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Abstract: In this report, we first propose a new classification of non-rigid registration al-
gorithms into three main categories: in one hand, the geometric algorithms, and in the other
hand, intensity based methods that we split here into standard intensity-based (SIB) and pair-
and-smooth (P&S) algorithms.

We then focus on the subset of SIB and P&S algorithms that are competitive, i.e. that
use a regularization energy which is minimized together with the intensity similarity energy.
In SIB algorithms, these two energies are combined in a weighted sum, and thus the trade-off
between them is direct. P&S algorithms alternates their respective minimization, leading to
the characteristic two steps: pairing of points, and smoothing.

We theoretically compare the behavior of SIB and P&S algorithms, and more precisely,
we explain why in practice the smoothness of the transforms estimated by SIB algorithms is
non-uniform, thus difficult to control, while P&S algorithms estimate a motion that is more
uniformly smooth. We give an example illustrating this behavior.

Very few P&S algorithms minimize a global energy. We therefore propose a new image
registration energy whose minimization leads to a P&S algorithm. This energy is general, and
can use any existing similarity or regularization energy. Its behavior is also compared to the
previous SIB and P&S algorithms. This new energy allows uniformly smooth solutions, as for
our previous P&S algorithm, while preventing registration of non-informative, noisy areas, as
for SIB algorithms.
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Méthodes de régularisation en recalage non rigide
d’images:
I. Compromis entre similarité et régularisation

Résumé : Dans ce rapport, nous proposons de classifier les algorithmes de recalage d’image
en trois catégories: d’une part, les algorithmes géométriques, et d’autre part, les algorithmes
iconiques, dont nous distinguons ici les algorithmes iconiques standards (standard intensity
based, SIB) des algorithmes itérant appariement en lissage (pair-and-smooth, P&S).

Nous nous penchons ensuite plus précisément sur les algorithmes SIB et P&S compétitifs,
c’est-a-dire qui utilisent une énergie de régularisation en plus d’une énergie de similarité des
intensités. Les algorithmes SIB minimisent une somme ponderée de ces deux énergies : le
compromis est donc direct. Les algorithmes P&S préférent alterner la minimisation de ces
deux énergies, et procédent donc en deux étapes caractéristiques : 'appariement des point
d’une part, et le lissage de ces appariements d’autre part.

Nous discutons d’abord, d’un point de vue théorique, les comportements respectifs de ces
deux types d’algorithmes. Notamment, nous tentons d’expliquer pourquoi, en pratique, la
régularité des solutions fournies par les algorithmes SIB est moins uniforme, donc moins facile
a choisir, que celle des solutions données par les algorithmes P&S. Nous donnons un exemple
illustrant ce point.

Partant du fait que peu d’algorithmes P&S minimisent une énergie globale, nous proposons
une nouvelle énergie de recalage, dont la minimisation méne a un algorithme P&S. Cette énergie
reste générale et peut utiliser n'importe quelle énergie de similarité ou de régularisation déja
existante. Son comportement est également comparé aux algorithmes iconique et séquentiel
précédents. Ce nouvel algorithme fourni des solutions d’une régularité uniforme, comme avec
notre algorithme P&S précédent, tout en ne cherchant pas a recaler les zones bruitées non
informative, comme pour les algorithmes SIB.

Mots-clés : Recalage non rigide, théorie de la régularisation, algorithmes en deux etapes,
variables auxiliaires.
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1 A New Classification of Non-Rigid Registration Algo-
rithms

Intensity-based non-rigid registration of medical images has been a field of study for 20 years
now since the work of (Broit, 1981), although researchers have really focused on the subject
during these last 10 years since the reference paper of (Bajcsy and Kovaéi¢, 1989).

Today, techniques of non-rigid registration are very numerous — see (Maintz and Viergever,
1998; Lester and Arridge, 1999) for recent reviews. Even if the debate is still open on a
number of theoretical points (symmetry (Christensen, 1999; Ashburner et al., 2000; Cachier
and Rey, 2000), registration of tensor images (Alexander and Gee, 2000; Ruiz-Alzola et al.,
2000), automatic choice of the regularization strength (Chen and Suter, 1997; Meyer et al.,
1998), and also less specifically to non-rigid registration, registration of three or more images
(Boes and Meyer, 1999), influence of the interpolation (Pluim et al., 2000), normalization of
similarity measures (Studholme et al., 1999; Holden et al., 2000), etc.), this large number of
algorithms is partly due to the fact that, unlike in the rigid case, it is difficult to assess the
quality of non-rigid registration, and therefore to compare the algorithms: for real experiments,
there is no obvious gold standard that gives the real, dense displacement field, even if phantoms
with precisely located landmarks begin to appear (King et al., 2000). On the other hand, the
simulation of realistic physical deformations is very complex. Furthermore, in the case of
multipatient registration, anatomies are not deduced from each other by a real motion: The
result of registration is a set of pairings for which there is no ground truth to be compared to,
and therefore the quality of these correspondences is very subjective.

Despite the number and the variety of the approaches of non-rigid registration algorithms,
we propose to classify most of them into the following three categories:

1. Geometric matching. Sparse features are first extracted from the images, e.g. points
selected manually, or automatically extracted crest lines or edge surfaces. Then, these
features are matched together with a generally smooth non-rigid transformation. The
problem of finding a closed-form formula for a transformation that interpolates or ap-
proximates the set of pairings is non trivial, even with point features and rigid trans-
formations (Arun et al., 1987; Pennec et al., 1998), and has been the subject of many
articles (Duchon, 1977; Bookstein, 1994; Davis et al., 1997; Fornefett et al., 1999; Gabrani
and Tretiak, 1999; Peckar et al., 1999; Rangarajan et al., 1999; Rohr et al., 1999; Chui
and Rangarajan, 2000; Suter and Chen, 2000). Alternative approaches include finite el-
ements resolution (Kyriacou and Davatzikos, 1998; Dawant et al., 1999; Ferrant et al.,
2000), multidimensional B-spline fitting (Subsol et al., 1998), diffusion of the displace-
ment of landmarks to neighboring voxels (Andresen et al., 2000), and other extrapolation
techniques (Burr, 1981; Thompson and Toga, 1996).

2. Standard intensity-based (SIB) registration. In these algorithms, the images are
registered together using an intensity similarity measure, with a non-rigid transformation
T. This transformation has two antagonist goals, namely, to be smooth and to maximize
the similarity measure. The main characteristic of this class, as opposed to the following
class of Pair-and-Smooth algorithms, is that the same transformation is implied both in
the intensity similarity measure and in the smoothness constraint. We can divide further
this category into three sub-classes:

RR n’" 4188
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e Parametric. The transformation 7T is constrained to minimize the intensity simi-
larity measure in a low-dimensional space of non-rigid transformation, such as thin
plate splines (Meyer et al., 1999), multidimensional B-splines (Szeliski and Coughlan,
1997; Vemuri et al., 1998; Musse et al., 1999) or wavelets (Wu et al., 2000).

e Competitive. The transformation 7" has no a priori shape, but minimizes a
weighted sum of an intensity similarity energy and a regularization energy (Amit,
1994; Schormann et al., 1996; Benayoun and Ayache, 1998; Hata et al., 1998; Chris-
tensen, 1999; Fischer and Modersitzki, 1999; Alvarez et al., 2000; Cachier and Rey,
2000). This approach is sometimes justified by Bayesian arguments. (Miller et al.,
1993; Gee, 1999).

e Fluid. The transformation 7" has no a prior: shape, but its evolution towards the
minimum of the similarity energy is constrained to be smooth (Bro-Nielsen and
Gramkow, 1996; Christensen et al., 1997; Lester et al., 1999). A “fluid distance”
between two transformations can actually be rigorously defined as a geodesic path:
one can thus design a fluid algorithm that minimizes a weighted sum of a similarity
energy and a fluid distance (Trouvé, 1998; Miller and Younes, 1999).

These three types of regularization are not exclusive, and some algorithms combine two
of these techniques (Ashburner and Friston, 1999; Rueckert et al., 1999).

. Pair-and-Smooth (P&S) registration. This category is intermediate between the
two previous categories. Pair-and-Smooth algorithms are also intensity-based, as they
use an intensity similarity energy to quantify the quality of the correspondence between
the images. However, they proceed in two steps, which may alternate or not: first, they
use an intensity similarity measure to find a relatively dense set of homologous points or
features between both images. These correspondences are then approximated by a smooth
non-rigid transformation. Their main characteristic, as opposed to SIB registration, is
that they use two transformations (often implicitly): a first transformation C' used to
compute the similarity measure, and a second transformation 7" on which the smoothness
constraint is hold. In this category, we find block matching algorithms, both for rigid
(Althof et al., 1997; Ourselin et al., 2001) and non-rigid registration (Collins and Evans,
1997; Strintzis and Kokkinidis, 1997; Gaens et al., 2000; Maintz et al., 1998; Lau et al.,
1999), registration based on the optical flow constraint (Horn and Schunk, 1981; Bricault
et al., 1998; Thirion, 1998; Hellier et al., 1999; Guimond et al., 2001), ICP-like techniques
(Feldmar et al., 1997; Amini et al., 1999), and other pair-and-smooth techniques (Guan
et al., 1998; Hayton et al., 1999; Cachier and Pennec, 2000; Pennec et al., 2001).

Today, the use of intensity information seems to be more widespread than the use of geo-

metric features for non-rigid registration. This fact is due to the success of intensity similarity
measures in the rigid case (West et al., 1999), especially for multimodal registration, and also
to the difficulty to automatically extract landmarks that remain sufficiently stable under non-
rigid motion and intensity variation. Note that promising algorithms mixing both intensity and
feature information are beginning to appear (Collins et al., 1998; Hellier and Barillot, 2000;
Cachier et al., 2001); this point is be discussed in the context of P&S registration in section 3.7
and (Cachier, 2001).

In the following, we first compare competitive SIB and P&S methods, and show why P&S
methods may have a better behavior in the context of non-rigid registration (section 2). More

INRIA
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specifically, we point out the fact that the smoothness of the estimated motion is much more
uniform with P&S algorithms than with competitive SIB algorithms. We show this fact with
a synthetic example. Then, we propose a new energy formulation for P&S registration that
explains and generalizes one of our previous algorithms (Pennec et al., 2001) (section 3). We
quantify the errors of all these algorithms on a set of Gaussian random transformation, and we
also present results with a real experiment (section 4), showing the improvements brought by
our new formulation.

2 Comparison of Competitive SIB and P&S methods

2.1 Presentation of the problem and theoretical comparison

In this section, we focus on competitive SIB and pair-and-smooth non-rigid registration algo-
rithms. These algorithms use two energies to drive the registration of two images I and J: a
similarity energy, which we note E,,(I,J,T), ! and a regularization energy, which we note
E,¢o(T).

Competitive SIB algorithms, as defined in section 1, balance directly the values of E;, and
E,.y by minimizing the energy

B(T) = Bymn(I, J,T) + ABye, (T) (1)

A being the regularization parameter?. This seems to be a natural way to combine these two
energies, and indeed, this formulation has proven to be successful in the field of data fitting
and approximation (see for example the work of (Wahba, 1990)).

However, this formulation may raise some problems in the context of registration. Unlike
data fitting, the trade-off here is made between two energies that do not have the same physical
dimension: FE,., is a geometric measure, and El;, is an intensity similarity measure. The
intensity similarity energy gives an “intensity distance”, i.e. an idea of the amount of intensity
necessary to change one image into the other, which is not uniformly proportional to the amount
of motion that warps one image into the other.

We illustrate this idea in figure 1, where a 1-D image I(z) is registered with a translated
version of itself: J(z) = I(z —t). The amount of motion necessary to register one image to
the other is constant and equal to [¢|. This misregistration is not uniformly reported on the
similarity measure, and leads to small or large values depending on the local variation of the
image.

This may explains why a direct trade-off between transformation smoothness and intensity
similarity makes the smoothness of the transformation depend locally on the images, and more
precisely on their local contrast: the higher the local variation in the difference of intensity
between the images, the less smooth the transformation. In particular, the transformation is
oversmoothed in low-contrast regions compared to edge regions.

The second class of algorithm is the pair-and-smooth methods, which alternate between
finding correspondences C' between points using the intensity similarity energy FE;,. (I, J, C)

In the context of non-rigid registration, the similarity energy cannot always be written Eg;p,(I,J o T')
(Cachier and Rey, 2000).

2Although this formulation is convenient, the regularization strength \ is sometimes preferably not chosen
as a multiplicative factor but included inside the regularization energy: E,.,(T, ). This point is discussed in
(Cachier, 2001).
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Figure 1: A uniform error of misalignment between images I and J (left) may lead to very
different intensity similarity (right): x and y have been translated by the same amount t, but

(J(z) = I(2))* < (J(y) — 1(y))*.

and sometimes additional energies, and finding a transformation 7" that approximates these
correspondences, e.g. by minimizing [||C — T||> + E,o(T) w.r.t. T. Here, the trade off
between fitting and smoothness occurs during the second step, balancing the distance between
corresponding points and the regularization energy of the transformation. This is the classical
trade-off of data fitting between geometrical quantities. We expect the estimated transformation
to be uniformly smooth, because the distribution of the pairings is more likely to be uniform
than intensity changes — and furthermore this distribution can be controlled, for example by
forcing pairings to have a length below some threshold, as it is frequently done for example in
block matching algorithms, or in the “demons” algorithm (see (Cachier et al., 1999) for a study
of this last algorithm).

2.2 Synthetic Sinusoidal Deformation

We illustrate the previous discussion with an example. We compare the results of two non-rigid
registration algorithms, respectively competitive SIB and P&S, on a 2D synthetic experiment
where we know the ground-truth transformation. These two algorithms use the same similarity
and registration energies; the only difference is the way the trade-off is done between these
energies.

The intensity-based algorithm is the Asym algorithm of (Cachier and Rey, 2000). To register
two images I and J with a non-rigid transformation 7', it minimizes the following energy using
a gradient descent:

E() = [(1=JoT)+ [ |ldT|? 2)

The pair-and-smooth algorithm is MAMAN® (Cachier et al., 1999), an improved version of the
“demons” algorithm (Thirion, 1998), with a modification in the regularization so that is uses
the same regularization energy as Asym. Its main steps are briefly described in table 1. Here,
the similarity measure used in step 2 is the SSD, and the smoothing used in step 3 is done by
a convolution that minimizes

2 2
E(T) = [|IT=CI+x [ a7
3MAMAN: Matching Algorithm for Medical Acquisitions in Neurology

INRIA
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Set n:=0 and Ty :=1d

Find 7,41 by minimizing Eg,(I,J,T,+1) by gradient descent
Smooth T},

Set n:=n+1

Go to step 2 until convergence

DS W N

Table 1: Main steps of the MAMAN non-rigid matching algorithm.

In this experiment, we took the image 2(a) and deformed it into 2(b) with the transformation
depicted in 2(c). The goal of the registration is to recover a transformation as close as possible
to the original one. The advantage of using the sinusoidal transformation 2(c) is that the same
pattern of deformation is repeated in the image. Therefore, we can see how this pattern is
recovered depending on the local characteristics of the images.

(a) Original (b) Deformed (¢) Transformation

Figure 2: A synthetic registration problem: the image on the left has been deformed into the
image in the middle with the transformation depicted on the right.

Non-rigid registration is always dependent on a regularization factor A\. As we highlighted in
(Cachier et al., 1999), we cannot compare the results of two algorithms for a single regularization
factor, especially here: since the regularization is not handled the same way in both algorithms,
the same value of A leads to completely different regularization strengths depending on the
algorithm. The comparison is more complex than in the rigid case because we have to compare
a whole set of results for a wide range of regularization factors. In this example, we have
estimated that to cover approximately the same wide regularization range, A should range from
1 to 5 for MAMAN, and 0.3 to 3000 for Asym. We have registered images 2(a) and 2(b) with
Asym (figure 5 and 3) and MAMAN (figure 6 and 4) with these different regularization factors. We
present both the estimated transformation (figure 3 and 4) and the deformed image (figure 5
and 6).

From these sets of results, we can draw several remarks:

RR n’" 4188
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Figure 3: Results of registration using the variational formulation (2) for reqularization strengths
ranging from 0.3 to 3000: as it increases, the transformation becomes quickly smooth and
underestimated in plain regions, while remaining irreqular near the borders of the image. The
solution bordered in red is the closest to the ground truth 2(c), with an average error of 1.27
pizel.
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Figure 4: Results of registration using MAMAN for regularization strengths ranging from 1.0 to 5.0.
The smoothness of the transformation, as well as its closeness to the original transformation,
is much more uniform across the image than for Asym (figure 8). The solution bordered in red
is the closest to the ground truth 2(c), with an average error of 0.83 pizel.
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Figure 5: Results of registration using the variational formulation (2) for increasing requlariza-
tion strengths. The quality of the registration depends on the local contrast between the images,
especially for moderate and high regqularization strengths.
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Figure 6: Results of registration using MAMAN for increasing reqularization strengths. The quality
of the registration is uniformly degraded as the reqularization strength increases.
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. As expected, the higher the regularization strength, the smoother the transformation but
the worst the image correspondence.

. For both algorithms, best results are obtained for moderate regularization strengths, while
the absence of noise could suggest that the optimal value should be zero, or at least very
small. An explanation of this fact is proposed in the next section.

. In the case of competitive SIB registration (figure 3), the transformation is very irregular
almost everywhere in the image for low regularization strengths. As the regularization
strength increases, the transformation becomes more regular only in places where the local
contrast is low. At some point, the transformation has a discontinuous derivative only on
the edges with very high contrast, e.g. on the boundary of the skull. Eventually, to smooth
the transformation even on these edges we have to increase further the regularization
strength, but then, the transformation is correctly estimated only where the contrast is
high, as it is oversmoothed everywhere else.

. In the case of the pair-and-smooth registration (figure 4), we also start from a trans-
formation that is irregular almost everywhere. However, as the regularization strength
increases, the smoothness of the transformation is increased in the same way everywhere
in the image, independently of the local contrast of the image, and the quality of the
estimation is more or less uniform and decreases as the strength of the regularization in-
creases. This is not only an aesthetic consideration: it leads to better registration results,
as it could be expected from the observation of the recovered transformations (figures 3
and 4). The best registration obtained with MAMAN has an average error of 0.83 pixel,
whereas Asym can only come as close as 1.27 pixel on average.

. The results are very difficult to compare when we look at the deformed images only.
Especially, for low regularization strengths, all the images look the same and match rather
well the target image 2(a), even if the smoothness of the transformation, and therefore the
quality of the result, varies a lot. Therefore, comparison of non-rigid registration results
based on the deformed image only is not really meaningful.

. We can nonetheless retrieve some of these differences in the deformed images. Let us
compare how the gray matter in the designated circle, and the skin in the designated box,
are registered as a function of the regularization strength. Using Asym, the gray matter
is starting to be mismatched very early, for regularization strength that are relatively
low. On the opposite, the piece of fat is almost perfectly registered even for the highest
regularization values. This is due to the fact that the borders between the gray matter
and the white matter (dark gray on light gray) have much less contrast than the borders
between fat and bone (white on black) in T1 MR images. On the opposite, with MAMAN,
the mismatch of these regions progress simultaneously with the regularization strength.
See also figure 7 for a close-up on these areas.

INRIA
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(a) Target image (b) Source image (c) Result of Asym (d) Result of MAMAN

Figure 7: Zoom on a piece of skin (top) and gray matter (bottom, with enhanced contrast) in
the image to be registered and for two results obtained respectively with Asym and MAMAN. With
Asym, the same regularization strength can lead to a perfect match of the skin, while the grey
matter is virtually not moved. With MAMAN, the reqularization strength has a uniform impact
on the registration result, and when the skin is partially matched, so is the grey matter.

3 PASHA: A New P&S Algorithm based on a Global Hybrid
Energy

3.1 One or Two Priors for Non-Rigid Registration?

Although there are a lot of different algorithms that we classified as “pair-and-smooth” (section
1), only a few of them minimize a global energy. The goal of this section is to propose a
registration energy whose minimization leads naturally to a P&S algorithm.

In the MAMAN algorithm (Cachier et al., 1999) summarized in table 1, we are searching
for correspondences between points by minimizing for instance the SSD. By doing so, small
intensity changes may lead to very large displacements. This strategy is appropriate if the
images are not corrupted by noise. Unfortunately, real medical images are always noisy. Thus,
we do not want to pair points that are very distant from each other if their intensity difference
is of the order of noise.

From this point of view, the behavior of Asym seems more interesting, because for low
intensity differences, points are almost not registered. The parameter A of the competitive SIB
energy (1) could then be seen as being linked to the level of noise in the image.

In practice, however, this is not exactly true. In the experiment reported in figures 3 to 6,
for both Asym and MAMAN, best results are obtained for moderate regularization strengths, while
the absence of noise could suggest to set it to zero, or at least to a very small value. Therefore,
the smoothness parameter A seems to be more related to a prior we have on the smoothness of
the transformation than on the noise level in the image. Note that in parametric SIB matching,
the prior, which is the space of parametric transformation, is also linked to the smoothness of
the transformation, rather than to the level of noise in the image.

Despite its good property described above, the energy (1) leads to unsatisfactory results be-
cause of the inhomogeneity of the trade-off: it leads to very non-uniform smoothness that keeps
decreasing with the local contrast, as reported in section 2.2. Ideally, we want an algorithm
that estimates uniformly the transformation like MAMAN in areas where the level of information

RR n’ 4188
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is significant, and that do not use the intensity information to estimate the motion in areas
where the intensity differences are probably due to the noise, like for Asym. This means that we
have to add another parameter to MAMAN which corresponds to some kind of threshold on the
intensity similarity measure. More conceptually, we have to take into consideration two prior
knowledges for non-rigid registration: the level of noise in the image, and the smoothness of
the transformation.

3.2 A New Hybrid Energy for Non-Rigid Registration

Given a similarity energy E;,,(I,J,T) and a regularization energy E,.,(T), we propose to reg-
ister the images I and J by introducing two non-rigid transformations C' and 7" and minimizing

E(C,T) = Eun(I,1,C) + 0 / |C = T|]2 + OAE, (T) (3)

with respect to C' and T'. C gives the correspondences between points of I and J, and should
minimize the similarity measure while keeping close to 7T'. T is the motion estimate, and should
be both smooth and close to the set of correspondences given by C'. The parameter o is related
to the level of noise in the image, and avoids correspondences C' too far from 7. The parameter
A is related to the prior smoothness of the transformation.

The alternate minimization of (3) w.r.t. C and T leads naturally to a P&S algorithm: in
a first step, we search for pairings C' between points by minimizing (3) w.r.t. C. During the
second step we find the transformation estimate by minimizing (3) w.r.t. T.

One could minimize the energy (3) w.r.t. C and T simultaneously. However, when the
regularization energy F,., is quadratic, the alternate approach is appealing, because each step
is very fast: the first step is a minimization done for each pixel separately, with only 2 or 3
degrees of freedom depending on the dimension of the image, thus very fast; then the second
step is easily resolved by linear convolution. Even if the alternate minimization is known to
take more iterations to converge, the overall process of minimization is relatively faster.

Based on this hybrid energy, we thus have designed a new pair-and-smooth algorithm called
PASHA*. Tts main steps are briefly summarized in table 2. As for MAMAN in table 1 we do not
detail the multiresolution process, which can be found in (Cachier et al., 1999).

Set n:=0 and Ty :=1Id

Find C,;; by minimizing Ey (I, J,Chyi1) + 0||Crni1 — Tn||* by gradient descent
Find T,4; by minimizing |[Chi1 — Thy1||? + AEreg(Th11) using convolution

Set n:==n+1

Go to step 2 until comnvergence

b W N -

Table 2: Main steps of the PASHA non-rigid matching algorithm.

3.3 P&S Registration as a Similarity Measure Transform

The minimization of (3) can be rewritten as
min [E%,, (I, J, T) + O\ Eyey(T) (4)
4PASHA: Pair-And-Smooth, Hybrid-energy based Algorithm
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with
B, 7) = min | Ban(1,4,0) + o [ 1€ =T (5)

Therefore, the minimization of the hybrid energy (3) can also be seen as the minimization
of a weighted sum of two energies, a similarity energy and a regularization energy, with E%;
deduced from Eg;, by the equation (5).

From this point of view, the concept of P&S algorithms is a mathematical transformation
of standard intensity similarity measures Ej;,, into hybrid similarity measures E; .. The reg-
ularization of these transformed similarity measures EY;  in a weighted sum, in a competitive
fashion, give birth to most of P&S algorithms; but as for SIB registration, it is possible to
regularize by parametric (e.g. rigid or spline) of fluid approaches. For example, in the case of
MAMAN, fluid regularization has already been performed, and compared to competitive regular-
ization in (Pennec et al., 1999). Block matching has also already been used for rigid registration
(Ourselin et al., 2001).

3.4 Link with auxiliary variables

The formulation of the hybrid energy (3) is very similar to the one proposed in (Cohen, 1996).
There is one major difference, though. In his article, Cohen aims at minimizing the energy:

Efiu(v) + Ereg(v) (6)

For computational reasons, he introduces the auxiliary variable w and minimizes the energy
. 1
Efip(w) + S|l = w[[* + Ereg (v) (7)

where E};, is deduced from Ey;(T) so that the energy (7) has the same global minimum as
the energy (6). In our case, the hybrid energy (3) has certainly not the same solution as the
competitive SIB energy (1). Note that most of the applications proposed in (Cohen, 1996) are
purely geometric problems, and therefore the energy (6) is an homogeneous trade-off, standard
in the field of data approximation.

3.5 Link with MAMAN

MAMAN as a limit case for noiseless images. MAMAN can be seen as being a limit case when
o tends toward 0. If ¢ — 0, the weight of the similarity measure tends to infinity relatively to
the closeness constraint [ ||C — T'||; therefore, the correspondences C' are found by minimizing
the similarity energy Fy;,(I,J,C) alone. Then, the transformation 7" is found by minimizing
JC =T+ A.E,c;(T). With this algorithm, we assume that the transformation is smooth but
that there is no noise in the image, since corresponding points x and C(x) have no constraint
but having an intensity as similar as possible.

To illustrate this point, let us remark that in the experiment reported in figure 6 and
4, MAMAN recovers the motion even in areas outside of the skull, where there is no apparent
information, which can seem strange. This is due to the fact that the image has been deformed
without adding any noise to it, and so the assumption of noiseless images is true. Here, the
algorithm relies on very subtle intensity changes to recover the motion. When there is noise in
the image, this lack of robustness will prevent from an accurate recovery of the transformation,
as we show in section 4.
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Importance of the closeness constraint between C' and 7. Unfortunately, the global
minimum of (3) when o0 — 0 gives poor registration results. Minimizing Eg;, (I, J,C) w.r.t.
C gives a very irregular C' with very large displacements, and 7" is a very bad estimate of the
motion. Also, when ¢ — 0, it is not necessary to alternate registration and regularization
steps: since C' does not depend on 7', it can be found once and for all at the beginning of the
algorithm.

The constraint that C should be close to 7" is essential. In most P&S algorithms, this
constraint is actually more or less enforced by the minimization algorithm, which generally
seeks for a local, close optimum rather than a global, remote optimum. They iterate between
finding correspondences C and estimating the smooth transformation 7', instead of finding the
optimal correspondence C once and for all, and then deducing 7. Therefore, these methods
give good results, even if the global optimum of the energy is a very bad estimate of the motion.

For example, in block matching algorithms, the blocks are always translated into a few
number of positions around the current estimate. In the “demons” algorithm (Thirion, 1998),
the pairing is bounded by some threshold (see (Cachier et al., 1999) for a proof). In MAMAN, the
SSD is minimized using a gradient descent with the starting guess being 7', and so C' is located
at the local minima of the similarity energy closest to 7.

However, all these implicit closeness techniques do not sufficiently constrain the solution
because they are not part of the minimized energy, as we will see in the experiments of section
4.3.

3.6 Link with ICP-based image registration

(Feldmar et al., 1997) transform a n-D image I(x) : R" — IR into an hypersurface S : (x, I(x))
of an extended space of dimension n+1. He proposes to see the registration of two images
as a geometric matching of the two hypersurfaces deduced from the images. Roughly, his
ICP-like algorithm proceeds in alternating two steps: finding corresponding points between
the hypersurfaces by minimizing some distance, and finding a smooth approximation of these
pairings. In this (n+1)-D extended space, the distance between two points lying on the surfaces
generated by the image I and J is given by

d((x1,1(x1)), (x2, T (x2))) = [[(x1) = T (x2)] + 0|x1 — x| [ (8)

with ¢ being a normalization constant, and ||.|| the ordinary Euclidean norm.

It appears that minimizing this distance for all the image points is exactly minimizing our
hybrid energy w.r.t. C' (first step) when using the SSD as the similarity measure; thus, in this
particular case, the formulation of Feldmar and ours are equivalent (see figure 8).

Note however that our hybrid energy (3) is more general, as it is not restricted to the
SSD but can be used with more complex similarity measures, for example mutual information
(Collignon et al., 1995; Wells et al., 1996), in the context of multimodal registration.

3.7 Mixing Intensity- and Feature-Based Registration

As a last evidence of the uniform smoothness given by the hybrid formulation (3), we want to
give here the natural extension of this energy to the problem of mixing intensity and geometric
feature in non-rigid registration of images.

The problem is now the following: in addition to the images I and J we furthermore have
a discrete set of homologous points {(x1,¥1), ..., (Xp,¥p)}, for examples anatomical landmark
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Intensity

—
Position

Figure 8: Interpretation of some similarity measures in the extended space: (1) The SSD
assumes tmage noise but no motion and uses only the distance on the intensity axis. The
corresponding point used to compute the similarity has therefore the same geometric coordinates.
(2) MAMAN, as well as some other P&S algorithms, assumes motion but no intensity noise, and
uses only the distance on the geometric axes. The corresponding point has therefore the same
intensity. (8) The ICP algorithm of (Feldmar et al., 1997), as well as our new formulation,
assumes both noise and motion. The corresponding point has not necessarily the same position
or intensity, but minimizes a weighted sum of intensity and geometrical distances. Competitive
SIB and MAMAN are limit cases when o — Qoo and o — 0, respectively.

points extracted manually in both images. We describe these pairings by a new correspondence
function Cy, defined on the set {x1, X3, ...,x,} so that Cy(x;) = y:.

A natural extension of the registration energy (3) to take into these consideration these new
pairings is:

P

E(C,T)=FE,(I,J,C)+ 0/ |C = TI|*+ oa ||Ca(x;) — T(x:)||> + 0AE,y(T) (9)
=1

In this case, the second step of the alternate minimization is modified, and it is proved in
(Cachier, 2001) that 7" has the following closed-form:

T(x) =a.K *C(x) + éaiK(x - X;) (10)

where K is a kernel depending only on the energy E,., (as previously), and the coefficients a
and a; are found by resolving a set of linear equations.

This formula mixes both smoothing (on the dense set of pairings C, found by the intensity
similarity) and radial basis functions (centered on the points where a pairing has been explicitly
given) — and furthermore, the smoothing kernel and the radial basis function are the same.
The transformation thus obtained is intuitively uniformly smooth, and its smoothness depends
only on the shape and size of the kernel K.

In the case where the homologous points of the x; are not explicitly given, but are known
to be in a certain set of points y;, for example after segmentation of a part of the anatomy, the
correspondences Cs have to be estimated too. The alternate minimization of (9) w.r.t. C, Cs
and T then leads to a three-step algorithm, while 7" remains of the form (10). An application
in the case of brain matching with cortical folds segmentation is given in (Cachier et al., 2001).
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4 Experiments with the PASHA Algorithm

4.1 Synthetic Sinusoidal Deformation, part II

We have run the experiment of the section 2.2 with this new PASHA algorithm to compare it
to Asym and MAMAN. The energy minimized here also uses the SSD as the intensity similarity
measure, and the membrane energy for regularization:

E(C,T) = /(1- JoC)2+0/||C—T||2+a)\/||dT||2

The results are reported in figures 9 and 10. The minimization of the hybrid energy (11)
behaves exactly as we wanted: the estimated transformation is uniformly smooth, as with
MAMAN, except in areas containing no information but noise, where the transformation is not
recovered, as for Asym.

We want to emphasize the fundamental difference between PASHA and Asym. With PASHA,
a transformation is not estimated if it leads to a small intensity similarity gain, and is just
extrapolation; everywhere else, the transformation is estimated, and as with MAMAN is uniformly
smooth. With Asym, and more generally with competitive SIB algorithms, there is not really
this kind of threshold: the transformation still becomes less regular as the local contrast between
the images increases.

4.2 Quantification of Errors with Gaussian Random Fields

We quantified the differences between PASHA and MAMAN
on a set of non-rigid transformations. Following (Ruiz-
Alzola et al., 2000), we chose a (non-parametric) set of
isotropic Gaussian random vector fields (Adler, 1980).
An example of a Gaussian random transformation is de-
picted in figure 11.

In this experiment, we first performed anisotropic
diffusion of image 2(a) with the algorithm of (Krissian
et al., 1997) in order to suppress the noise. We gener-
ate a Gaussian random transform with Gaussian noise of
standard deviation kx*s smoothed with a Gaussian kernel
of size s pixel, k£ being a constant, so that the “expected

IR smoothness” of such a transformation is controlled by s
Figure 11:  An ezample of o and the amplitude of the deformation remains constant
Gaussian random transformation. for all smoothness strength s.

Given a Gaussian random transformation, we deformed
the image 2(a), and added white Gaussian noise of standard deviation n. We also added the
same level of Gaussian noise to the original image, and matched it to the deformed image. The
error of registration is then the mean distance between this estimation and the real transfor-
mation in the entire image.

We have run this experiment with MAMAN and PASHA, with three set of parameters for the
deformation simulation: a reference set with standard noise and smoothness (n=10 and s=10)
, a set with smoother transformations (n=10 and s=20), and a set with noisier images (n = 15
and s = 10). For each of these experiment, we used three different regularization strengths in

T
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Figure 9: Results of registration using our new hybrid energy (11) for reqularization strengths
ranging from 1.0 to 5.0, with o = 5.
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Figure 10: Results of registration using our new hybrid energy (11) for increasing reqularization
strengths.
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our algorithm. Also, for PASHA, for each regularization strength, we choose different values of
.

For all these different deformation, noise and registration parameters, we ran 20 experiments,
and averaged the errors. These mean errors are plotted in figure 12.
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Figure 12: Error of registration for different set of parameters. Dashed Line: Errors with
PASHA. For each value of A\, the quality of the registration depends on the assumed level of noise
o. Plain Line: Error with MAMAN. Since there is no parameter o in this algorithm the results
do not depend on o. First Row: Reference experiment: s = 10, n = 10. Second Row:
Smoother deformations: s = 20, n = 10. Third Row: Noisier images: s = 10, n = 15.
Column, left to right: Registration parameter A= 1, 2, 3.
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According to the results, if the parameters are chosen carefully, the hybrid energy gives
better results than MAMAN. This shows that relying on very subtle intensity changes can prevent
us from retrieving the correct motion when dealing with noisy images.

When the transformation is smoother, for each value of A, the optimal value of o stay
relatively stable. On the contrary, the relative score of the different regularization strength
A is changing, and high values of A give more better results than with less smooth Gaussian
transforms.

When the images are noisier, the relative score of the different value of A do not vary very
much. However, for each value of A\, the optimal value of ¢ is translated to higher values.

This tends to confirm that A is much more related to the prior smoothness of the transfor-
mation, and o to the level of noise in the image. Note however that the choice of o and A is less
simple than expected: the best couple of registration parameters (o, \) for PASHA has not the
same optimal regularization strength A than MAMAN — here, the optimal A of PASHA seems to
be always lower than the one of MAMAN, as if o still explains a part of the smoothness. Further
work has to be done to understand the link between the parameters.

It is more difficult to compare Asym with MAMAN and PASHA since the regularization strength
has not the same range for both class of algorithms. We have run Asym with the standard set
n = 10 and s = 10, for a large number of regularization parameters. The best results were
obtained for a regularization strength of A = 1000; for this optimal value, the average error is
1.81, which is above what can achieve the two P&S algorithms (1.62 for MAMAN with A = 2, 1.55
for PASHA with A = 1 and ¢ = 6). As in section 2.2, the lack of uniform smoothness of Asym
leads to greater errors in the motion estimation.

4.3 Real 3D Experiment

We registered two 256 x 256 x 128 MR images of two different patients, with MAMAN and PASHA,
using the SSD as the similarity measure and a Gaussian kernel for regularization (figure 13).
The registration took around 16 minutes for both algorithms, on a Pentium II 500MHz. Prior

(a) Source Image (b) Target Image (c) MAMAN result (d) PASHA result

Figure 13: A real 3D registration experiment: Original and deformed images.
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(a) Result of MAMAN (b) Result of PASHA

Figure 14: Transformations found by MAMAN and PASHA. The differences between the two algo-
rithms are made obvious here, and are mainly due to slightly different levels of intensity in the
white matter (see also figure 15) and in the background between the source and target images.
These strong differences in the recovered transformation leads nonetheless to very small inten-
sity differences, as can be seen in figure 16. This illustrates that looking at the similarity of
vozel intensities only can be misleading.

to non-rigid registration, these images have been anisotropically diffused (Krissian et al., 1997),
their intrinsic as well as relative bias have been removed (Mangin, 2000), and they have been
linearly registered with the algorithm of (Roche et al., 2000). The level of noise in these images
is thus negligible.

However, there still remains some small violation of the intensity conservation assumption
in the images. The first violation is that the average intensity level of the background is slightly
higher in the target image than in the source image. The second violation is that the average
intensity level of the white matter is slightly lower in the target image than in the source image.

These slight intensity differences lead to some problems with MAMAN, as it can be seen in
figure 14. The background in the target image is stretched to the border of the source image
to minimize the SSD. Also, at some places, the white matter is artificially dilated (figure
15). The PASHA algorithm is much more robust towards these slight violations of the intensity
conservation assumption: the points in the background are not moved despite the intensity
differences, and the inside of the white matter is not inflated. Note that these differences
typically appear for points with very slight intensity differences; therefore, their impact on the
deformed image and the final intensity difference with the target image is very small, as it can
be seen in figure 16.

5 Conclusion

We have proposed a new classification of image non-rigid registration algorithms. The geometric
algorithms use sparse features extracted from the images. The standard intensity based (SIB)
algorithms use a single transformation that register the images with an intensity similarity
measure while constrained to remain smooth. The pair-and-smooth (P&S) algorithms proceed
in two step: the first step pairs homologous points according to the intensity similarity measure,
and the second step approximates these pairings with a smooth transformation.
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We have compared the competitive SIB and P&S approaches, which both use two energies
to register the images: a similarity energy, and a regularization energy. We have shown that
the regularization parameter of the competitive SIB algorithms is not directly related to the
smoothness of the transformation, which tends to be very non-uniform: the higher the local
contrast between the images, the more irregular the transformation. With P&S algorithms, the
regularization strength has a uniform influence on the smoothness of the estimated transfor-
mation. We have shown on a synthetic experiment this fundamental difference between both
approaches, with two instances of competitive SIB and P&S algorithms called respectively

i T J ™ R W " I
L . . i -'Mhi,. |

. G

(a) Original (b) Target (c) Result of MAMAN (d) Result of PASHA

Figure 15: Close-up on a part of the white matter, with intensities saturated in the range [45;53].
The white matter intensity is slightly higher in the target image than in the original image.
Therefore, while the boundary of the deformed white matter is almost the same in images 15(c)
and 15(d), MAMAN attempts to dilate the areas of the white matter with the higher intensities to
minimize the intensity differences, visualized here by the expansion of the light gray region in

15(c) compared to its original position in 15(a). With PASHA, the closeness constraints forbids
such deformations.

(a) Before matching (b) MAMAN (c) PASHA

Figure 16: Intensity difference between target image and deformed original image, with MAMAN
and PASHA. From this point of view, both methods give very similar results, although PASHA seems
slightly better. Perfect registration is not possible in that case, as it 1s multipatient registration.
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Asym and MAMAN. We have also shown that these consideration is not only aesthetic but leads
in practice to less accurate results.

We have introduced a hybrid energy for image registration, whose minimization can lead
naturally to a P&S algorithm. This energy does not use a single parameter, but two, which
are linked to two prior knowledges: the supposed levels of image noise and transformation
smoothness. This energy allows to better understand MAMAN (and other P&S algorithms as well)
as an algorithm that does not assume any image noise. Our new algorithm PASHA, based on this
energy, can therefore be seen as a generalization of MAMAN. Like competitive SIB algorithms,
the motion with PASHA is not recovered if it leads to a small intensity similarity gain. However,
the fundamental difference is that for high intensity similarity gain, the smoothness is uniform
for PASHA, while the transformation still becomes less regular as the local contrast increases
with SIB algorithms.

We have shown on a set of noisy images deformed by Gaussian random transformations the
advantages of PASHA compared to our two other algorithms. These experiments also showed
that the parameters of the hybrid energy are not as easy to pick as expected, as they do not
totally independently correspond to the level of image noise and transformation smoothness.

On a real 3D experiment, we have shown that the hybrid energy significantly increases the
robustness of our P&S algorithm towards the hypothesis made by the similarity measure (e.g.
intensity conservation for the SSD criterion). These differences are easy to see on the recovered
transformation. However, since they typically appear on areas with small intensity differences,
the deformed image looks almost identical.

Our new energy formulation of image registration depends on an intensity similarity energy
and a regularization energy. While intensity similarities has been studied and compared in
numerous papers, e.g. (Roche et al., 2000), regularization energies have been relatively less
focused on. We propose to continue our study in (Cachier, 2001) and focus on regularization
energies, and to deduce their associated filters and basis functions, particularly in the context
of P&S registration.
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