-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Topological versus Smooth Linearization of Control
Systems
Laurent Baratchart, Monique Chyba, Jean-Baptiste Pomet

» To cite this version:

Laurent Baratchart, Monique Chyba, Jean-Baptiste Pomet. Topological versus Smooth Linearization
of Control Systems. RR-4224, INRIA. 2001. inria-00072395

HAL Id: inria-00072395
https://hal.inria.fr /inria-00072395
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50452385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072395
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4224--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Topological versus Smooth Linearization of Control
Systems

Laurent Baratchart — Monique Chyba — Jean-Baptiste Pomet

N° 4224
Juillet 2001

THEME 4

apport
derecherche







% I N R I A

SOPHIA ANTIPOLIS

Topological versus Smooth Linearization of Control Systems

Laurent Baratchart , Monique Chyba , Jean-Baptiste Pomet

Theéme 4 — Simulation et optimisation
de systémes complexes
Projet Miaou

Rapport de recherche n® 4224 — Juillet 2001 — 12 pages

Abstract: This note deals with “Grobman-Hartman like” theorems for control systems
(or in other words under-determined systems of ordinary differential equations). The main
results (proved elsewhere) is that when a control system is topologically conjugate to a linear
controllable one, then it is also “almost” differentiably conjugate. We focus on the meaning
of this result, and on an open question resulting from it.

Key-words: Nonlinear control systems, Topological invariants, Feedback linearization,
Grobman-Hartman Theorem

Warmly dedicated to Velimir Jurdjevic on his 60th birthday.

This was presented at the Conference “Geometric Control Theory and Applications” organized in his
honor in Mexico City, September, 2000.

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65



Sur la différentiabilité de la linéarisation topologique des systémes
controlés

Résumé : Cette note traite des théoremes de type Grobman-Hartman en automatique,
c’est-a-dire de la “ressemblance” entre un systeme de controle non linéaire et son approxima-
tion linéaire. Le résultat principal (démontré dans une autre publication) dit qu’un systéme
qui est topologiquement conjugué a un systeme linéaire commandable lui est forcément aussi
“presque” différentiablement conjugué, et il est connu que cela arrive fort peu souvent. On
s’intéresse ici surtout au sens de ce résultat, et & une question ouverte qui y est rattachée.

Mots-clés : Automatique non-linéaire, Invariants topologiques, Linéarisation par retour
d’état, Théoreme de Grobman-Hartman
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1. Introduction

In this note, we discuss the local behavior of a nonlinear control system
(1) t=f(z,u), xeR*, wuelR™,

say around (0,0) € R*™™. For general control systems (as opposed e.g. to affine in the
control), “local” has to be understood with respect to both state and control.

The first reaction when dealing with local properties is to compute the linear approxi-
mation of (1). When this linear control system happens to be controllable, all the local usual
control objectives can be met using linear control, based on the linear approximation. For
instance, a linear control that asymptotically stabilizes the linear approximation will also
stabilize the nonlinear system, locally; minimizing a quadratic cost can also be achieved up
to first order based on the linear approximation only. Hence, the linear approximation is a
good enough model for the purpose of designing controllers achieving a desired behavior for
small states and controls. We believe that all control engineers or control theorists agree on
this statement, arising from practice, although we would welcome some contradiction.

Rephrasing the above statement without reference to control objectives leads to an
imprecise statement, grounded mostly on some necessarily subjective intuition, and that
should rather be taken as an opening sentence to launch a debate than as a conjecture :

2) nothing distinguishes qualitatively the behavior of a nonlinear control
system from the one of its linear approximation if the latter is controllable.

It is natural to try to formalize this statement, as a prerequisite to any proper theory of
nonlinear modeling and identification of control systems, in a very preliminary manner since
it only deals with local phenomena. A nice way to turn that belief into a sound, and correct,
assertion would be to find some equivalence relation between control systems (or models)
that preserves at least “qualitative” behavior, and for which these two systems (a nonlinear
system and its controllable linear approximation) are in general equivalent.

We assume controllability of the linear approximation. When this fails none of the above
is correct, at least in the most common case when the nonlinear system is itself controllable.
Indeed, (non-)controllability is a qualitative phenomenon : for instance, feeding a linear non
controllable system with “random” inputs, one observes that the state is confined in leafs
of positive codimension, while for a controllable system the whole state space is explored.

To enlighten the discussion on local behavior of control systems, let us recall the situation
for ordinary differential equations & = F'(z) (particular case of (1) where the control u has
dimension 0) :

o If F(0) # 0, the “flow-box theorem” (see e.g. [Arn74, §7]), gives local coordinates,
1

smooth if F' is smooth, in which F' is of the form .
0
e If F(0) = 0 and the square matrix F'(0) has no pure imaginary eigenvalue (hy-

perbolic equilibrium), then Grobman-Hartman Theorem [Har82, Theorem I1X-7.1]
tells us that the flow of the differential equation is locally conjugate to the flow
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4 L. Baratchart, M. Chyba and J.-B. Pomet

of its linear approximation via a homeomorphism that need not, in general, be
smooth if F' is smooth (and in fact smooth conjugation requires more assumption,
resonances are obstructions to it) (see e.g. [Arn80, §22]).

e If F(0) = 0 and the square matrix F’(0) has some pure imaginary eigenvalue,
then the situation is more intricate even locally, namely the phase portrait of the
nonlinear dynamical system & = F(z) can be very different locally from the one of
a linear system. This case is of high interest in the theory of dynamical systems,
but can be considered as “degenerate”, in the same way as non controllability of
the linear approximation for control systems.

Since conjugation of flows does preserve qualitative phenomena like the overall aspect of
the phase portrait, one can indeed assert that, locally around all points except non hyper-
bolic equilibria, a differentiable dynamical system “behaves like” a linear one, and this is
translated by conjugation via a homeomorphism, although conjugation via a smooth diffeo-
morphism preserves some more subtle local invariants (resonances, etc...).

Coming back to control systems, first of all, the equivalent of conjugation by a smooth
change of coordinates is (smooth) feedback equivalence, whose study was initiated in [Bro78],
see a survey in [Jak90]. In fact this is conjugation via a smooth diffeomorphism on the state
and control, forced to have a triangular structure (see Proposition 2.5 below). The conditions
under which a control system (1) is smoothly feedback equivalent to a linear controllable one
are well known [JR80, HSM83] (and contrary to the case of ordinary differential equations,
they are very simple), but they reveal that very few nonlinear systems are locally feedback
equivalent to a linear one, even when the linear approximation is controllable. This remark
and the review of the situation for ordinary differential equations naturally brings about the
question whether for control systems, relaxing the regularity of the conjugating maps, i.e.
considering conjugacy by homeomorphisms instead of smooth diffeomorphisms would make
more systems equivalent to a linear one.

After recalling some basic facts in section 2, we give in section 3 an essentially negative
answer to the question evoked above, based on quoting a result to appear in [BCP], that
topological conjugacy to a linear controllable system implies conjugacy by “almost” smooth
feedback (but the gap is really small). Section 4 recalls, also from [BCP], a technical open
question that would allow a nicer result and a nicer description of that “almost” smooth
conjugacy, and finally section 5 extends the discussion of the results from section 3, their
implications, and the questions they raise in nonlinear modeling.

2. Preliminaries on equivalence of control systems

2.1. Definitions. Consider two smooth control systems with state x (resp. z) and
input u (resp. v) :

(3) t = f(z,u), zeR*, weR™,
(4) ¢ = g(zv), z€RY | veER™
or, expanded in coordinates,

Ti = [filZ1,yeo o Ty Uty ey Um), Z2i = 9i(#1,--, 20, V1,0, U ),

INRIA



Topological versus Smooth Linearization of Control Systems 5

1<i<n,1<j5<n/, with the f;’s and g;’s some smooth (i.e. C°°) maps.

We assume that f and g are defined respectively on the whole of R* x R™ and R™ x R™
because it simplifies many of the statements below; this is actually no loss of generality to us
for all the results we prove are local with respect to z,u, z, v, so that f and g can be extended
using partitions of unity outside some neighborhoods of the arguments under consideration
without affecting the results.

DEFINITION 2.1. By a solution of (3) that remains in an open set @ C R**™ we mean
a mapping v defined on a real interval :

I —- Q

t = ) = (m), n®),

with y1(¢) € R™ and v (t) € R™, such that v is measurable, locally bounded, ~; is absolutely
continuous and, whenever [T}, T3] C I, we have :

Ts

n(T2) — n(Ty) = i f(y(t), yu(t))de .

(5) v

Solutions of (4) that remain in Q' C R* ™" are likewise defined to be mappings
~" . I — Q' having the corresponding properties with respect to g.
We now define the notion of conjugacy for control systems.

DEFINITION 2.2. Let
(6) X : Q - 9
(z,u) — x(@u) = (xi(z,u), xu(z,u))

be a bijective mapping between two open subsets of R**™ and R +m' respectively. We say
that x conjugates v : I — Q and ~' : I — Q' if and only if ' = x o 7.

We say that x conjugates systems (3) and (4) if, for any real interval I, amap~y : I —
is a solution of (3) that remains in  if, and only if, x o is a solution of (4) that remains
in Q.

We say that systems (3) and (4) are locally topologically conjugate at (0,0) if we can
chose  and Q' to be neighborhoods of the origin and x a homeomorphism. We say that
they are locally smoothly conjugate if, in addition, x and x~! are smooth. Here the word
smooth means C*°.

In case there is no control, so that m = m' = 0 and we omit u and xy, Definition 2.2
coincides with the classical notion of local topological conjugacy for non controlled differen-
tial equations, and may serve as a definition in this case too. Let us write more formally the
classical local results on ordinary differential equations that we recalled in the introduction :

THEOREM 2.3 (Flow-box theorem). If m = 0 and f(0) # 0, system (3) is locally
smoothly conjugate at O to the linear system 2y = 1,29 =---= 2, =0.

THEOREM 2.4 (The Grobman-Hartman theorem). If m = 0, f(0) = 0, and f'(0) has
no pure imaginary eigenvalue, system (8) is locally topologically conjugate at 0 to the linear
system Z = f'(0)z.

From now on, we consider “real” control system, i.e. we assume m > 1.

RR n°® 4224



6 L. Baratchart, M. Chyba and J.-B. Pomet

2.2. Some properties of conjugating maps. It turns out that conjugating home-
omorphisms preserve the dimension of both the state and the control and must have a
triangular structure :

PROPOSITION 2.5. With the notations of Definition 2.2, suppose that (3) and (4) are
topologically conjugate via a homeomorphism x : @ — Q. Thenn =n', m = m/, and x1
depends only on x:

(7) x(@,u) = (Oale), xu(z,u)) .

Moreover, x1 : Qrn — Qbn is a homeomorphism.
) R

PROOF. Let z, @, @' be such that (z,4) and (z, ') belong to . Let further z(t) be the
solution to (3) with z(0) = z and u(t) = @ for ¢t < 0 and u(¢) = @’ for ¢ > 0. By conjugacy,
2(t) = x1(x(t),u(t)) is a solution to (4) with v given by v(t) = xu(x(t),u(t)), for t € (—¢,€)
and some € > 0. In particular x1(z(t),u(t)) is continuous in ¢ so its values at 07 and 0~ are
equal. Hence x1(Z,%) = x1(Z,4') so that x1 : Qr» — Qp,, is well defined and continuous.
Similarly, (x '), induces a continuous inverse Q. — Qgn. O

In view of Proposition 2.5, we will only consider conjugacy between systems having the
same number of states and inputs. Hence the distinction between (n,m) and (n',m’) from
now on disappears.

Taking into account the triangular structure of x in Proposition 2.5, one may describe
conjugation as the result of changing coordinates in the state-space (by setting z = x1(z))
and feeding the system with a function both of the state and of a new control variable
v (by setting v = (x 1)u(z,v)), in such a way that the correspondence (z,u) — (z,v) is
invertible. In the language of control, this is known as a static feedback transformation, and
two conjugate systems in the sense of Definition 2.2 would be termed equivalent under static
feedback. This notion has received much attention, although only in the differentiable setting
(i.e. when the triangular transformation y is a diffeomorphism), see e.g. [Bro78, Jak90].

2.3. Linearization. Recall that f is assumed to be smooth (of class C*°). Let us make
a formal definition of topological and smooth linearizability.

DEFINITION 2.6. The system (3) is said to be locally topologically linearizable at (%,u) €
R"*™ if it is locally topologically conjugate, in the sense of Definition 2.2, to a linear
controllable system z = Az + Bw.

DEFINITION 2.7. The system (3) is said to be locally smoothly linearizable at (%,u) €
R™™ if it is locally smoothly conjugate, in the sense of Definition 2.2, to a linear controllable
system Z = Az + Bwv.

Explicit necessary and sufficient conditions for a nonlinear system to be locally smoothly
linearizable at a point were given in [JR80, HSM83], and also in [vdS84] (the previous two
references dealt with control affine systems only), and is recalled in many nonlinear control
textbooks. Without mentioning these conditions, let us simply say that they require a certain
number of distributions to be involutive, and that this is a very non-generic property.

INRIA



Topological versus Smooth Linearization of Control Systems 7

3. Main result on topological linearization

Let us now give a —basically negative— answer to the natural question raised at the
end of section 1 : for control systems, removing the differentiability requirement on the
conjugacy does not allow many more control systems to be (topologically) conjugate to
a linear controllable system, contrary to the situation of ordinary differential equations
(without control), (see section 1 and Theorems 2.3 and 2.4). Recall that f is assumed to be
smooth (of class C*).

THEOREM 3.1 ([BCP]). System (3) is locally topologically linearizable at (0,0) if, and
only if there exists an open neighborhood Q of (0,0) in R**™ and a homeomorphism

o0 - o
(8) (z,u) — X(z,u) = (xi(z), xu(z,u))

(possibly different from the homeomorphism defining topological linearizability of the system,)
such that

(1) X conjugates system (8) to a linear controllable system 2 = Az + Bv, in the sense
of Definition 2.2,
(2) X1: Q. — Q, defines a smooth (C*) diffeomorphism.

This does not state that topological linearizability implies smooth linearizability for ¥
need not be a diffeomorphism even though ¥i is. In [BCP], the conclusion of the theorem
is called quasi smooth linearizability. A thorough discussion as well as the proof of Theorem
3.1 is given there. Let us recall here what is necessary to make this theorem clearer.

PROPOSITION 3.2. The conclusions of Theorem 3.1 imply that

(1) BXp: Q — R™ is smooth,
(2) the rank of B is the mazimum rank of df/0u in small neighborhoods of the origin.

ProoF. Computing Z at the origin of a trajectory starting from (z,u) €  implies, by
the smoothness of X1,

Q @) few) = Afla) + Biale.u) |

This gives an obviously smooth expression of BYy. The second point is proved using Corol-
lary 3.5! at points close to the origin where the rank of df/0u is maximum, and hence
locally constant. d

If B is left invertible (i.e. has rank m), the first point implies that Xy itself is smooth,
and we have the following immediate corollary :

COROLLARY 3.3. If there are points arbitrarily close to (0,0) where the rank of f /Ou
is m (i.e. where this linear map is injective), then X in Theorem 3.1 is a smooth mapping.

1 The proof of Corollary 3.5 does not use Proposition 3.2.

RR n°® 4224



8 L. Baratchart, M. Chyba and J.-B. Pomet

Of course if B has rank strictly less that m, Y1 need not be smooth. This is discussed
in section 4.

Note that the assumption of Corollary 3.3 is very “reasonable”: for instance for single
input systems, the only case where it is not met is when f does not depend on u in a neigh-
borhood of (0,0), but then the system cannot be topologically conjugate to a controllable
linear system :

COROLLARY 3.4. If m =1, i.e. if (3) is a single input system, then X in Theorem 3.1
is a smooth mapping.

This is however still not “smooth linearizability” because even though x is smooth, its
inverse might fail to be differentiable at the point of interest. The simplest example is the
system

(10) i=u?, r€R, ueR ,

clearly conjugate by (z,v) = x(z,u) = (x,u3) to the linear controllable system 7 = v.
Obviously, x is smooth, x ! is continuous, x is the identity smooth diffeomorphism, but the
inverse of x itself fails to be differentiable at the origin. In fact, no smooth diffeomorphism
can conjugate these two systems. This can easily be proved but is also a consequence of
the necessity part of the following result that tells us exactly when smooth linearizability is
implied by topological linearizability :

COROLLARY 3.5. When f is of class C™, system (3) is locally smoothly linearizable at
(0,0) if and only if it is locally topologically linearizable at (0,0) and the rank of Of /Ou is
constant around (0,0).

PROOF. Smooth linearizability is a particular case of topological linearizability, and it
implies constant rank of 8f/0u because differentiability of the smooth diffeomorphism and
its inverse allow one to get a formula for df/du(zx,u).

Let us prove the converse. Suppose that the rank of df/du is r < m in a neighborhood
of (0,0) and that system (3) is locally topologically linearizable at (0,0). From Theorem
3.1, this implies that there exists a triangular homeomorphism (z,u) — (z,v) = X(z,u) =
(x1(z), Xz (z,u)) that conjugates system (3) to a linear controllable system Z = Az + Bwv
with the additional property that i defines a smooth diffeomorphism from a neighborhood
of 0 € R onto its image.

Let r' < m be the rank of the matrix B. There are invertible n x n and m x m matrices
P and @ such that

(11) B. = PBQ =

where I, is the ' x r’ identity matrix.
Computing # at the origin of a trajectory starting from (z,u) € Q implies (9) by the
smoothness of 1. Hence the map B.Q 't is smooth where it is defined, and differentiating

INRIA
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(9) with respect to u yields :

ox1, \of 9(B.Q~'Xn)
P () 2L = ATk Xn) :
ax (x) au (x7u) au (x7 u)
Since P%(m) is invertible and the rank of df/du is r, both sides have constant rank r.
This implies r < /. This also implies that the mapping R**™ — R™"+"" defined by

(xau) = (l’, BCQ_liﬂ(xvu) ) )
has a constant rank n 4+ r in a neighborhood of the origin, hence, by the constant rank
theorem applied to this mapping, there is a r x m matrix K of rank r (selects r lines that
1=
are independent among the m lines of W(x, u)), a neighborhood  of (0, 0) in R**™,
two smooth mappings « : R**" — R™™ and 8 : R™™ — R™ = (in fact they only need to
be defined in suitable neighborhoods of the origin) such that X is defined on €, and

(12) BCQ_IQH(x’u) — ( Oé( z, KBcQoili]I(x,u)) )
for all (z,u) € Q and
(13) (z,u) — (z,KB.Q 'Xu(z,u), Bz, u)),

defines a smooth diffeomorphism from  onto its image. This implies that » = 7’ because
from (12, r < r’ would prevent X from being one-to-one. Hence K can be taken the identity
matrix. Define Y : @ — R**™ by ¥ = L o) with

Y(x,u) = (Pxi(z), KB.Q 'Xu(z,u), B(z,u))
and L(z,v) = (P~ '2,Q 'v). v is a smooth diffeomorphism because (13) is one, and L is
obviously a (linear) smooth diffeomorphism. Setting (Z,%) = X(z,u) conjugates system (3)
to Z = AZ + B7. O

4. An open question

It is a reasonable question to ask whether the conclusion of Corollary 3.3 holds in general,
namely whether Theorem 3.1 can be strengthened so as to state that ¥ is, on top of its other
properties, a smooth mapping (when the rank of 0f/0u is not locally constant, ¥ would fail
to be be differentiable, from the necessity part of Corollary 3.5).

Let us examine the case where the assumptions of Corollaries 3.3, 3.4 and 3.5 fail (these
three corollaries already state the desired conclusion), namely the case of systems with
m < 2 controls where the rank of df/du is everywhere strictly smaller than m, studied
locally around a point where this rank is not constant (i.e. the rank at the point is strictly
less than the maximum rank in arbitrary small neighborhoods of this point, itself strictly
smaller than m.

The smallest dimensions where this occursis n = 1, m = 2, i.e. systems & = f(x,u1,u2)
with x, u; and us scalar. In order to state our open question in the smallest dimension

RR n°® 4224



10 L. Baratchart, M. Chyba and J.-B. Pomet

possible, let us drop the dependence on the right-hand side on x and consider systems
(14) & =a(u,uz),  €R, u=(u,uy) €ER* ,

where @ : R2 — R is smooth. Let us assume that this system is locally topologically
linearizable around (z,u) = (0,0,0). The only canonical controllable linear system with one
state z € R and two controls (vy,v2) € R? is 2 = vy, hence local topological linearizability
means existence of a homeomorphism

(15) X (x7u17u2) = (2,1)1,1)2) = (Xl(x),X2(x7U13U2)7X3($,'UA1,U2))

(in the terms of Definition 2.6, x1 is x1 and xxu is (x2, x3)) that conjugates (14) to the linear
system Z = v;. From Theorem 3.1, this implies existence of another homeomorphism ¥
of the same triangular form, that we denote by x instead of X, such that y; is a smooth
diffeomorphism (from a real interval containing zero onto an open interval) and x» is a
smooth mapping from an open neighborhood of the origin in R® to R, while our results do
not grant that ys has any more regularity than continuity. In fact the conjugation reads

ox1
Ox
This implies in particular that ys does not depend on z, and then one can replace vy =
x3(x, w1, uz) with vy = x3(0,u1, us) without changing the conjugating property. Composing
x given by (15) with (z,v1,v2) — (x; '(2), %(xfl(z))_lvl,vg), one finally gets a conju-
gating homeomorphism of the form

(16) ()a(ur,uz) = xo(z,u1,us2).

(17) (z,u1,u2) = (2, a(ur,u2), Blui,uz))

where B(u1,u2) = x3(0,u1,u2). Hence local topological linearizability amounts to existence
of a continuous mapping 8 from an open neighborhood of the origin in R? to R such that
(u1,uz2) — (a(u1,uz), B(u1,us2)) defines a homeomorphism from a neighborhood of the origin
in R? onto its image (we just proved it is necessary, but conversely, it makes (17) a local
homeomorphism, that obviously conjugates (14) to 2 = v;). Similarly, conjugacy via a
homeomorphism that is a smooth map amounts to existence of a smooth mapping having
the same property. Hence the question whether ¥ can be taken a smooth mapping in
Theorem 3.1 reduces to the following

OPEN QUESTION 4.1. Let a and 3 be two mappings | — ¢,¢[2°— R, € > 0, such that a
is smooth, § is continuous, and (u1,us) — (a(ui,uz),8(u1,u2)) defines a homeomorphism
from | — e,¢[? onto its image. Does there exist a smooth mapping b :] —¢',e'[?°— R, 0 <
e < e, such that (uy,uz) — (a(uy,uz),b(ur,uz)) defines a homeomorphism from | — ¢’ &'[?
onto its image ?

This question in differential topology can be posed in higher dimension of course, see
below. It is of interest in its own right and seems to have no answer so far, even for p = q¢ = 1.

OPEN QUESTION 4.2. Let O be a neighborhood of the origin in RPTY and F: O — RP a
smooth map. Suppose there is a continuous map G : O — R? such that FxG : O — RP x R?
is a local homeomorphism at 0.

INRIA



Topological versus Smooth Linearization of Control Systems 11

Does there exist another meighborhood of the origin O' C O and a smooth mapping
H:0' — R? such that F x H: O' — RP x R? is again a local homeomorphism at 0 2

5. Implications in Control Theory

Let us come back to the discussion we started in the Introduction. Consider a control
system (1), assume for simplicity that we work around an equilibrium, i.e. f(0,0) =0, and
let us write its linear approximation, i.e.

(18) flx,u) = Az + Bu + F(z,u)
) __OF __OF _
(19) with F(0,0) = 2-(0,0) = 5-(0,0) =0 ,

so that the nonlinear system (1) reads
(20) £ = Az + Bu + F(z,u).

From the remarks made in the introduction, the relevant situation is the one where the
linear system

(21) {2 = Az 4+ DBv

is controllable. Let us assume slightly more to rule out the pathologies described in the
previous section. The additional assumption is very mild and is, for instance, always true
when the constant n x m matrix B has rank m; it is implied by linear controllability for
single input systems.

OF
AssUMPTION 5.1. The pair (A, B) is controllable and the rank of %(z,u) is equal to
the rank of B for small (z,u).

The question raised in the introduction was the one of finding a reasonable equivalence
relation that would make the two systems (20) and (21) locally equivalent. Comparing
the situation of ordinary differential equations (without control), a candidate was local
topological conjugacy as in Definitions 2.2 and 2.6, and if that candidate was successful, we
would have a result making precise the vague statement (2).

Corollary 3.5 implies that, for A, B and F satisfying Assumption 5.1, systems (20) and
(21) are locally topologically conjugate if and only if they are locally smoothly conjugate,
and it is known from [JR80, HSM83] that this is false for a generic F, even satisfying (19).
This discards topological conjugacy as a candidate for the above mentioned equivalence
relation, but this does not contradict the basic belief behind statement (2).

A way to contradict that statement would be to find at least one example satisfying the
assumption, but where the nonlinear system (20) displays some local “qualitative” phenom-
enon that do not occur for the linear system (21). In the qualitative theory of dynamical
systems (without control), the phase portrait gives a picture of the behavior, on which phe-
nomena like attractors, invariant set, (stable) closed orbits can just be “seen”. A control
system is more complex : it describes how the behavior of the state (at least in the state
space representation) is linked to the control. It is not very clear what a qualitative phenom-
enon should be for a control system. The least to require is that it be invariant by topological
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conjugacy as defined here. In the introduction, we pointed out that (non-)controllability is
a qualitative property, but it is of no help here since (2) only refers to controllable systems.

We do believe that clarifying the status of a statement like (2) is very relevant to control
theory and modeling. Our negative results (section 3) say that topological conjugacy is not
the right tool to answer this. A looser equivalence could be a way to state (2) properly.
It could also be that the intuition behind (2) is totally wrong and that some nonlinearities
F allow system (20) to display some qualitative phenomena locally that cannot occur on a
linear system (21).
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