

e If the channel a refers to the cell at the top of the stack we introduce a message Top,a.

o If the channels a and b refer to two adjacent cells (the first under the second) then we
introduce a message Adj,(a,b;).

For instance, the stack 011 could be represented by the following messages:

a(ag,a1,0:) | ag| Adjy(a,b:)| (bottom cell)

b(bo,b1,b:) | 1| Adj.(b,c;)| (second cell)
¢(co,c1,¢t) | | Topic (top cell)

We now consider the problem of implementing on this data structure the 2-counter machine
operations. An instruction of type (1) is translated as:

A =gq.Top,(a).(va',ap,al,ay)(@ | Adj,(a,a;) | Topy(a') | J(as,a'l,ai) | E | A),
and an instruction of type (2) becomes:

A= q.Top,(a).a(ao, a1, ar).
(a0.(¢" | Topy(a) | a(ag, a1,a:) | @0 | A) @ (if Cx = 0)
ar. Adjy (b,b)-(@ | be.@ | Topy(5) | A)  (if Ci > 0)

Note that in the equations above we have omitted the parameters (which can be easily
inferred) as well as the intermediate process identifiers. The case (C > 0) reveals the role
of the channel a;: it is used to simulate via a communication an equality test between a;
and b; so as to make sure that the received channel b corresponds to the cell preceding a’s.
S

RR n°® 4241



10 Roberto M. Amadio  Charles Meyssonnier

4.1 Undecidability with generated values and conditional

The encoding above relies on channel mobility and moreover processes may input on received
channel names. A frequently used extension of the 7-calculus includes a conditional on name
equality. To formalise this extension, we assume equations may have the shape:

A(@) = [a = d/JA'(d), A"(d") (6)

with the expected meaning that we branch on A’ if a = ¢’ and on A" otherwise.

Now if we allow a conditional on names of basic sort o then a simpler encoding is possible
where all transmitted names have sort o. We assume additional channels Cont, to indicate
the contents of a cell (values 0 or 1). The sorts are now as follows:

Top,, of sort Ch(o), Adj, of sort Ch(o,0), and Conty, of sort Ch(o,0) .
An instruction of type (1) is translated as:
A = q.Topy(a).(va')(q" | Adjy(a,a’) | Contr(a',1) | Topy(a') | A),

and an instruction of type (2) is translated as:

A =gq.Top,(a).Conty(a',v).[a' = a]
([v = 0)(¢' | Topy(a) | Contx(a,0) | A),
Adjy(a',a").Ja" = a](q" | Top,(a') | A)) .

5 The fragment without name mobility is undecidable

We consider the fragment where all names have sort Ch(), i.e., no name mobility is allowed.
Then the equation (2) is restricted to having the shape:

A(@) = a.(vd)Micra; | e A4(T)) - (7)

In the absence of name mobility, generated names cannot be extruded and therefore name
generation is essentially cCS restriction. Milner [11] shows that synchronous ccs with re-
striction, relabelling, and external choice is powerful enough to simulate a 2-counter machine.
We will show that this simulation can be still carried on while dropping external choice and
relabelling and using just asynchronous communication. Schematically, we replace (i) syn-
chronous communication by asynchronous communication plus an acknowledgement, (ii)
external choice by internal choice (of course, this is possible because we are just looking at
a reachability property), and (iii) relabelling by parametric equations.

Proposition 5.1 The reachability problem for the fragment with name generation and with-
out name mobility is undecidable.

INRIA



On the decidability of fragments of the asynchronous w-calculus 11

PRrROOF. Again we simulate a 2-counter machine in the form described in the proof of
proposition 4.2 and reduce the halting problem to the reachability problem 2.2. The basic
issue is to represent a stack. To this end we define the following system of equations (inspired
by [11]). The channel ¢ stands for increment, z for counter is zero, and d for decrement.
Each of these channels comes with a corresponding ‘acknowledgement’ channel ¢, 2%, and
d® which are kept implicit below.

B(i, z,d) = Bi(i,2,d) ® B.(1,2z,d)

B;(i,z,d) =1i.(i" | CB(i,2,d))

Bz(iaz’d) :2_(211 | B(’L,Z,d))

C(i,2,d,2',d") =C;(i,2,d,2',d") ® Ca(i, 2,d, 2", d")

Ci(i,2,d,2',d") =1i(i"| CCG,z2d, 2, d))
Caliyz,d,2',d")  =d((d®z")|D(iz4d,2d))

D(Z, 2, da Z’, dl) = Dd(ia 2 da Zlid,) S Dz(ia 2, da Zlad’)
Da(i,z,d,2',d") = (d*.(d" | C(i,zd,7,d)))
Daliszd, 2 d) = (2 (@ | B2 d)))

CC(i,z,d,2',d") = wi" 2",d")C(,zd,2",d") | C@E", 2", d", 2, d)) .

A process C receives on i,d and sends on z',d’. A process B receives on i,z. When
decrementing, a process C sends messages to its neighbour. The message goes on d if the
neighbour is C and on z if the neighbour is B. Here is a schematic intuition of what happens:

DCCCBB — DDCCBB — DDDCBB — DDDDBB —
DDDBBB — DDCBBB — DCCBBB — CCCBBB .

The D is propagated towards the right till it meets B and when this happens it becomes
B and shortcuts the last B.

Note the peculiar way in which we use the internal choice. If a ‘server’ can receive
requests on two channels then it guesses non-deterministically on which channel the next
message is coming. Symmetrically, a ‘client’ with two requests internally guesses which
request is going to be served. If client and server guess consistently we obtain the desired
behaviour. Otherwise client and server get stuck.

We translate a program of a 2-counter machine as a ‘finite’ control process that acts as
a client for two counters’ processes initialised by:

B(iy, z1,dy) | B(i2,22,ds) .
The instructions of type (1) and (2) are simulated as follows:
1) Ag =a(ix|ig(d | 49)) ,
(2) A, =Azo Al

A7 =q.(G | 2(d | Ag)
A7 =q(de | di(d" | Ag)) -

RR n°® 4241



12 Roberto M. Amadio  Charles Meyssonnier

It is clear that by a suitable selection of internal choices we can simulate the behaviour of
the 2-counter machine. On the other hand, suppose an attempted communication gets stuck
because of wrong internal choices. This may happen (i) when the control sends a request to
a counter, or (ii) when a decrement instruction propagates towards the right in a counter.
In both cases the control is stuck. In the first case this is clear, in the second case this
happens because the control waits for an acknowledgement which is delivered only after the
propagation is completed. ¢

Remark 5.2 In all the equations above, an input is followed, up to internal choice, by
exactly one output. This implies that the number of messages present in a reachable config-
wration is bounded.

6 The fragment without mobility and with bounded con-
trol is decidable

We consider the fragment where all names have the sort Ch(), and the equation (2) is
restricted to the shape: . .

A(@) = a.(vd)(icsai | B(D)) - (8)
For the sake of simplicity, we assume that all the equations in a given system depend on
k parameters. We note that in systems without name mobility and with bounded control
there is a bound on the number of ‘live’ names appearing in any reachable configuration.
Indeed, the only form of name transmission allowed in these systems is wia the recursion
parameters: once a name disappears from the recursion parameters, no input can ever be
performed on that name again. Therefore, without loss of generality we suppose that in the
equation (8) above {d} C {b}.

The basic idea is to generalise the reduction to Petri Nets presented in section 3 and to
replace name generation by the reusing of ‘dead’ names. We will begin by transforming the
system into an equivalent parameterless system of equations with reset (and without name
generation), which in turn we transform into a Petri Net with reset arcs. The latter can be
reduced to a standard Petri Net, provided that the number of tokens in resetable places is
bounded (in general Petri Nets with reset arcs are undecidable).

In the following, a parameterless system of equations with reset is a variant of the
parameterless system presented in section 3.1. In such a system, the equations have the
shape

A = a.reset d.(I;c a; | B) , 9)

and the semantics of the reset operator is to erase all messages sent on names belonging to
its argument.

6.1 Lifetime analysis of names

In order to reduce a Petri Net with reset arcs to a standard Petri Net, we need a bound on
the number of tokens in any resetable place. This leads us to distinguishing two kinds of

INRIA



On the decidability of fragments of the asynchronous w-calculus 13

names in the original system: persistent names, for which there is no bound, but which never
need to be reset, and temporary names. We will give a bound on the number of messages
sent on any temporary name.

To this end, we introduce the parameter flow graph of the system, which is defined as
follows.

Definition 6.1 The parameter flow graph of a system £ is a directed graph G = (L,—),
where:

e The set of nodes L is given by the parameter positions {A® | A identifier in £ and i €
(1, K]}

e A’ BJ is an edge of the graph if if the equation associated to A in the system £ is
A(@) = a.(vd)(...| B(b)) ,
and the i-th component of @ is equal to the j-th component of b.

Positions leading to a cycle in G will be referred to as persistent positions, while the
others will be called temporary positions. Accordingly, when a name occurs in A(@) we will
call that name persistent if it is used in at least one persistent position, and temporary if it
is used only in temporary positions.

Note the peculiar structure of G: if we consider the class of positions associated to one
process identifier, all edges from vertices in this class lead to vertices in a unique class, due to
our syntactic definition of finite control. Also, since all names in {@} are distinct, we cannot
have, for i # j, A* — B! and A’ — B!. It follows from these observations that the set of
vertices reachable from a temporary position is a finite tree. If e is the number of equations
in £ then the size of the tree is bounded by e -k which is the number of parameter positions.
Moreover, if m is the maximum number of outputs on any parameter in any equation of
&, then the number of outputs performed on any temporary name is bounded by e - k - m,
which is polynomial in the size of £.

Example 6.2 Let us consider the system £ defined by the equations

A(a,b) =b.(a| B(a,a))
B(a,b) =a.C(a,b)
C(a,b) =b.(ve)(¢| A(c,a)) ,

and the initial configuration ~
P =a|a|b| A(a,b) .

In this system, all newly generated names are temporary names used in position Al.
Since the tree rooted in A' has 6 nodes, and no equation in £ performs more than 1 output
on any of its parameters, we can take 6 as a bound on the number of messages sent on any
temporary name.
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Figure 1: The parameter flow graph for £

6.2 From systems without mobility and with bounded control to
parameterless systems with reset

We fix a system £ of equations of the type (8), and an initial configuration P, which does
not contain any generated names. Let Ny be the set of names free in P, and n the number
of process identifiers in P. Without loss of generality, we may suppose that every process
identifier in £ relates to a unique thread of the initial configuration (if process identifiers
are shared among different threads then we can always rename them so as to satisfy this
condition).

We will construct a system &’ of equations of the shape (9) and show that the reachability
problem for £ and P reduces to a finite number of reachability problems for £’ and a suitable
initial configuration P'.

We assume, for every j € [1, n], pairwise disjoint sets P; and T}, of respective cardinalities
k and 2k, which will represent the j-th thread’s private name space (P; is used for persistent
names and T for the temporary ones). The parameterless system £’ will be defined over
the name space N = Ny U (Ujc[1,n Pj UT}).

Definition 6.3 The vector of names (ay,...,ax) is compatible with the process identifier A
of the j* thread (written (a1, ...,ax) | A,j) if for all a € {a1,...,ar}

c NoUP; if3i (a;i =a and A® is a persistent position)
NoUT; otherwise.

Next we define the system £’ associated to (P, E).
Definition 6.4 Fiz an equation of the shape (8) in € relating, say, to the thread j. Then:
1. for every a such that LA g,

2. for every injective substitution [d /d] such that
{dYyCc P uTy, {d}yn{d} =0, 0 =d/ad/d], and ob | B,j

we introduce an equation

Az =o(a)reset 7.(Ilicpoa; | B ;)

INRIA
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where {7} = Tj\{al;} and I' ={i € I | ga; ¢ {F}}.

Roughly, we consider all compatible instances a of a process identifier A of a thread j,
we replace the generated names d by unused names in P;UT} (a simple cardinality argument
show that they exist), and we reset all the channels on temporary names that are not used
in the continuation.

Next, we introduce a binary relation R relating configurations and parameterless config-
urations.

Definition 6.5 Let Q = (vdy)(vd)(ica; | e ,nA;(d@;)) be a configuration where we
assume that:

£ A{do} 0 (Ujep,mid@h) =0,

2. the identifier A; relates to the j** thread, and

3. if d € {d} then d occurs in exactly one set of parameters {d@;}.
Then Q@ R (Ilicrroa; | Wjep nAj,0a;) whenever:

e I'={iel|a; € NoU (U cp,nid@;})} and

e o is an injective substitution from d to U
j € [1,n].

ien.n(Tj U P;) such that od; | Aj,j, for

Here we follow the same approach as in the previous definition 6.4: we replace the
generated names occurring in the parameters of exactly one process identifier by compatible
names in the set T; U P;, while removing useless restrictions and messages.

Given an initial configuration P, we can easily compute a P’ such that P R P’. Then
we have to check that the relation R is sufficiently general to keep the two configurations in
lockstep.

Lemma 6.6 If Q R Q’, we have:
e if Q — R then there is R' such that RR R' and Q' — R'.
e if Q' — R' then there is R such that RR R and Q — R.

The proof of this lemma is a simple, although laborious, manipulation of definitions 2.1,
6.4, and 6.5. We can then reduce the reachability problem for (P,£) to a finite number of
reachability problems for (P, &").

Proposition 6.7 The reachability of the process identifier A in (P,E) is equivalent to the
reachability of one of the (finitely many) parameterless identifiers A in (P',E").

Proor. We apply lemma 6.6 inductively on the length of the considered reduction chain
and exploit the definition of the relation R. <
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6.3 From parameterless systems with reset to Petri Nets with reset
arcs

In this section, we show how to extend the reduction from parameterless systems to Petri
Nets described in section 3.2, to a reduction from parameterless systems with reset to Petri
Nets with reset arcs.

We suppose given a parameterless system of equations with reset £, and an initial
configuration P’ without name generation. Let N be the finite name space over which the
system is defined (note that this may be strictly larger than the collection of names free in
P).

Like in section 3.2, we build a Petri Net that has one place for each parameterless process
identifier in &', and one place for each name in N (remember that we do not consider
mobility). The intended interpretation is still that a token in place a corresponds to a
message a, while a token in place A corresponds to the presence of a parameterless process
identifier A in the current configuration.

The transitions are set as in section 3.2, except that we no longer have to care for external
choice (i.e. there is only one transition per equation), and that if the equation associated
to Ais A =...reset7 ..., then for each a € {7} we add a reset arc going from transition ¢4
to the place a.

Note that, thanks to the analysis performed in subsection 6.1, we can guarantee that all
the places pointed to by reset arcs are bounded.

Proposition 6.8 The reachability of A in (P',E") is equivalent to the coverability of place
A with 1 token in the Petri Net with reset arcs described above.

6.4 From Petri Nets with reset arcs to Petri Nets

Finally, we recall how to simulate a Petri Net with reset arcs A/ with a standard Petri Net
N, provided that all resetable places are bounded (this is a standard result for Petri Nets).

For each resetable place p, we add a complementary place p'. If b is the bound on the
number of tokens in place p, in all reachable markings M we will maintain the invariant
M(p) + M(p') =b.

To this end, we modify the existing transitions so as to add as many outgoing arcs to p’
as the number of incoming arcs from p, and as many incoming arcs from p’ as the number
of outgoing arcs to p.

Then, for any transition ¢ that points a reset arc at p, we replace ¢t by the transitions
to, - .., ts, where, t; is connected to the places of the net by the same arcs as ¢, plus an arc
of weight ¢ incoming from p, an arc of weight b — ¢ incoming from p’, and an arc of weight b
outgoing to p'.

Proposition 6.9 A marking M is reachable in N if and only if the marking M’ is reachable
in No, where

e for any place p of N', M'(p) = M(p),
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e and for any resetable place p of N', M'(p') = b — M(p).

To summarize, given a system in the fragment without mobility and with bounded con-
trol, by composing the three reductions presented above, we reduce the reachability problem
for that system to a finite number of coverability problems for a standard Petri Net.

Theorem 6.10 The reachability problem for the fragment without mobility and with bounded
control is decidable.

Our decision result could be extended from equations of the shape (8) to equations of
the following shape: .
A@) = a.(vd)(Wesa, | BE) | Wes4;) (10)

where A; are parameterless process identifiers that refer to parameterless equations of the
shape (5) whose free names do not intersect the generated names ¢.

An interesting open problem, concerns the decidability of the fragment with name gen-
eration, bounded control, and weak forms of name mobility where, e.g., a process cannot
receive on received names.
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