-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Efficient Data and Program Integration Using Binding
Patterns

Ioana Manolescu, Luc Bouganim, Frangoise Fabret, Eric Simon

» To cite this version:

Ioana Manolescu, Luc Bouganim, Francoise Fabret, Eric Simon. Efficient Data and Program Integra-
tion Using Binding Patterns. [Research Report] RR-4239, INRIA. 2001. inria-00072348

HAL Id: inria-00072348
https://hal.inria.fr /inria-00072348
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50452422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072348
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4239--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Efficient Data and Program Integration Using
Binding Patterns

loana Manolescu — Luc Bouganim — Francoise Fabret — Eric Simon

N° 4239
August 2001

THEME 3

apport

derecherche

Zd I N RIA

ROCQUENCOURT

Efficient Data and Program Integration Using Binding
Patterns

Toana Manolescu * , Luc Bouganim ' , Francoise Fabret ¢ , Eric Simon ¥

Théme 3 — Interaction homme-machine,
images, données, connaissances
Projet Caravel

Rapport de recherche n° 4239 — August 2001 — 27 pages

Abstract: In this work, we investigate data and program integration in a fully distributed
peer-to-peer mediation architecture. The challenge in making such a system succeed at a
large scale is twofold. First, sharing a resource should be easy; therefore, we need a simple
concept for modeling resources. Second, we need an efficient architecture for distributed
query execution, capable of handling well costly computations and large data transfers.
To model heterogeneous resources, we propose using the unified abstraction of table with
binding patterns, simple yet powerful enough to capture data and programs. To exploit a
resource with restricted binding patterns, we propose an efficient BindJoin operator, follow-
ing the classical iterator model, in which we build optimization techniques for minimizing
large data transfers and costly computations, and maximizing parallelism. Furthermore, our
BindJoin operator can be tuned to deliver most of its output in the early stages of the execu-
tion, which is an important asset in a system meant for human interaction. Qur preliminary
experimental evaluation validates the proposed BindJoin algorithms, and shows they can
provide good performance in queries involving distributed data and expensive programs.

Key-words: data and program integration, distributed query processing, binding patterns

* INRIA, Caravel project. Contact: Ioana.Manolescu@inria.fr

f PRISM laboratory, University of Versailles and INRIA, Caravel project. Contact:
Luc.Bouganim@prism.uvsq.fr

1 INRIA, Caravel project. Contact: Francoise.FabretQinria.fr

§ INRIA, Caravel project. Contact: Eric.Simon@inria.fr

Unité de recherche INRIA Rocquencourt

Intégration efficace de données et de programmes
utilisants des patterns d’accés

Résumé : Dans ce rapport, nous étudions l'intégration de données et de programmes dans
une architecture symétrique, complétement distribuée. Pour qu’un tel systéme soit effi-
cace & grande échelle, deux problémes doivent étre résolus. Premiérement, le partage d’une
ressource doit étre facile, d’ou le besoin d’un mécanisme simple pour décrire ces ressources.
Ensuite, nous avons besoin d’une architecture efficace pour I’exécution distribuée des re-
quétes, capable d’exécuter des calculs colteux et des transferts de données volumineuses.
Pour modéliser des ressources hétérogénes, nous proposons d’utiliser le concept unifié de
table avec des patterns d’accés, simple mais assez puissant pour décrire des données et
des programmes. Pour exploiter une ressource avec des patterns d’accés, nous proposons
un algorithme efficace pour 'opérateur BindJoin, suivant le modéle itérateur, dans lequel
nous mettons en oeuvre des techniques d’optimisation pour réduire les transferts de données
volumineuses, réduire les calculs colteux, et maximiser le parallélisme. De plus, notre opéra-
teur de BindJoin peut étre modifié pour produire la plupart de ses résultats au début de
I’exécution, une qualité importante dans un systéme ayant des utilisateurs humains. Notre
évaluation experimentale préliminaire valide les algorithmes de BindJoin proposés, et mon-
tre qu’ils peuvent atteindre des bonnes performances dans des requétes sur des données
distribuées et programmes colteux.

Mots-clés : intégration de données et de programmes, traitement de requétes distribuées,
patterns d’accés

Efficient Data and Program Integration Using Binding Patterns 3

1 Introduction

There is a growing interest in the scientific community to allow communities of users (a.k.a.
virtual organizations) to share resources consisting of both data collections and application
programs. This vision is best reflected by recent initiatives such as the “Grid Computing”
project [7], that aims at constructing a “meta computer”: a large scale, distributed computing
environment, that provides transparent access to highly heterogeneous resources.

To illustrate, consider a scientific application that involves two image databases'. On
site S1, there is a collection of infrared satellite images of the Earth, taken every three
hours, stored in the GIF format. On site So, data from a different satellite survey has been
processed into a map of the ozone cover of the Earth, taken every week; this data is available
in HDF (Hierarchical Data Format). On site Sg, an application LowOzone:HDF— boolean.
Now, suppose that a user wants “to retrieve on site Sy pairs of images taken from the two
sources for those days when there were noticeable holes in the ozone cover”. Such a query
may require the following actions: (1) extract images from Sy and transfer them to site Ss,
(2) select those images that present holes in the ozone cover using the LowOzone program
on site S3 (we assume that programs can only execute on their native site and cannot be
shipped through the network), and (3) obtain the dates associated with the resulting images,
extract images for these dates from S; and transfer them to Sy.

Even if all these resources are interconnected via a middleware system, developing an
application program that implements the query requiring the above actions could be tedious.
Existing mediator or federated database systems, such as IBM’s DataJoiner, Garlic [12],
Tsimmis [§8], etc., would help for the sharing of data, but they currently do not support the
sharing of distributed, heterogeneous, user-defined functions.

LeSelect is a fully distributed mediator system that has been specifically designed to
facilitate the publication of resources within a virtual community, and to enable users to
formulate high-level queries over published resources [15]. To publish resources needed for
our example problem, we install a LeSelect server on each site, except S4. Each resource
is published via a wrapper, provided by the publisher. Data collections and programs are
published as relational tables through these wrappers yielding, for instance, the tables whose
schemas are displayed in Figure 1. Given these tables, the SQL query shown in Figure 1
could be issued at site S4 through a LeSelect client interface.

The contribution of this paper is to provide a query processing architecture and new
algorithms to deal with the efficient processing of the kinds of queries with LeSelect could
likely deal. We use the example to explain our technical contributions.

First, suppose that the measurements of S, cover a period of time four times longer
than those of S;. Thus, only 1/4 of the tuples of Sy will join (on the date attribute) with
tuples of Sy, and each tuple of So will generate 8 tuples in the result of the join (S; has 8
images per day). Hence, the join between IRSat and OzoneSat is not selective, and most
existing optimization techniques like [4, 13] will generate a QEP in which the predicate

IThe image collections are very closely inspired from real-life data sources, available at
http://www.ssec.wisc.edu/data/comp/ir/ and ftp:daac.gsfc.nasa.gov.

RR n° 4239

4 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

Query Q

IRSat(irID, sS4
date,imgGif) |
Tt
LowOzone
OzoneSat(ozID,date,imgHDF) LowOzone date
(imgHDF)—= boolean
S1 IRsat OzoneSat S2

select ir.mgGif, oz.imgHDF, oz.date
from S1:IRSat ir, S2:0zoneSat oz
where ir.date=oz.date

and S3:LowOzone(oz.imgHDF)=true

Figure 1: Sample query on distributed data and programs (left) and one possible execution
plan (right).

“LowOzone=true” is performed before the join on date (as we did in actions 1 and 2 above).
However, as noted in [2, 14], if a cache is used for LowQOzone at S3, it would be better to
compute the join first, since LowOzone will be applied on 4 times fewer values of the image
than it would if it were executed first. To cope with this observation, we present new cache-
based algorithms to perform expensive selections that invoke published programs; these
algorithms enable the generation of efficient QEPs, as described in [2].

Now, suppose that the join is executed first, as shown in figure 1; it is either performed
on S; or on Ss. In both cases, this entails the transfer of a large amount of data between
these two sites; similarly, the result of the join should be transmitted to S3. However, by
noting that the OzoneSat images are only needed on S3 and Sy, while the IRSat images are
needed directly on Sy, we could avoid many unnecessary image transfers. Building on these
points, we present an architecture and algorithms that enable an operator of a QEP that
needs to process a large data structure (in our case, LowOzone which is executed on site S3)
to directly fetch it from the site where it is published, which in our case is S,.

Finally, our query example provides many opportunities for parallelism. Suppose that
several computers are available on S3 to execute the program LowOzone. In this case, the
operator in the QEP responsible for the invocation of LowOzone should gracefully scale
up to monitor multiple parallel executions of LowOzone (this amounts to intra-operator
parallelism). LowOzone should be able to process OzoneSat images while new images are
flowing through the network to site S3. In this paper, we propose architectural components
and parallel implementation of an algorithm that supports both intra- and inter-operator
parallelism. Doing this, we generalize the asynchronous iteration technique presented in [9]
to parallelize program executions, and transfers of program arguments.

This paper is structured as follows. Section 2 explains the basic principles for publishing
data and programs in LeSelect. In Section 3, we describe the query processing infrastructure
of LeSelect, with a focus on its execution model and the efficient management of large
data transfers; we then introduce the BindJoin and BindAccess logical operators, used for

INRIA

Efficient Data and Program Integration Using Binding Patterns 5

program invocation and large data transfer. In Section 4, we describe efficient algorithms
for the BindJoin and BindAccess operators, encapsulating cache and parallelism; also, we
show how the presence of duplicates can be exploited to improve the early tuple output rate
of our BindJoin algorithm. Section 5 presents experimental results evaluating the proposed
BindJoin algorithm. We discuss related work and conclude in Section 7.

2 Publishing data and programs in LeSelect

The following steps are required in order to publish a resource (data collection or program)
in LeSelect: (1) describe it as one or more relational tables, (2) create a wrapper for it and
(3) register the wrapper with a LeSelect server. Thus, on any publishing site, a LeSelect
server has to be running. In this section, we present the generic model of tables with binding
patterns, and we describe the interface between wrappers and LeSelect servers.

2.1 Using binding patterns for resource description

In LeSelect, all published resources are modeled as tables, and we describe the set of param-
eterized select-project queries that can be processed over each individual table using the con-
cept of binding pattern introduced in [17]. A binding pattern bp for a table T'(a1,as, . .., an),
is a mapping from {ai,as,...,a,} to the alphabet {b, f}. The meaning of the binding pat-
tern is the following: those a; that bp maps to b are bound, i.e., their values must be supplied
in order to obtain information from 7', while values of attributes mapped to f are free, i.e.
they can be obtained from the data source as soon as values for all b attributes are supplied.

In the case of a data resource modeled as a table T, a binding pattern that maps all
attributes of T to f indicates that the tuples of T' can be directly obtained via a Scan
operation. For instance, the binding pattern OzoneSat(0zIDf date/imgHDF/) indicates that
a full scan of this table is allowed (upper scripts denote the mapping for each attribute). A
restricted binding pattern (i.e., in which some attributes map to b) may reflect an optimized
access method for those attributes, or an access restriction imposed by the resource manager.
Thus, OzoneSat(0zID?date® imgHDF/) specifies that the value of the date attribute has to
be supplied in order to obtain tuples from OzoneSat.

Requirements on blob publication As we explained in Section 1, special optimization
techniques can be used for queries involving blobs. In order to apply these techniques, we
pose some requirements on the modeling of a table with blobs.

Definition (Blob) An attribute A of table R is a blob iff:
e A is declared to be of the LeSelect data type binary;

e if A is mapped to f by some binding pattern of R, then R contains a small-sized at-
tribute blobI D which identifies A (i.e., such that the functional dependency blobI D —
A holds);

RR n°® 4239

6 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

e R has at least the binding pattern R(blobI D" A/).

The choice of declaring an attribute as a blob is left to the publisher; as in commercial
DBMSs, attributes with a size greater than a given threshold (e.g., a few Kb) should be
declared as blobs. For any blob that is published, or created by a program, if the blob
may be obtained in a query (i.e., is mapped to f in at least one binding pattern), we
require a blobID attribute for caching purposes and for optimizing blob transfer. BlobIDs
are system-generated in the case of published data residing in an DBMS. In a simpler
setting, a large data object is usually stored in a separate file, whose complete name (i.e.
host/filename) can be used as a blobID. For example, suppose that an ImgConvert program
is applied on the OzoneSat images in the sample query in Figure 1, to convert it into GIF
format. Such a program takes as input a blob File;, the format codes of the input and
output file, and produces a File; blob result. ImgConvert must have among its binding
patterns (FileﬂD”Fileﬁ): the FileoID attribute is required since the program exports a
binding pattern where Files is free. Such an attribute is not necessary for File; since there
is no real data to be extracted - on the contrary, only File; has to be supplied. The wrapper
of a resource that creates blobs must assign to each produced blob a system-wide unique
identifier, e.g., by appending the host name and a local reference. Finally, the restricted
access pattern to blobs is used by the optimizer to construct QEP handling blobs efficiently,
as we show in the next section.

In LeSelect, a program? can be assimilated to a virtual table (a.k.a table function) as
in [3, 5]. We use binding patterns to distinguish the attributes that correspond to program
arguments (which need to be supplied in the query) from those that correspond to program
results. For example, the set of binding patterns of the ImgConvert program described above
includes (Format} Format} File} FileoIDY). Accessing ImgConvert following this pattern
only returns the ID of the output image; the (FilexID® File%c) binding pattern presented
above provides for proper blob handling. In LeSelect, any published resource is thus modeled
as a table with binding patterns.

2.2 Wrappers in LeSelect

In a data integration system, a wrapper has two important functions. First, it holds meta-
data concerning the resources that it exports, like table and attribute names, attribute types,
etc. Such information is used, for instance, by the query optimizer, or by human users brows-
ing the data catalog. Second, wrappers may provide query processing capabilities. We aim
at keeping the effort required for publishing a resource as low as possible. In this section
we describe the simple metadata and minimal query processing capabilities required from a
wrapper to enable the efficient execution of queries over tables with binding patterns.

2Throughout this paper, we restrict ourselves to programs that take a tuple of values as input and return
one or several tuples of values as output. Programs taking as input one or several tables and returning tables
in the output are modeled differently in LeSelect [15].

INRIA

Efficient Data and Program Integration Using Binding Patterns 7

Wrapper metadata A wrapper W manages a set of tables {T1,T»,...,T,}, where each
T; corresponds to a resource. For every T;, W exports two kinds of metadata. The first one
concerns the definition of the table: columns number, names and types, as well as a set of
binding patterns over T;’s attributes {BP}, ..., BP}}.

The second kind of metadata consists of statistics on the data published via T;, which
are intensively exploited by the query optimizer. The wrapper exports a distinct set of
statistics for each binding pattern BP; these statistics depend on the form of BP. If BP is
of the form ff... f, the wrapper declares the number of tuples in T;, and for each attribute
a, the number of distinct values n of the attribute. This number is important in deciding
whether or not to use cache. If the pattern BP is restricted, the wrapper exports two cost
parameters: the average per-call cost, cgp, and the average number of returned tuples per
tuple of arguments, spp. We consider cpp to be the time elapsed between the moment
when the restricted resource is accessed, and the moment when all the returned results are
available. The spp value also reflects the selectivity of the access following BP, since there
may be no answer for a given argument set. The publisher of a restricted resource may
also specify the optimal number of parallel accesses to the resource (opt)). In some cases,
this number may be statically determined (e.g., a program running in batch mode on five
computers), but in others it is very difficult to predict since it may depend on parameters
like machine load, network speed, etc. To deal with such situations, we present in Section 4.2
an algorithm that adaptively determines the optimum degree of parallelism for exploiting a
resource.

Wrapper capabilities The query capabilities of a wrapper are provided as a set of
boolean methods like canJoin(), canProject(), etc. A wrapper can only apply an oper-
ator to resources that it publishes. At query execution time, a wrapper agrees to execute a
sub-plan sQ EP of a global query plan iff (a) it publishes all the resources in the sQEP’s
leaf nodes and (b) the wrapper has declared itself as being capable of executing all operators
found in the internal sQQEP’s nodes. The wrapper corresponding to a full-fledged DBMS
may declare itself as capable of executing complex subqueries, since it delegates them to the
underlying DBMS.

To keep the publication process simple, we require only minimal query processing ca-
pabilities from a wrapper. First, it has to execute “leaf” operators providing access to its
resources. For tables with a ff...f binding pattern, this amounts to accept Scan sub-
queries. In the case of a restricted access resource, we require that the publisher provides
a call-based interface, of the form tuple|] call Resource(tuple arguments); on top of this
interface, we provide a simple configurable wrapper that uses this interface to access the
resource. Second, for any table containing a blob, the wrapper must provide a method
readBlob(blobl D, startPos,endPos, buf fer), to ensure that the blob is physically accessi-
ble.

RR n°® 4239

8 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

API API
LeSelect server S1 LeSelect server S2 \—,—

Query Analyzer /,\ Query Analyzer
Query Optimizer Distributed Distributed Query Optimizer

Blob Manager Y Communication Module Communication v v

getLocallD(blobID,Q) createlnQueue(from) Module \ Query Execution Engine
createOutQueue(to) | | | M- ---_

read(blobID,off len,buffer)
store(blobID,Q) destroyQueue() Blob Manager

mayDispose(Q)

4

S ,
I~ Wrapper AN s ’ b T Wr‘aﬂ
readBlob(blobID, > z readBlob(blobID,

off,len,buffer) S~ Pid off,len,buffer)

Figure 2: General outline of a LeSelect server.

3 LeSelect query processing infrastructure

In this section, we describe the query processing framework of LeSelect. We present the
general architecture of a server, and outline the processing of a distributed user query. We
then recall the general iterator model followed by all operators in LeSelect, and explain
the usage of the Exchange operator for inter-site transfers of small data items. Next, we
introduce the logical BindJoin and BindAccess operators, used to access resources with
restricted binding patterns. Finally, we present the design of a Blob Manager that we use
to efficiently handle blob transfers between sites.

3.1 General architecture of LeSelect

Figure 2 presents the outline of a LeSelect server and traces the possible interactions between
two servers during query processing. In this figure, solid lines represent data flow, while
dashed lines trace command or statistic information flow.

Users can pose queries on any LeSelect server. Each table T involved in the query has
a universal name, constructed from the name of the wrapper W that publishes it and the
address of the LeSelect server S to which W is attached. Queries are restricted to select-
project-join operations. After parsing, the query is handed to the optimizer, which uses the
metadata published by the wrappers of all the tables identified in the from clause to construct
a distributed QEP; the optimizer applies a dynamic programming algorithm, enhanced with
binding patterns [6]. In this plan, some operations may be delegated to resource wrappers,
while others will be performed by LeSelect servers that publish the resources, or to the server
where the query is posed. The query execution engine on the initial query site coordinates the
execution of the plan constructed by the optimizer. During execution, the query execution
engine of the server S; may request that the engine of a server S, executes a sub-query
(dashed arrow among the two execution engine in Figure 2). All transfers of blob objects
between two servers that the execution might entail are performed by those server’s Blob
Managers; all other types of data are transferred via the two Distributed Communication
Modules.

INRIA

Efficient Data and Program Integration Using Binding Patterns 9

Tp . Tp o
bop Vot
\ ? ! Xp,
N ? LeSelect server S2
e r5)
x ‘1‘/ P Distributed
Q lE‘ Comm
Distributed Module
T T
/ \ Module
r ; >T<, Qr [?‘
r LeSelect server S1 IS N
T ! / }(f
@) (b) ©) T r

Figure 3: QEP using Exchange(a) and its implementation within one site (b) and on several
sites (c).

In the next subsections, we focus on LeSelect components that include innovative fea-
tures: the query execution engine and the Blob Manager.

3.2 Iterators and the Exchange operator

In LeSelect, each operator of a QEP is implemented as an iterator, following [11]. Iterators
are self-scheduling data processing units; their APT consists of an initialization open() call,
a next() method producing one tuple at a time, and a close() method to release resources
and terminate. To answer a nezt() call, the top-level operator in a QEP may call the next()
methods of one or more of its inputs, depending on its implementation. The basic iterator
model is synchronous; if an operator p is the parent of an operator 7, when p issues a next()
call to r, p’s execution blocks until r returns a tuple.

The Exchange iterator was introduced to decouple the execution of several operators,
allowing them to work in parallel [10]. Figure 3 shows an Exchange operator X inserted
between an operator p and its child r. On X.open(), the communication queue @ is created,
and X is split into two independent processes. T}, runs operator p and the X, consumer part
of the Exchange, while T, executes X,., the producer part of the Exchange. T, is no longer
driven by the upper part of the plan; it runs independently and iteratively issues next()
calls to r until an eof is reached. An Exchange operator inserted between two operators r
and p running on the same site acts as a synchronization buffer, absorbing bursty output
from r and providing it to p at p’s required pace.

If operators p and r run on remote sites, () is split into two queues @, and @, each
on the site of one operator, with @,’s contents being transferred into @), by some data
communication mechanism; 7). and T}, run in parallel. In this case, the size of () allows us to
control the de-synchronization of T, and T},. The synchronous iterator model corresponds
to a queue of size 0, where a tuple is processed by p immediately after being processed by
r. By increasing Q)’s size, we allow a slack among the tuples processed by r and p. The size
of () is a parameter of the Exchange operator, set at creation time by the optimizer.

In LeSelect, the implementation of a distributed Exchange operator relies on a distributed
communication module (DCM) that creates the communication queues @), and @, as in
Figure 3(c). Within each DCM, communication daemons are in charge of transferring tuples

RR n° 4239

10 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

among the queues @, and @),. Note that all transfers of small-size data between two LeSelect
servers are done via the distributed Exchange operators implemented by the DCM.

3.3 The BindJoin and BindAccess operators for exploiting restricted
resources

The access to a resource according to a restricted binding pattern is performed via a logical
BindJoin operator, also called dependent join [6] or § semi-join. Using our notations, we
explain the semantics of a BindJoin operator, as it was initially introduced in a centralized
database context.

Definition (BindJoin) The BindJoin of two arbitrary relations R; and Rp is defined
by the following formula, where 5 denotes the BindJoin, a vector denotes a vector of
attributes, and @ denotes a vector of values for the attributes in X:

rE'ZNR3BE'Y) ={(,7,2)(2,2) € Ri AT € Ry.call Resource()}

However, in a distributed context, modeling this operation as a single operator raises a
performance issue. Suppose that R; is on site S; and Ry is on site So. Since Rs.call Resource()
has to be executed on site So, the BindJoin operator must also execute on site Sy, and tuples
of Ry must flow from S; to S2. Now, if the query result must be returned on S;, there is
a performance penalty, which consists of the useless transfer of the 2 part of the (@, %)
tuples of Ry: 7 is unnecessary for the computation of the 7 result. Instead, a better
design would be to transfer only (7’) values to Ss, compute the corresponding 7/ values
on Sy, return (7, 7) tuples to S;, and finally output the resulting (7,7, 7Z) tuples at
S;. However, as explained in the previous subsection, we retain the general principle that
any data flow in a QEP between operators running on two different sites be modeled by a
distributed Exchange operator between the two operators. This led us to introduce a new
operator, called BindAccess (BA, for short), that is always the “inner” child of a BindJoin
operator, as follows:

Definition (BindJoin and BindAccess) Let R; and R, be two relations, and BJ =
Rl(yf7f)ﬁyR2()_(\b?f) denote the BindJoin of these relations. Then the BindAccess
associated with BJ is the operator noted BA, defined by the following formula:
RR'Z2NRpRX'Y) = {(2,7,2)(2,) € R A (2,7) € BA{ZY](B2)}
where BA[{X}}](Rz) ={(Z,7)|7 € {Y} AY € Ra.callResource(T)}

This notation emphasizes that the BindAccess is always parameterized by a set of 7
values, henceforth called the binding arguments. The BindAccess and the BindJoin are
implemented following the iterator model, like other LeSelect operators. A BindJoin can
have an arbitrary operator tree as a left-hand child, but only BindAccess operators are
allowed as the right-hand child. As shown in [6], this choice does not restrict the set of
queries that we can execute. Thus, the BindAccess provides an iterator envelope around a

INRIA

Efficient Data and Program Integration Using Binding Patterns 11

t

—_—

Oi-anes:1
R b
< BA(g(outBlobID butBlob))
BA(f(bID blob res)) /
> .
ot /N(g(mslomd’unBlob"outhMDfmtResf)
BA(T(bID blob)) Scan(W1/R(a") N
Scan(W1/R() BA(T(bIDblobY)
select R.a, f.blob select R.a, g.outBlob
from W1/R, W2/T, W3/f from W1/R, W2/g
where R.a=T.bID and T.bID=f.bID where R.a=T.bID and T.bID=g.inBlobID
and T.blob=f.blob and T.blob=g.inBlob and g.intRes=1
(@ (b)

Figure 4: Sample QEPs using BindAccess and BindJoin.

restricted resource access, while the BindJoin provides binding arguments and collects the
access results.

Figure 4 shows two sample queries involving data and programs, and possible correspond-
ing QEPs. The query in Figure 4(a) chains two BindJoin operators, the first one fetching a
blob, and the second one calling function f on this blob, where f returns a small-size result.
Function g in Figure 4(b) takes as input a small attribute and returns a blob and an inte-
ger value intRes; its binding pattern set is {in®out BlobI Dfint Res’ , out BlobI D®out Blob’}.
The selection on intRes may eliminate some of the blobs produced; the remaining ones
are needed in the output. The blob is fetched directly where it is needed, via the last
BindAccess-BindJoin pair.

In LeSelect, a restricted resource is always exploited by a BindJoin-BindAccess pair; two
important particular cases are program invocation, and access to a blob by its blobID. In this
last case, since the BindAccess uses the special binding pattern for blob access blobI D*blob/,
such a BindJoin-BindAccess pair always retrieves a single blob attribute. Thus, the most
important components of a query’s processing cost, namely program invocation and blob
transfer, are performed using the BindJoin and BindAccess operators. Therefore, these
operators are a good target for incorporating the optimizations described in Section 1,
without requiring any change to the remaining operators.

3.4 BlobManager for storing and transferring blobs

We now describe the BlobManager (BM) module. The main role of the BM of any site S
is to provide an uniform interface to any blob for all operators running on S, whether the
blob has been published or produced by a program, on site S or elsewhere. To achieve this,
the BM is in charge of storing and managing the blobs produced by a program running on
S, or transferred from other sites to S in order to be consumed by programs running on S.
Additionally, the BM of a site optimizes the transfer of blobs, by choosing where to transfer
a blob from, if several copies the blob exist.

RR n° 4239

12 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

When a BindJoin operator running on S; indirectly invokes a program that produces a
new blob, the BindJoin issues a store call to the local BM to require the storage of this blob.
The parameters of the store call are the blobID of the blob and the id of the query within
which the BindJoin is executed. The BM allocates a local blobID to any blob it stores which
uniquely identifies a blob in BM’s site.

To access a blob, an operator running within a query @ at site S, proceeds in two steps.
First, the operator issues a getLocalID(blobID,(Q) call to the BM of S, where blobID is the
system-wide identifier of the blob. In a first step, the BM obtains a copy of the required blob
(if it was not already available on S), and returns a local blobID to the operator requiring
the blob. In a second step, the operator uses the local blobID to read the blob. This way,
the BM acts as an intermediary, hiding the original storage of a blob to the operator that
requires it, as well as the possible communications involved in retrieving it.

As an optimization, we might allow copied or produced blobs to persist in the BM of
S not only for the needs of the BindJoin which has issued the corresponding getLocallD or
store call, but also for other BindJoins, either part of Q’s QEP, or executed in a different
query. Suppose that a blob has been copied from S; to S, and is needed later on S;. When
a BindJoin on S; issues a getLocallD call to the BM on S,, this BM has the choice of
transferring the blob to Sy either from S or S;. This choice may be interesting for several
reasons: if getting a blob from its original repository costs money, and if site S allows us
to exploit its copy for free, the benefit is obvious; also, at runtime, network bandwidth
estimates may suggest that S— S, transfers are faster than S; —S, or that the transfers
should be split in two, half from the original source and half from the temporary copy of the
blob. To do this, we parameterize a BindJoin requiring a blob with the list of BMs in which
the blob has been stored for the purposes of the current query. The BindJoin provides this
list to its local BM, which may operate the choice.

Lifespan of blobs in the Blob Manager In general, the choice of whether and how
long will the BM of S store a blob b it has acquired from another site for the needs of
the query @) is determined statically by the query optimizer. This decision is guided by
metadata published by the site S, specifying its storage policy. Several such policies may be
envisioned, ranging from fully egotistic (S keeps a blob only as long as it uses the blob), to
fully cooperative in single-query mode (all sites involved in a query @ keep any blob they
copy until the end of Q) to fully cooperative in multi-query mode (blobs transferred for
the needs of a query are kept to profit to other queries, too). The choice of a particular
policy for a site S is mainly determined by the available space at S, but may also depend on
other considerations, e.g., service or data subscriptions among users on different sites, query
priorities etc.

In this paper, we consider that all sites store all blobs they use to answer until the
execution of @) ends. Note that all blob manipulations are done by BindJoin operators;
following this line, the close method of a BindJoin executed within the QEP of () sends a
mayDispose(Q) message to the local BM, informing it that the blobs stored for the usage
of @) are no longer needed. Since the close call is propagated from the top of the QEP, we

INRIA

Efficient Data and Program Integration Using Binding Patterns 13

know that all operators above the BindJoin have finished processing tuples when a BindJoin
receives the close.

We make here the following remarks. First, keeping b until the end of @)’s execution is
in some cases more than what is needed. For example, if a blob is produced by a BindJoin
on a site S and is never used by another operator up in the query plan, the blob does not
need to be stored on S after the BindJoin has produced it. For simplicity, we consider that
blobs are kept until the end of @’s execution, and make the assumption that enough storage
space is available to this purpose. Second, while sharing transferred blobs among several
queries is interesting and feasible, a complete study of query processing in this framework
is out of the scope of this work.

4 Algorithms for Bind Join and Bind Access

We now define algorithms for BindJoin and BindAccess that can take advantage of caching,
independent parallelism, and adaptive intra-operator parallelism to improve the query re-
sponse time.

4.1 Cache-based optimization

The main justification for caching is to avoid redundant access to a restricted resource, when
the left input of a BindJoin operator provides duplicate arguments. This can significantly
improve query response time in the presence of duplicates, as long as the tuple input rate in
the BindJoin operator is faster than the processing speed of the BindAccess. Also, under the
same condition, the presence of duplicates allow us to significantly improve the BindJoin’s
tuple output rate early in the execution.

The presence of a cache requires specific design decisions to suit our distributed context.
The first decision concerns the cache localization: to reduce data transfer, it has to reside
in the same site as the BindJoin. Indeed, suppose that the BindJoin and its left child
operator run on a site Sy, while the BindAccess runs on another site Sy. Obviously, by
caching results on S; we avoid sending to S, arguments for which the result was already
computed. This decision impacts on the physical architecture of the BindAccess operator.
Since the BindJoin controls the cache, it is the BindJoin that extracts tuples from its left
child operator, while the BindAccess has to obtain binding arguments from these tuples,
through the BindJoin. As a result, we have to provide the BindAccess with the capability
of extracting argument data from a (possibly remote) data structure filled by the BindJoin.
Therefore, we decompose the BindAccess into two physical operators named ComputeResult
and GetBinding; ComputeResult will run on Sa, GetBinding on S;. Following the general
principles of the distributed iterator model, the arguments are transferred between these
operators through a distributed Exchange.

To explain the functioning of the physical operators for BindAccess and BindJoin, we use
the following notation. The left child of the BindJoin is denoted as r, and its parent operator
as p. A tuple coming from r is of the form (z;, 2;); for the purpose of the explanation, let

RR n°® 4239

14 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

BindJoin ESIYE] BindJoin

Tx Y.z \ /
Bind x1y1.2
X,y
Join™—~=___ next0 é x1y1.3
%ompute

11

vyl

ComputeTyl,Z Result IC t Result

7/Structure Get yL3 - =
Bmd't‘ Restricted Restricted

Access Access
Blndlng X2 Resource Resource

(a) (>3’y f) (b) (’PY f)

Figure 5: Physical operators for BindJoin and BindAccess (a); the ComputeResult operator

(b).

us denote by x; a tuple of values for all the binding arguments, and by z; all the remaining
attributes. The results of a resource access with the binding argument z; is a set of (x;,y; ;)
tuples, where each y; ; represents one result tuple returned for the arguments value tuple
z;. The outline of a physical QEP for a BindJoin-BindAccess pair is given in Figure 5(a).

The role of ComputeResult is to encapsulate the access to the restricted resource, as
illustrated in Figure 5(b). On a next() call issued by the BindJoin, ComputeResult has to
return a result tuple. To achieve that, it needs to (1) obtain a binding argument and (2)
invoke the call Resource method provided by the restricted resource publisher, as explained
in Section 3.3. To obtain the argument, ComputeResult issues a next() command to the
GetBinding operator. This operator, in turn, extracts the argument attributes from one of
the tuples accumulated in the data structure by the BindJoin. Note that in the case where
the call to the restricted resource returns several tuples, the ComputeResult is in charge of
managing those tuples, in order to return them one at a time, transparently to the BindJoin.
In Figure 5(b), ComputeResult simply returns a tuple resulted from a previous computation
to answer the second mext() call. Furthermore, for a given argument z;, ComputeResult
will return first all resulting tuples, and then a special “end-of-call” tuple, informing the
BindJoin that there are no more results to be obtained for the z; argument value.

We interject at this point the following remarks. First, ComputeResult is the only
physical operator that a wrapper must implement; GetBindings and BindJoin run within
the LeSelect server. Second, a ComputeResult iterator is quite generic, and a pre-defined
wrapper implementing it can easily be devised using the call Resource interface provided by
the publisher.

We now discuss the design of algorithms for the physical BindJoin operator using a cache.
For any execution time, such a BindJoin operator contains: a cache of argument-result pairs
(x:,yi,;) for all tuples from r that have already been processed by ComputeResult, and a
cache containing tuples received from r but whose processing is not finished yet. Also, when
processing an (z;,2;) tuple for which several (z;,y; ;) are in the cache, the BindJoin has
several (z;,y; j,2;) tuples to output. To answer next() calls, the BindJoin maintains an
internal result queue Q; from which it transparently returns these tuples one at a time.

INRIA

Efficient Data and Program Integration Using Binding Patterns 15

The CacheFIFO BindJoin algorithm We start by presenting a simple synchronous
BindJoin algorithm using cache. The executions of BindJoin, ComputeResult and GetBind-
ing are serialized: each next() call is blocking for the caller. In CacheFIFO, at any moment,
the data structure contains at most one (z;, 2;) tuple, which has been received from r and
whose processing is not yet finished ; we call this tuple the current tuple. When execution
begins, the data structure is empty.

In response to a next() call, the BindJoin returns a result tuple from Q. If Q; is empty,
the algorithm iteratively runs one or another of the following s; and sy steps, until some
result tuples are obtained.

The choice of whether to execute a step s; or a step s; depends on whether a current tuple
is present in the data structure or not. Step s; tries to obtain result tuples corresponding to
the current tuple (x;, 2;) by calling the next() method of ComputeResult. If ComputeResult
returns a tuple of the form (z;,y; ;), the algorithm inserts it into the cache, and returns the
tuple (z;,9i,5,2). If ComputeResult returns an “end-of-call” mark, the current tuple is
removed from the structure, and step s; finishes without having produced a result. Step so
attempts to obtain results using a new tuple from r. First, the algorithm extracts the tuple
t = (x;,2;) via an r.next() call. Two cases may arise, depending on whether the x; value
is in the cache or not. If z; is in the cache, the algorithm constructs and inserts into Q1
one (z;,Y; j, 2;) tuple for each (z;,y; ;) tuple found in the cache, and outputs the first such
(%i,yi,5, %) tuple in response to next(). Otherwise, if z; is not in cache, ¢ is inserted in the
data structure, and becomes the current tuple; step s» has not produced any result.

Output rate of the CacheFIFO algorithm When the execution of this simple BindJoin
algorithm starts, the cache is empty. The processing of most of the tuples received from r will
entail a call to ComputeResult; thus, the tuple output rate is close to the processing rate of
this operator. As execution continues, the cache is progressively filled, and tuples are output
directly from the cache. Since we assume that cache lookup time is negligible compared
to ComputeResult’s processing time, the output rate towards the end of the execution is
significantly higher than at the beginning. Such an uneven output rate is unavoidable in the
presence of cache, but tuple bursts at the beginning of the execution are much better than
a sudden burst at the end. (If the BindJoin is the top QEP operator, tuples are returned to
the user faster; if its parent operator receives tuples fast, accelerating the early output of the
BindJoin could propagate early tuples towards the output.)Because of this fact, we present
a second algorithm that aims at a fast output rate in the early stages of the execution.

The CacheParallel algorithm If tuples can be obtained from r faster than the processing
of ComputeResult, cache and duplicates provide three opportunities to improve the early
output rate of the BindJoin,

1. First, for each ¢ = (x;, #;) incoming tuple such that an (z;,y;, ;) is already in the cache,

(@i,yi,5, 2i) may be output directly by the BindJoin, and in parallel with the on-going
processing in ComputeResult. This improvement comes at the price of losing input

RR n° 4239

16

1. Manolescu, L. Bouganim, F.Fabret, E.Simon

order. Also, it requires the ability to temporarily store tuples within the BindJoin,
since we cannot “directly” obtain from 7’s output tuples for which the results are
already in the cache.

Second, by allowing tuples coming from r, for which the result was not already in the
cache, to accumulate within the BindJoin’s data structure, we increase the chances
that the BindJoin outputs several tuples together. Whenever the BindJoin receives
an (z;,y; ;) from ComputeResult, it identifies all (x;, z;) tuples in the data structure,
and outputs all the (z;,y; ;, 2;) at once.

Finally, GetBinding may choose which arguments to provide to ComputeResult in a
way that maximizes the output tuple burst. To this purpose, GetBinding picks the
most popular z; value in the data structure, i.e., the one corresponding to the biggest
tuple group in the data structure.

The cornerstone of our algorithm that implements these three requirements is a cache buffer
storing all the information needed at any given moment of the execution (the cache and the
tuples received from r and not yet fully processed). The trick is to allow different entities
to run in parallel synchronizing their actions through the cache buffer. More formally, we
specify a cache buffer by four access functions (X set, state, Y, Z), and two management rules
r1 and 2. We first present the access functions.

Rule

At any moment, X set denotes the set of x values that are currently present in the
cache buffer.

For any value z among those returned by X set, the state(x) function returns the state
of this value, which can be either done, running or waiting. An z value is done if
it has been fully processed, i.e., ComputeResult has returned to the BindJoin all the
results for this value. The value is running if it has been chosen by GetBindings to
be processed, but it is not yet done. Finally, a value of X set that is neither done nor
running is waiting.

GetBinding can only choose waiting values.

For any z; element of Xset such that state(x;) is done, the function Y (z;) returns
the set of (z;,y;, ;) result tuples obtained by accessing the restricted resource with the
argument ;.

For any z; element of X set, the function Z(z;) denotes the set of tuples of the form
(x4, 2;) present in the cache buffer.

r1 governs tuple insertion. An (x;,2;) tuple obtained from r can be inserted in the

cache buffer only in one of the two following situations. If z; ¢ X set, then this value has
never been seen before in the BindJoin; the tuple is inserted, and state(x;) on the insertion
of this tuple becomes waiting. Otherwise, if z; € X set but state(x;)# done, the tuple is
also inserted in the cache buffer; this insertion does not influence the value of state(z;).

INRIA

Efficient Data and Program Integration Using Binding Patterns

17

Tne t()
X

p
next()

BlnﬁJoinS
Q1
- N

BindJoina LeSelect server S1

=3

p
next()

BindJoin3

>

LeSelect server S3

< Data . . ’ Data Bindioin2 next()
BindJdint=- - <—»B| Nddoin2 BindJoinl=- = g \(,)T
next() ! 'l next(| next(
! I
‘/02% S

GetBinding

‘ Dat T
BindJoinl<- = —»Bw[dJumz
;

next()

et \ ‘ =
f o
n Compulé;’—‘
Qa GetBinding rxto Result o Manjger
: ! /\
Blob
Manager

‘ read(...)
s
LeSelect server S4

@ f Blob
© Manager

LeSelect server S5

LeSelect
server S2

n Compute next)
GetBinding w Result
JE i Sh— r
r

next()

@ (b)

«— Compute
X next() Result

Figure 6: Architecture of the CacheParallel variant of BindJoin: local ComputeResult (a),
remote ComputeResult (b), blob fetching (c).

Rule 75 concerns tuple removal. A tuple ¢ = (x;, 2;) is removed from the cache buffer if
the state of x; changes from running to done. This state change entails the following actions.
First, for each (z;,2;) € Z(x;) and for each (x;,y;,;) € Y (x;), an (24, yi,5,2;) tuple is sent to
the output; second, all (z;,2;) € Z(x;) are eliminated from the cache buffer.

To achieve a maximum of parallelism, we share the cache buffer management between
three independent entities, running in parallel. The first one, noted BindJoin;, performs two
actions: first, it extracts r tuples, then for each incoming tuple ¢t = (z;, z;) BindJoin; tries
to insert ¢ into the cache buffer following rule r;. If the insertion is not possible, meaning
that z; is in Xset, and its state is done, then for each element y; ; € Y(z;), it outputs a
result tuple (2;,9;,;,2:)- The second entity, noted BindJoins, is in charge of extracting and
handling the results produced by ComputeResult. The results are grouped by their x value.
For a given z; value, BindJoin, enters the corresponding y; ; results one by one into the
cache buffer. When ComputeResult finally returns an “end-of-call”’, BindJoin, changes the
state of z; from running to done and applies rule r5. Finally, a third entity noted BindJoing
desynchronizes the BindJoin from its parent operator p.

Besides BindJoin; and BindJoins, the cache buffer is also accessed and updated by
GetBinding. When GetBinding chooses an x argument, it changes its state from waiting to
running. As shown in Figure 6(a), when the BindJoin and ComputeResult run on the same
site, GetBinding, BindJoin,, and ComputeResult can run synchronously without degrading
performances. When BindJoin and ComputeResult run on two different sites, GetBinding
must be run in parallel with BindJoin; and BindJoin, (see Figure 6(b)). Nevertheless, it
is convenient to limit drastically the capacity of exchange queues between GetBinding and
ComputeResult. Indeed, allowing too many elements in the queues leads to choosing x
values a long time before they are effectively processed, making the choice non optimal.

Figure 6(c) illustrates the usage of the algorithm for fetching blobs from remote sites.
Remember that our goals were first never to transfer the same blob on the same path twice,
and second to enable the retrieval of a blob from one or several sites where a copy exists.
The first goal is trivially met by the cache-aware BindJoin: the x arguments in this case

RR n° 4239

18 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

£1)

r r
(22 (GBR3) (3k4) (25 (X3k2) (x3k3) all 7 tuples all 7 tuples

x1 X2 x3 V V [x1 X2 | x3 \ [x3 | X2 | x1 \

Y
\ \
z1 22 23 74 25 CR z1 22 | 23 74 75 \ WZS zZ“l 74 75 x1

i g + u CRg
(x1,y1,71,t1) (><3‘y3!’3‘l3) v (X2y22515) (x1,y1,71,t1) V (X2, Y2,2515) v

(x2y2,22.12) (x3,y3,23t3) (x3,y3,23t3) (x3,y3,22,t2)
wey324y8) - (3y322.12) (2Y22212) y (3y324) (x3y32313) (ay3z13) (ey2z22)Y

3y3.2313
(3y32313) (x3y32242) © (x3y324.4)

(@) (b)

X2,y2,25,5) ’
(x1,y1,21,t1]

iy

Figure 7: CacheFIFO (a) and CacheParallel: choose oldest value (b), choose most popular
value (c).

are global blobIDs, and the BindJoin sends only distinct values to ComputeResult. All
operators run on the BindJoin site; the physical localization of the source blob is considered
not at the operator level, but in the physical blob transfer layer as follows. ComputeResult
issues getLocall D commands to the BM on site S3. As explained in Section 3.4, this BM
was informed, on BindJoin.open() that a blob published on S, has already been copied,
within the current query, on Ss. Thus, it can decide, on a per-blob basis, using money and
time cost considerations, where to fetch the blob from.

Output rate of the CacheParallel algorithm The algorithm improves the output rate
early in the execution. Figure 7 illustrates the behavior of a QEP fragment consisting of two
BindJoins: (r52BA(f(zPy”))5BA(g(2°t7)). In this example, the per tuple costs of accessing
restricted resources f and g are set to ¢y = 5 and ¢, = 3 respectively, and both resources
return exactly one tuple per argument; different indices for z,y, z, t indicate different values.
Arrows follow tuple flow among r, CR¢ (the ComputeResult operator accessing f) and CRy;
we assume all seven tuples can be extracted from r as fast as desired.

When the BindJoins are implemented by the CacheFIFO algorithm (see Figure 7(a)),
tuples from r are extracted only at the pace of the bottleneck restricted access (f, then g).
Figures 7(b) and (c¢) show two CacheParallel variants. In this case, we consider that the
extraction of tuples are from r is very fast, so that all seven tuples are accumulated within
the first BindJoin before the execution starts. It can be seen that CacheParallel helps solve
some synchronization problems (tends to eliminate g’s idle time in the first phase of the
execution), and that unlike CacheFIFO, it produces tuple bursts early in execution. As
Figure 7 shows, choosing the most popular value provides a bigger early output rate than
choosing the oldest. But the biggest advantage of this choice policy is that it is a stable
technique, capable to cope with various input orders, even if the duplicates come last, as
in figure 7. Also, since in a chain of BindJoins we allow each to choose its own processing
order, the decisions of the first BindJoin do not imply a bad ordering for those that follow.

INRIA

Efficient Data and Program Integration Using Binding Patterns 19

4.2 Introducing adaptive intra-operator parallelism

In this section, we show how to adapt the operator architecture for BindJoin and BindAccess
to allow several parallel accesses to a restricted resource. We then provide a simple algo-
rithm for determining the degree of intra-operator parallelism that should be used within
a BindJoin-BindAccess pair. Our algorithm is designed to exploit the full capacity of the
resource, while sharing it equally with all other queries using the same resource at the same
time; also, it dynamically adapts to changes in the per-call execution time, which may be
due to unpredictable parameters such as the machine load on the site executing a program,
the network congestion, etc.

To allow N parallel accesses to a resource, we simultaneously run N instances of Get-
Binding, ComputeResult, and BindJoins. All GetBinding and BindJoin operators consult
and update the cache buffer; all BindJoin instances produce in Q;, multiplying the chances
of large output packets. In the case of a remote ComputeResult, all instances consume their
input from Q% and produce in Q5. When running several instances of GetBinding, we use
locking on the data structure’s entries to avoid race conditions, whether ComputeResult is
local or remote. From an implementation point of view, the open() call of BindJoin creates
one instance of BindJoiny, which supervises the execution and decides on the appropriate
number of BindJoins instances to create. In turn, each created instance of BindJoins opens
its ComputeResult and GetBinding operators.

Determining the right degree of parallelism Consider the case when a single Bind-
Join operator uses the restricted resource: its goal is to determine the maximum degree of
parallelism possible. We propose an algorithm which greedily runs at any moment as many
instance as possible. The execution proceeds in stages; at the end of each stage, BindJoing
decides on the number of instances to run in the next stage.

In the first stage, one instance is run. In the second stage, the BindJoin tries to execute
two instances in parallel, and measures their average per-tuple execution time avg. To
decide whether to increase, decrease, or keep the same number of instances, the BindJoin
compares avg with incTresholdxt,,;, and decTreshold+t ;- tmin is the minimum execution
time, per instance and per tuple, of a call to the restricted resource: it can be declared by
the publisher, or may be recorded over previous executions. The parameters incTreshold
and decTreshold must be greater than 1.0, and satisfy decTreshold > incTreshold. If
avg < incTreshold t;,, then the last recorded average time is quite close to the best
measured one, and BindJoin; decides to add an extra instance in the next stage. If avg >
decT'reshold x avgpirn, the last average time is too far from the optimum, and BindJoing
eliminates an instance in the next stage, trying to attain again better average running times.
If avg falls within the window [avgmin * incTreshold, avgmin * decTreshold], we keep the
same number of instances, since neither increasing nor decreasing it seem interesting choices.
If this window is too narrow, the number of instances oscillates between some value n and
n + 1; if the window is too wide, the algorithm reacts too slowly to correct a bad decision.
This algorithm greedily runs as many instances as possible.

RR n°® 4239

20 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

Fair sharing the access to a restricted resource We now address the problem of
fairness in sharing a parallel resource among several BindJoins. We can do this simply by
modifying the algorithm above as follows. For every restricted access published on S;, the
execution engine stores the number of parallel instances running for each BindJoin at a
given moment. When a BindJoin decides, following the window scheme presented above,
that parallelism is profitable and that it needs to add an extra instance, it may do so only if
its current number of instances is the lowest among all the BindJoins concurrently exploiting
the same resource. Similarly, whenever a BindJoin decides to eliminate an instance, it has to
verify, by inspecting everybody’s counters of running instances, that its number of instance
is the highest. This simple “politeness” mechanism ensures both maximal exploitation of
a restricted resource and equitable repartition of instances among all BindJoins running in
parallel, as we show in the next section.

5 Experimental assessment of the CacheParallel algo-
rithm

In this section we evaluate the behavior of the CacheParallel BindJoin algorithm. We are
mainly concerned with two issues: first, the tuple output rate in the early stages of the
execution, and second, its capacity to adapt its degree of parallelism to changes in the
processing cost of a tuple.

Improving early tuple output rate Figure 8 presents the tuple output rate from QEPs
corresponding to a query of the form “select f(r.xz), g(r.z) from r”. We take ¢y = 10 time
units and ¢, = 100, and assume for simplicity that f and g always return a single tuple.
The cardinality of r(zf2%) is 10,000, tuples arrive in no particular order and accumulate in
the first BindJoin before the beginning of the execution. We neglect cache lookup and tuple
transfer time, since they simply add up to execution times for all algorithms. We consider
two QEP’s for the query: a QEP where f precedes g and another where g precedes f. We
suppose that the two s are implemented using the same physical algorithm in a given QEP.
We consider three implementations of the ®s: CacheFIFO, CacheParallel with GetBinding
choosing the oldest value, and CacheParallel with GetBinding choosing the most popular.
We vary the data distributions of z and y, and the order of the two BindJoin operators.

The top left graph corresponds to the QEP rRBA(f(zbyf))RBA(g(2%tf)); = and y
follow independent uniform distributions. The CacheFIFO output rate is dictated by g,
until t ~ 100,000, when g has finished evaluating all distinct z values; from this point on,
tuples are output from the cache. In contrast, the CacheParallel variants achieve a much
better output rate. Since f runs ten times faster than g, it immediately outputs (z,y, 2) if
z is in the cache, and outputs tuple packets whenever possible. Thus, ¢g’s data structure is
filled, and it may choose the most frequent z value for processing.

The advantages of CacheParallel are smaller in the top graph at right; since there are
many z values, the bottleneck in query execution is always g. However, the CacheParallel

INRIA

output tuples

output tuples

Efficient Data and Program Integration Using Binding Patterns 21

f before g, x: uniform, 5500 values, z: uniform, 1000 values fbefore g, x: uniform, 1000 values, z: uniform, 5500 values

12000 12000

" CacheParallel, choose most frequent " CacheParallel, choose most frequent
CacheParallel, choose oldest ———-— CacheParallel, choose oldest ——-—-
CacheFIFO - CacheFIFO -

10000 - 4 10000 -
8000 |-

4 8000

6000 | 6000

output tuples

4000 | 4 4000

2000 | 4 2000

- L L L L L L L
o 20000 40000 60000 80000 100000 120000 100000 200000 300000 400000 500000 600000

running time running time
g before f, x: uniform, 5500 values, z: uniform, 1000 values g before f, x: zipf, N=7000, alpha=0.2, z: zipf, N=1000, alpha=0.2
12000 T T T 12000 T T T y
CacheParallel, choose most frequent CacheParallel, choose most frequent
CacheParallel, choose oldest ------- CacheParallel, choose oldest -------
CacheFIFO - CacheFIFO -

10000 » : 4 10000
8000 |-

4 8000

6000 | 6000

output tuples

4000 | 4 4000 H /

2000 | 4 2000

B e L L L L L 0 b L L L L L L L
o 20000 40000 60000 80000 100000 120000 140000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
running time running time

Figure 8: Sample tuple output rates.

variants achieve some improvements by allowing parallel passage of duplicates and packets
of tuples sent to the output. The slope of the CacheParallel “choose most popular” variant
reflects the size of the tuple packets that g is able to output (4, then 3, 2, 1); since f is ten
times faster, g has at any point at least 10 tuples to choose from, but there are few very
frequent values in z.

In the bottom left graph, the CacheFIFO BindJoin chain performs badly since g is the
bottleneck for a long time, keeping f mostly idle; only when g has processed all unique
values of z does the output rate grow. In contrast, CacheParallel maintains a steady rate
during the entire execution, and reduces the running time by 20% since f is kept busy by
the packets output from g. In the previous two graphs, f and g were well synchronized,
and the total running time was the maximum of the running times of the two BindJoins
considered in isolation; in this third graph, synchronization problems are eliminated and
pipeline parallelism achieved by the CacheParallel’s optimizations.

The graph at bottom right in Figure 8 shows very important gains of CacheParallel with
respect to CacheParallel, since x and z now follow zipf distributions, with @ = 0.2. By
picking the most popular values early, large tuple packets are sent very fast to the output
by both BindJoins.

RR n°® 4239

output tuples

12000

10000

8000

6000

4000

2000

22 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

g before f, x: zipf, N=7000, alpha=0.2, z: zipf, N=1000, alpha=0.2 g before f, x: zipf, N=7000, alpha=0.2, z: zipf, N=1000, alpha=0.2

12000

CacheParallel, no delay between inputs CacheParallel, choose most frequent
CacheParallel, delay of 1 between inputs ——— c , choose oidest, order
CacheParallel, delay of 5 between inputs -~ ‘CacheFIFO, random order

acheFIFO CacheFIFO, worst-case order --
- 1 10000

8000

ut'tupte:

6000

4000

2000

s 0 N
10000 20000 30000 40000 50000 60000 70000 80000 90000 o 10000 20000 30000 40000 50000 60000 70000 80000 90000

running time running time

Figure 9: CacheParallel behavior in the presence of limited input rate (left) and bad data
order (right).

We explain the small difference between the two CacheParallel variants in Figure 8. In
the case of uniform distributions, in the absence of very popular values, picking the most
popular value cannot improve a lot over picking the oldest one, since there are no big output
bursts anyway. In the case of zipf distributions, since the very popular values are scattered
over the 10,000 tuples, the BindJoins are sure to process those frequent values quite early,
even by picking the oldest value; afterwards, subsequent copies of popular values are output
directly from the cache by both CacheParallel variants.

In Figure 9 at left, we evaluate the impact of a limited input rate on the CacheParallel
output rate (the “choose most frequent”) variant. The data and function parameters are
unchanged from the last graph in Figure 8. We show two extra curves, corresponding to
two input rates. One curve corresponds to an input rate of one tuple per time unit, and the
other to an input rate of one tuple per five time units. When the curves follow a linear slope,
all tuples have not been received yet, and the input rate is the only limitation of the output
rate. Note that the incoming tuple rate (e.g., 1/5) is in theory better than both function
rates (1/10, and 1/100 respectively); however, CacheParallel is able to exploit the duplicates
to produce tuples much faster than the “nominal” rate of the two BindJoins. When all tuples
have been received (at t = 10,000 or t = 50,000), the curves join the one without input rate
limitations. We note that even if only two tuples can be received during one execution of f,
the CacheParallel output rate is still much better than CacheFIFO.

The graph at right in Figure 9 compares the effect of the incoming data order on several
BindJoin algorithms. Data and function parameters are the same as above, except for the
curves labeled “worst-case”: they correspond to the same tuple set sorted in the increasing
number of value frequencies, that is, the first tuples contain mostly singletons, and the most
frequent values come last. We show a single curve for CacheParallel choosing the most
frequent value, since, not surprisingly, by choosing among the whole accumulated tuple set,
it is not affected by data order. CacheFIFO in the worst-case order behaves worse than in
the case of a random order. The most interesting observation in this worst-case measure is
that the CacheParallel variant choosing the oldest value is as bad as CacheFIFO most of

INRIA

12

10

Efficient Data

and Program Integration Using Binding Patterns 23

T T T
Instances running for BindJoinl —+— Instances running for BindJoinl —+—
Load on the resource site ---*- Instances running for BindJoin2 ------
Sum (Load+BindJoin1) ---o-- © Load on the reource site —-m-—-
ym (Load+BindJoin1+BindJoin2) ---e--
r 4 10 ég =
S ° 3
S w 4 st 960 [4
i s i
] ® : 6 lob
b
4 4
4 2 . I X 4
| . ‘ ‘ |

L
[500

L L 0 L
1000 1500 2000 0 200 400 600 800 1000 1200

Figure 10: Sample behavior of the adaptive algorithm for determining the optimal paral-

lelism degree.

the time, since old values are very infrequent. We conclude that CacheParallel, even with
limited tuple input rates and disadvantageous incoming data order, provides much better
output rates than CacheFIFO.

Adaptive tuning of the degree of parallelism We now describe experiments that
validate the adaptive algorithm for choosing the optimal degree of parallelism in exploiting
a restricted resource. We consider that before execution we know (from having measured
previous executions) that t,,;, = 10. We assume the following behavior from the restricted
resource: up to the optimal (unknown) degree of parallelism opt), any instance processes one
tuple in 10 time units. If n, the number of instances run, is greater than opt|, the processing
time of a tuple per instance becomes & n * opt)| /n. For tyn = 10, we obtained good results
with incT'reshold = 1.2 and decT'reshold = 1.5. We assume that if the machine where the
resource is located were idle, we could run 7 parallel instances with good performance; if
the machine is loaded, this number diminishes.

The curve at left in Figure 10 shows how a single BindJoin adapts its number of running
instances to the machine load. At the beginning, the load on the machine is equivalent
to 4 running instances; the BindJoin starts one, then two, then three instances, using the
resource to a maximum. When the load decreases (at ¢ ~ 200), the BindJoin measures
decreased avg times, and adds two extra instances. When the machine load increases to 6,
the BindJoin adapts and restricts itself to only one running instance.

At right in Figure 10, we demonstrate how two BindJoins adapt to the machine load
and to the presence of each other. The load starts at 4, then varies successively to 2, 3 and
7. The first BindJoin starts at ¢ = 0 and runs three, then five, parallel instances, until the
second one starts at ¢ = 300. When the BindJoins share the resource, they share it evenly;
the first BindJoin finishes execution at ¢t ~ 1600, and from that moment the remaining one
exploits the resource on its own, since it knows it no longer has a concurrent.

RR n°® 4239

24 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

Site S3

Site S1

Figure 11: QEPs involving blob transfer (left) and blob production (right).

6 Query execution in the presence of space limitations

In our discussion, we have not considered space limitations on any LeSelect site. In partic-
ular, we assumed that the results of any program execution, as well as the argument-result
cache pairs, are kept on the program’s site at least until the end of the query that produced
them. Also, we assumed that whenever a BM is asked to retrieve a blob from a different
site, the necessary storage space is available.

At any moment, a given site has a certain amount of space available for a given query,
which varies following the needs of the operators running on that site. We consider this
space to consist of memory and disk taken together, and we do not investigate when is
memory used rather than disk, or vice versa. We assume that when memory runs out on
a given site, operations are continued using disk space; in this section, we investigate the
consequences of disk space limitations on query execution.

Space limitations may affect query execution in several ways. First, if the space available
for the data structure in a CacheParallel BindJoin is limited, the BindJoin will stop fetching
new arguments from its left child until some space is freed; thus, no special measure is
necessary. Second, in the case of a BindJoin (either CacheFIFO or CacheParallel) producing
small results, when the argument-result cache is full, some cache entries are dropped, e.g.,
according to an LRU policy. In this case, the same result may be computed many times
during the execution of the query. Special care needs to be taken to ensure queries involving
blobs are correctly executed in the presence of space limitations, as we explain next.

Blobs and space limitations To understand the issues involved, consider the QEPs
shown in figure 11.

In the QEP at left, BJ; commands the BM of S, to retrieve blobs from S;. The second
BindJoin BJ;, executed on S3, needs the same blobs; as described in section 3.4, we had
allowed the BM of S3 to choose where to retrieve blobs from. In our case, the choice is
between the BMs of Sy, respectively So. However, if on S, the disk space is limited, the BM
on Sy may decide to discard some transferred blobs. Thus, the BM on S3 may no longer
be sure that all blobs can be found in both locations. Therefore, in the presence of space

INRIA

Efficient Data and Program Integration Using Binding Patterns 25

limitations for blob storage, this blob transfer optimization might be restricted, in the sense
that some temporary blob sources are ignored, and blob retrievals are more likely to be
made from the original location.

The QEP at right in figure 11 exhibits another potentially dangerous case. BJ; applies
the function f to some arguments; for each tuple of argument values, f produces a blob and
an integer. The blobID and the integer are sent from BJ; upwards in the QEP, and upper in
the query plan BJs tries to fetch the produced blobs, using the blobIDs. If there are several
BindJoins consuming the blob produced by BJi, consider BJ> to be the highest one in the
QEP. There are two potential pitfalls in this case.

First, if on the site of BJ; there is limited space, the BM may have discarded a produced
blob before BJs has the time to ask for it; this would entail a run-time error. Second, some
of the blobs produced by BJ; may be useless, i.e., they are never retrieved by BJs, since all
tuples containing their blobIDs are eliminated by some intermediary operators between BJy
and BJs. However, the BM storing produced blobs does not know which blobs are useless,
and may pin useless blobs in its cache, while discarding useful blobs. Eventually, BJ; may
be filled with useless blobs, and its execution stops for lack of space for new results, thus
leading to a deadlock.

To avoid these pitfalls, we enforce some synchronization among the operators in the QEP,
from BJ; to BJ2. Obviously, some of the blobs must be discarded before the execution of
BJ; resumes. A basic solution is the following. When the BM of BJ; has no more place
for the query in which BJ; runs, we stop BJ;’s execution until all blobs it has produced
may be discarded from the BM. To do this, we force the evacuation of the tuple processing
chain between BJ; and BJy as follows. The first next() call received by BJ; (where the
associated BM is full) is answered with a special synchronization tuple. The following
next() received by BJ; blocks until its BM signals that the space has been freed. Upon
receiving a synchronization tuple, all operators in the chain from BJ;’s parent to BJs must
first finish processing their current tuples, then forward the synchronization tuple to the
above operator. When BJ, receives this tuple, it must retrieve the blobs corresponding to
all the blobIDs it has received before the synchronization tuple. Thus, the BM of BJ, sends
to the BM of BJ; the necessary read() calls, followed by a special read(null), interpreted by
the BM of BJ; as “all blobs produced by BJ; may be discarded”. At this point, BJ; receives
the notification that space is now available, and may resume the execution. Since BJ, is the
last operator in the QEP to need the blobs produced by BJ;, upper operators do not need
to receive the synchronization tuple; therefore, BJ, does not propagate it further. To this
purpose, the synchronization tuple must be marked as addressed to BJs; this information is
available at query compile time.

7 Discussion of related work and conclusion
Our work compares with the Mocha project [19], integrating data and programs; however,

they assume that a program can be shipped to the site where its arguments are, while we
consider programs that cannot be moved, thus addressing the extra difficulty of efficiently

RR n° 4239

26 1. Manolescu, L. Bouganim, F.Fabret, E.Simon

parallelizing data transfer and program execution. Hash- and sort-based caching algorithms
for expensive functions have been studied in [14]; sort-based algorithms do not apply in our
context since it would be a performance loss to stop the pipelined query execution for a
sorting step. They propose a hybrid hash scheme to ensure the cache fits in memory. We
envision using cache as soon as the cost of a program invocation is more expensive than a
cache lookup; also, the proposed hybrid hash can be adapted to our algorithm to efficiently
manage the cache buffer. In [4, 13], query optimization in the presence of costly predicates
is addressed, but unfortunately, the results developed there do not apply to our context.
The reason is that “predicate ranking” [13] and the methods described in [4] are based on
the function costs being constant per tuple, which no longer holds when using caching as we
do.

Two recent papers use asynchronism in executing specific kinds of expensive functions:
in [16], the network asymmetry in a client-server context is compensated for by issuing a
batch of function calls, without waiting for the first one to complete. However, they do
not consider multiple mediators and arbitrary placement of operators; also, caching and
parallelism are not used. WSQ/DSQ [9] proposes a single mediator processes queries that
can involve accessing Web sources. The authors note that logically independent HTTP
calls can be issued in parallel, but no guidelines are given as to the optimal degree of
parallelism. A single control operator, placed on the mediator, is responsible for matching
the call arguments with their results; such an operator is infeasible in a fully distributed
context. In our work, these tasks are split among the several actors running within a
BindJoin-BindAccess pair. “Eddy” operators, introduced in [1] route tuples among join
operators, giving more tuples to the faster running joins; thus, Eddie adapts the data flow
to the processing speed. Unfortunately, Eddies cannot be incorporated into our framework,
because it would be unpractical to have all tuples involved in a query transit, potentially
many times, through a single LeSelect server. Our work is also related to existing results
on improving the output rate for part of the query result, as described, e.g., in [18, 20].
However, our work is different in that we used parallelism, asynchronism and duplicates to
improve the output rate of the distributed BindJoin operator. As directions of future work,
we plan to extend our framework to sharing blob and function cache among several queries,
and to processing of expensive programs taking as input whole tables.

References
[1] Ron Avnur and Joseph M. Hellerstein. Continuously adaptive query processing. In Proc. of ACM
SIGMOD Conf. on Management of Data, pages 261-272, 2000.

[2] L. Bouganim, F. Fabret, F. Porto, and P. Valduriez. Processing queries with expensive functions and
large objects in distributed mediator systems. In Proc. of Int. Conf. on Data Engineering (ICDE),
pages 91-98, 2001.

[3] Surajit Chaudhuri and Kyuoseok Shim. Query optimization in the presence of foreign functions. In
Proc. of the VLDB Conf., 1993.

[4] Surajit Chaudhuri and Kyuseok Shim. Optimization of queries with user-defined predicates. ACM
Transaction on database system (TODS), 2(24), 1999.

[5] D. Chimenti, R. Gamboa, and R.Khrishnamurty. Towards an open architecture for LDL. In Proc. of
the VLDB Conf., Amsterdam, 1989.

INRIA

Efficient Data and Program Integration Using Binding Patterns 27

(6]

(7]
(8]

(9]
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

(18]

[19]

[20]

RR

Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query optimization in the presence of
limited access patterns. In Proc. of ACM SIGMOD Conf. on Management of Data, pages 311-322,
1999.

Ian Foster, Carl Kessekman, and Steven Tuecke. The anatomy of the Grid : Enabling scalable virtual
organizations. The International Journal of Supercomputer Applications, 2001.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom.
The TSIMMIS project: Integration of heterogeneous information sources. Journal of Intelligent Infor-
mation Systems, 8(2):117-132, March 1997.

Roy Goldman and Jennifer Widom. WSQ/DSQ: A practical approach for combined querying of
databases and the web. In Proc. of ACM SIGMOD Conf. on Management of Data, 2000.

G. Graefe. Encapsulation of parallelism in the Volcano query processing system. In Proc. of ACM
SIGMOD Conf. on Management of Data, pages 102-111, 1990.

Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 25(2):73-170,
June 1993.

Laura Haas, Donald Kossmann, Edward Wimmers, and Jun Yang. Optimizing queries across diverse
data sources. In Proc. of the VLDB Conf., Athens, Greece, 1997.

Joseph M. Hellerstein. Optimization techniques for queries with expensive methods. ACM Transactions
on Database Systems (TODS), 23(2):113-157, 1998.

Joseph M. Hellerstein and Jeffrey F. Naughton. Query execution techniques for caching expensive
methods. In Proc. of ACM SIGMOD Conf. on Management of Data, pages 423-434, 1996.

http://www-caravel.inria.fr/LeSelect.

Tobias Mayr and Praveen Seshadri. Client-site query extensions. In Proc. of ACM SIGMOD Conf. on
Management of Data, 1999.

Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using templates with
binding patterns. In Proc. of the Symposium on Principles of Database Systems (PODS), San Jose,
CA, 1995.

A. Raman, B. Raman, and J. Hellerstein. Online dynamic reordering for interactive data processing.
In Proc. of the VLDB Conf., 1999.

Manuel Rodriguez-Martinez and Nick Roussopoulos. MOCHA: A self-extensible database middleware
system for distributed data sources. In Proc. of ACM SIGMOD Conf. on Management of Data, pages
213-224, 2000.

T. Urhan and M. Franklin. Dynamic pipeline scheduling for improving interactive query performance.
In Proc. of the VLDB Conf., 2001.

n® 4239

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

