-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

The Master-Slave Paradigm with Heterogeneous
Processors

Olivier Beaumont, Arnaud Legrand, Yves Robert

» To cite this version:

Olivier Beaumont, Arnaud Legrand, Yves Robert. The Master-Slave Paradigm with Heterogeneous
Processors. [Research Report] Laboratoire de l'informatique du parallélisme. 2001, 2+22p. hal-
02101889

HAL Id: hal-02101889
https://hal-lara.archives-ouvertes.fr /hal-02101889
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50452316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal-lara.archives-ouvertes.fr/hal-02101889
https://hal.archives-ouvertes.fr

Laboratoire de I’ I nformatique du Parallélisme

O
% Ecole Normale Supérieure de Lyon % CDET;\REET;{TEIIEE:E =

Unité Mixte de Recherche CNRS-INRIA-ENS LYON 1P 8512 SCIENTIFIQUE EEEEN

The Master-Slave Paradigm with
Heterogeneous Processors

Olivier Beaumont,
Arnaud Legrand and March 2001
Yves Robert,

Research Report N°2001-13

Ecole Normale Supérieure de Lyon

46 Allée d'Italie, 69364 Lyon Cedex 07, France
III Téléphone : +33(0)4.72.72.80.37 1 N R] A
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : 1ip@ens-1lyon.fr

The Master-Slave Paradigm with Heterogeneous Processors

Olivier Beaumont,
Arnaud Legrand and
Yves Robert

March 2001

Abstract

In this paper, we revisit the master-slave tasking paradigm in the con-
text of heterogeneous processors. We assume that communications take
place in exclusive mode. We present a polynomial algorithm that gives
the optimal solution when a single communication is needed before the
execution of the tasks on the slave processors. When communications
are required both before and after the task processing, we show that the
problem is at least as difficult as a problem whose complexity is open.
In this case, we present a guaranteed approximation algorithm. Finally,
we present asymptotically optimal algorithms when communications are
required before the processing of each task, or both before and after the
processing of each task.

Keywords: heterogeneous processors, master-slave tasking, communication, matching,
complexity

Résumé

Dans ce rapport, nous nous intéressons au paradigme maitre/esclaves
pour des plateformes hétérogénes. Nous supposons que les communi-
cations ont lieu de fagon exclusives. Nous donnons un algorithme po-
lynémial qui donne une solution optimale au probléme de I’allocation
des taches lorsqu’une seule communication est nécessaire avant le trai-
tement des taches sur les différents processeurs. Lorsqu’une communi-
cation avant et une communication apres le traitement des taches sont
nécessaires, nous montrons que le probléme est aussi difficile qu'un autre
probléme dont la complexité est ouverte. Dans ce cas, nous présentons un
algorithme d’approximation polynomial garanti. Enfin, nous présentons
des algorithmes asymptotiquement optimaux quand des communications
sont nécessaires avant ou avant et apreés le traitement de chaque téche.

Mots-clés: Ressources hétérogénes, maitre/esclaves, communications, couplages, complexité

1 Introduction

Master-slave tasking is a simple yet widely used technique to execute independent tasks under the
centralized supervision of a control processor. In the standard implementation of master-slave, the
tasks are executed by identical processors (the slaves). We revisit the master-slave paradigm in
the framework of heterogeneous computing resources: slave processors have different computation
speeds. We present several scenarios to model the communication pattern between the master and
the slaves. In all cases, such communications will take place in exclusive mode on a dedicated
hardware resource (such as a serial bus).

To give a single motivation, this framework applies to any Monte Carlo simulation where large
numbers of identical and independent simulations are run for different values of the random number
generator seed. Monte Carlo simulations are widely used in various areas such as cellular micro-
physiology [13], reactor simulations [14] or studies on conformations of proteins [12].

The rest of the paper is organized as follows. In Section 2 we state four different variants of the
master-slave problem: (i) with communications only before the dispatching of the tasks, (ii) with
communications both before and after the processing of the tasks, (iii) with communication before
each task processing and (iv) with communication both before and after each task processing. We
give in Section 3 a polynomial time algorithm that solves the first problem. The second problem
seems intrinsically more difficult and we prove in Section 4 that it is at least as difficult as a problem
whose complexity is open; we also prove a guaranteed approximation algorithm for the second
problem in Section 4, and we report some simulation results. We present asymptotically optimal
algorithms when communications are required before each task (third problem) in Section 5, and
when communications are required both before and after each task (fourth problem) in Section 6.
We briefly survey related work in Section 7. Finally, we give some remarks and conclusions in
Section 8.

2 Problem statement

The target architectural platform is represented in Figure 1. The master M and the p slaves
Py, P,,..., P, communicate through a shared medium, typically a bus, that can be accessed only
in exclusive mode. At a given time-step, at most one processor can communicate with the master,
either to receive data from the master or to send results back to the master.

Figure 1: The target master-slave architecture.

We assume that there is a pool of independent tasks to be processed by the p slaves. All tasks are
of same-size, i.e. they represent the same amount of processing. Tasks are considered to be atomic
(execution cannot be preempted once initiated). Processors are heterogeneous; more precisely, slave

1

P; requires t; units of time to process a single task. We say that ¢; is the “cycle-time” of processor
P;. Each P; will execute ¢; tasks (where ¢; is to be determined) from the pool. Regardless of the
hypotheses concerning communication costs, there are two (related) optimization problems:

MinTime(C) Given a total number of tasks C, determine the best allocation of tasks to slaves, i.e.
the allocation C = {¢1,¢2,...,¢p} s.t. > ¢; = C and which minimizes the total execution
time.

MaxTasks(T) Given a time bound T, determine the best allocation of tasks to slaves, i.e. the
allocation C = {c1,cg,...,¢p} s.t. all processors complete their execution within 7" units of
time and Y ?_; ¢; = C' is maximized.

In the paper, we concentrate on solving the second problem MaxTasks(T). Given the solution to
this problem, we find a solution to MinTime(C) by using binary search on 7', calling MaxTasks(T)
several times, and returning the smallest value of T" for which the answer is at least C'.

We now state some specific hypotheses for the communication costs. For each modeling of these
communication costs, we analytically formulate the MaxTasks(T) problem.

2.1 Without any communication cost

Assume first that there is no communication cost at all. It is not difficult to solve both previous
problems using a greedy algorithm. The solution of problem MaxTasks(T) is straightforward: we

let ¢; = L%J for all 4, 1 <4 < p, which obviously defines the optimal solution.

2.2 With an initial scattering of data

The formulation of this problem is taken from Andonie et al. [1], who study the implementation of
distributed backpropagation neural networks on heterogeneous networks of workstations, using the
PVM library [6]. The training of the neural network is divided into computational phases. At each
phase, the training pattern is distributed among the slaves, which are different-speed processors.
Before executing any task, each slave must receive some data file from the master processor. Because
the communication medium is exclusive, it it not relevant to distinguish whether the data file is the
same for all slaves (then the master executes a broadcast operation) or whether it is different (then
the master executes a scatter operation): we only assume that each slave must receive the same
amount of data, and that each reception costs tcom units of time. In the model of Andonie et al. [1],
there is no communication cost paid to send the results back to the master. In general, when the
slaves compute “yes/no” results, the cost of returning the results may well be neglected in front of
the cost of the initial scatter and/or of the computations. Note that we deal with another model,
including communication costs both before and after the tasks, in Section 2.3.

Due to the constraint on the communication medium, the p messages will be sent one after the
other. Obviously, it cannot hurt to send the messages as soon as possible, i.e. at time steps 0,
teoms 2tcoms -+ -5 (P — 1)tcom. The problem is then to determine the ordering of the p messages, i.e.
the permutation o of {1,2,...,p} such that slave P; receives the message at time o(i)tcom. We are
ready to state the optimization problem analytically:

MaxTasks1(T) Given a time bound T', determine the best allocation of tasks to slaves, i.e. a
permutation ¢ and an allocation C = {ci,¢2,...,¢p} s.t. all processors complete their execution

within 7" units of time and the total number of tasks is maximized:

p
max (Z ¢ | o permutation and Vi € [1,p] : 0(i)tcom + citi < T)

i=1
2.3 With initial and final communications

As pointed out above, it is natural to assume that after the processing of their tasks, slave processors
will send some data back to the master. Because this message may well have a different size than
the message initially sent by the master, we model this situation by using two communication costs,
tl . for the messages sent by the master to the slaves, and 2, for the messages sent by the slaves
to the master.

processors

Py S S S

P, |IIEE IEEEEEeeeeeee . S

Py [Nmml RS S

T time

Figure 2: Delaying messages sent back to the host.

As above, we look for a permutation o; which determines the ordering of the initial messages
from the host: the host sends data to slave P; at time oy (i)t,,. But we also look for a second
permutation oo which determines the ordering of the final messages sent back to the host: given
a time bound T, slave P; sends data back to the host at time T' — o9(i)t2,,,. This formulation is
without any loss of generality: some slave processor P; might send its message earlier than this
bound, but we can always shift the communication pattern as stated, i.e. delay some messages, as

illustrated Figure 2. We are ready to state the optimization problem analytically:

MaxTasks2(T) Given a time bound 7', determine the best allocation of tasks to slaves, i.e. two
permutations o7 and o9, and an allocation C = {¢;,c¢2,...,¢,} s.t. all processors complete their
execution within 7" units of time and the total number of tasks is maximized:

P
max (Z ci | 01,09 permutations and Vi € [1,p] : 01 (i)t + citi + 09 (8)t2, < T)
=1

2.4 With communications before each task processing

We also consider the case when communications are required between the master and the slave before
the processing of each task. In this third model, we consider that the cost of such a communication

3

iS tcom. This model is quite natural: some specific input data may well have to be propagated from
the master to the slave before computation can start.

We look for three functions fsiartcomm, fstartcomp and fproc: fstartcomm () represents the time-step
at which the communication required by task ¢ will begin; fstartcomp(Z) represents the time-step at
which the processing of task ¢ will begin on processor fproc(2). The functions fstartcomm, fstartcomp
and fproc must fulfill the following conditions:

o Vi>1, fstartcomm(i+ 1) — fstartcomm (%) > teom, which states that communications take place
in exclusive mode.

® Vi> i, fstartcomp(?) > fstartcomm (%) + tcom, Which states that the processing of task ¢ cannot
start before the end of the communication required by task .

oVl <<y, if fproc(i) = fproc(j) = k, then fstartcomp(j) > fstartcomp(i) + tx, which states
that tasks are processed sequentially on each processor k.

o V1<i<j, if foroc(i) = foroc(4) = k,, then
[fsta.rtcomm (])a fsta.rtcomm (]) + tcom] N [fstartcomp (Z)a fstartcomp (Z) + tk] = @,

which states that communications and computations cannot be overlapped on processor k.

processors
Py o\ IO ——————————
P3 rrrrrrrrrrrrrrrrrrrrrrrrr —————— rrrrrrrrrr
P2 ,,,,,,,,,,,,,,,,,, I ,,,,,,,,,,
P ——_————_ ——————————
time
T

Figure 3: Grouping some messages sent by the host to a given processor.

This formulation is quite general. Note that each processor can perform several communications
before processing the corresponding tasks, as illustrated on Figure 3. We are ready to state the
optimization problem analytically:

MaxTasks3(T) Given a time bound T, determine the best allocation of tasks to slaves, i.e. three
functions fstartcomm, fstartcomp and fproc satisfying all the conditions stated above, s.t. all processors
complete their execution within 7" units of time and the total number of tasks is maximized:

max (N | Vi S N, fstartcomp(i) + tfproc(i) S T)

4

2.5 With communications both before and after each task processing

It is natural to assume that after the processing of each task, slave processors will send some data
back to the master. As previously, we model this situation by using two different communication
costs, tl,,, for the messages sent by the master to the slaves, and #2, for the messages sent by the
slaves to the master.

We look for four functions foharcomms foartcomms Jstartcomp and fproc: faiartcomm(4) represents
the time-step at which the communication from the host required before task ¢ will begin (just as
fstartcomm (i) in the previous section); similarly, f2, .. (i) represents the time-step at which the
communication back to the host after task 7 will begin; finally, fstartcomp and fproc(Z) are defined
as before: fstartcomp(¢) represents the time-step at which the processing of task ¢ will begin on pro-
cessor fproc(t). The functions fh o tcomms Jartcomms fstartcomp and fproc have to fulfill the following
conditions:

o Vi>1,Vj>1 V(k1I)ec{1,2}, ifk#1lori#j then

k . k . k l : l . j
[fstartcomm (7')7 fstartcomm (Z) + tcom] N [fstartcomm (])7 fstartcomm (.7) + t(Jzom] = @,

which states that communications take place in exclusive mode.

o Vi >1, fstartcomp(i) > fstartcomm (i) + tiom, Which states that the processing of task i cannot
start before the end of the communication from the host required by task 7.

o Vi>1, [fstartcomp() + b foroc(i) < f2 rtcomm (1), which states that the communication back to
the host required after task ¢ cannot start before the end of the processing of task i.

o VI<i<y, if fproc(i) = fproc(j) =k,
fstartcomp (J) > fstartcomp (¢) + t, which states that tasks are processed sequentially on each
processor k.

o V1<i<j, if foroc(t) = fproc(j) =k, then
[fslta.rtcomm (])7 fsltartcomm (.7) + tCOm] N [fstartcomp (Z)a fstartcomp (Z) + tk] = @

and
[sttartcomm(i)a fs2tartcomm (7’) + tCOm] N [fstartcomp (])7 fstartcomp (]) + tk] = @,

which states that communications and computations cannot be overlapped on processor k.

Again, this formulation is quite general. Note that each processor can perform several com-
munications from the host before processing the corresponding tasks, as well as delaying several
communications back to the host: this is illustrated on Figure 4. We are ready to state the opti-
mization problem analytically:

MaxTasks4(T) Given a time bound 7', determine the best allocation of tasks to slaves, i.e. four
functions fd, comms faartcomms Jstartcomp and fproc satisfying all the conditions stated above, s.t.
all processors complete their execution within T units of time and the total number of tasks is

maximized:
max (N | Vi < N, fs?tartcomm(i) + tgom < T)

processors

Py
Py | I I 5 O
T [SOCOOOOUNOIIIINIIIIIII L

)| ———— S W - SR WO 1111

Figure 4: Grouping some messages sent by and to the host.

3 Solution with an initial scattering of data

3.1 Restricted search

To (partially) solve the MaxTasks1(T) problem of Section 2.2, Andonie et al. [1] restrict the search to
allocations where the fastest processors start computing first. They use a dynamic programming al-
gorithm to solve the optimization problem MinTime(C). With our setting for problem MaxTasks1(T),
this amount to sort the cycle-times as t; <ty < ... < ¢, and to let o(i) =4 for 1 < i < p. The
intuition is that fastest processors execute tasks more rapidly than the others, hence they should
work longer.

However, the intuition is misleading in some cases. Assume for instance two slave processors
(p =2) with t; =5 and t3 = 9 and let t¢om = 1. For the time bound T' = 28, it is better to start the
slow processor Py first: P, can then execute three tasks: t.om + 3to = 28 < T'; the fast processor,
although started at time-step 2t.om = 2, can execute five tasks: 2tcom + 51 = 27 < T'. If we start
the fast processor first, it cannot execute more than 5 tasks, while the second processor can execute
only 2.

3.2 Matching techniques

The optimal solution to the MaxTasks1(T) problem can be found using a weighted-matching al-

gorithm. The idea is to draw a complete bipartite graph with 2p vertices, as shown in Figure 5.

Vertices on the left represent processors, while vertices on the right represent possible values for

the permutation o. The edge from vertex P; to vertex S; is weighted with the maximum number

T—jtcom
t;

of tasks that P; can execute if o(i) = j, namely [J Extracting a matching from the graph

enables to assign a different value of o for each processor, thereby guaranteeing that o is indeed a
permutation. In fact, there is a one-to-one correspondence between matchings and permutations.
Because the total weight of a given matching is the total number of tasks that can be executed
for the corresponding choice of the permutation, our problem reduces to finding the maximum
weighted matching in the bipartite graph. Efficient (polynomial) algorithms exist to solve this

P, Sy

Figure 5: Bipartite graph for MaxTasks1(T).

problem, see [7, 15]. More precisely, the complexity of finding the maximum weighted matching in
a bipartite graph with 2p vertices is of order O(p3).

We work out the following example: assume p = 3 processors of cycle-times t; = 4, to = 5 and
t3 = 9. Let tcom = 1, and consider the time bound 7" = 118. The weighted bipartite graph is shown
Figure 6. The maximum weighted matching is unique, it corresponds to the permutation o(1) = 2,
0(2) =3 and o(3) = 1. The total number of tasks is 29 + 23 + 13 = 75.

P2 S,
29
28
23
P, 53 Sa
23
13
12
Pn Sn
12

Figure 6: Bipartite graph with p=3,¢t =4, 12 =5,1t3 =9, tcom = 1, and T = 118.
To conclude this section, we formally state our result:

Proposition 1 The optimal solution to the MaxTasksl(T) problem with initial messages can be
found in time of order O(p>) with p processors using the above weighted-matching algorithm.

4 Solution with initial and final communications

The solution to the MaxTasks2(T) problem with initial and final messages turns out to be surprisingly
difficult. In fact, we do not know of any polynomial algorithm for the general case. We present
an efficient guaranteed approximation using matching techniques, as explained in Section 4.1. In
Section 4.2, we give some remarks about the complexity of MaxTasks2(T).

4.1 Matching techniques

F1 = P1 = Sl
F2 . \\\\\\ P2 T \\\\\\ S2
F, p, T S,

Figure 7: Bipartite graph with initial and final communications.

To take both permutations o; and oy into account, we build a bipartite graph G = (V, E) with
3p vertices (i.e. |V| = 3p), as shown Figure 7. The p leftmost vertices F; correspond to the first
permutation oy, the p center vertices P; correspond to processors, and the p rightmost vertices S;
correspond to the second permutation os. Rather than a matching, we extract a 2-factor from the
graph [7, 15]: more precisely, we select a subset E’ of 2p edges so that in the graph G = (V, E’)
each vertex F; or S; is exactly of degree 1, and each vertex P; is exactly of degree 2. The complexity
of extracting 2-factor from the graph with 3p vertices is of order O(p?®) again, since we can solve
independently the maximum weighted matching in both bipartite graphs with 2p vertices (on the
left-hand size and on the right-hand size in Figure 7) in time of order O(p?).

The problem is that edge weights cannot be determined fully accurately; the inequality oy (i)t!,,+
cit; + o2(i)t2,,, < T translates into

¢ <

\‘T — 01 (i)ttlzom — UQ(i)t(ZzomJ
t; ’

and we need to know both o1(i) and o2(i) to compute ¢;. Instead, we use the approximation

112 Ot | | 712 |

t; t;

This approximation enables us to weight the edges as follows: the edge between F; and P; is weighted
1 2

as L%J while the edge between P; and Sy is weighted as L%J

Theorem 1 The previous approzimation leads to tasks allocations that differs at most by p from

the optimal solution.

Proof First note that
Va,b:0< |a+b] —|a] —|b] <1. (4.1)

Therefore for any allocation (o7, 09, ¢) built using the previous approximation, we have

Vi, o < {T/2 -0 (i)tgomJ N {T/2 — az(i)tgomJ < {T — o1 ()t — ag(i)tgomJ ,

- t; t; t;

and (01,09, ¢) is then a solution of the initial problem.
Let us note by

Capp(o1,02) = Z,,: {T/ 2= > (i)t%omJ N {T/2 - Z—:(i)tgom J

i=1
the approximative cost of two permutations and

(app)

Tapp = (07, Uéapp))

= argmax Copp (01, 02)
01,02

the permutations built by our algorithm.
Let

Com(1,02) = Y {T — 01 (i)t om — 72() o J

=1 ti
denote the real cost of two permutations and let

(opt) (opt))

Oopt(0] 7, 0% = argmax Copi(01,02)

01,02

be some permutations that are optimal solutions to the original problem.
By definition,
Copt(Tapp) < Copt(Topt) (4.2)

and
Capp(%pt) < Capp(aapp)- (4.3)

Using equation (4.1) we find that
Vo : Copt(0) = p < Capp(0) < Cope(0) (4.4)

and therefore

Copt(Uopt) -p< Capp(gopt) (USing (4-4))
< Copp(Tapp) (using (4.3))
< Copt(Tapp) (using (4-4))
Copt(Uopt) —p< Oopt(Uapp) < Copt(Uopt) (USing (4'2))5

which means that our approximation leads to tasks allocations that differs at most by p from the
optimal solution. [|

4.2 Some remarks about the complexity of MaxTasks2(T)

We have not found any polynomial algorithm for the general case, and we have not been able to
prove the NP-completeness of MaxTasks2(T). Nevertheless, we can formulate a few remarks about
the intrinsic difficulty of MaxTasks2(T). First, an exhaustive search of all possible permutations
would have a complexity of order O((p!)?), which is impossible in practice as soon as p > 9 (about
44 minutes on a Pentium IIT 550 MHz for p = 9 and more than one day for p = 10). Moreover,
the problem seems to be difficult even for very simple instances of MaxTasks2(T), as shown below.
Indeed, let us consider the following open (polynomial vs. NP-complete) problem in combinatorial
optimization (see [9]):

Permutation Sums:
Instance: Let a; < as <... < a, be p positive integers satisfying Zle a; =p(p+1).
Question: Do there exist two permutations o1 and o9 of {1,2,...,n} such that

Vi € [l,p] :Ul(i) +02(i) =

Let us build the following instance of MaxTasks2(T):
Instance: Let T' = 3max; a;, tcom = 1. Let t; =T —a;, Vi € [1,p] denote the cycle time of processor
P,
Question: Is it possible to perform p tasks within 7" units of time?

Let us consider the above instance of MaxTasks2(T). Since t; = T' — a; and T = 3 max; a;,
2t; > T and it is therefore impossible to execute more than one task with a given processor within
T units of time. Thus, our instance of MaxTasks2(T) is very simple (with respect to the general
formulation) since Vi, ¢; < 1. Indeed, the question can be stated as follows: is it possible to find
two permutations o1 and o9 such that Vi € [1,p] : 01(i) + o2(2) + t; < T.

Nevertheless, this instance of MaxTasks2(T) is as difficult as Permutation Sums. More precisely,
if Permutation Sums is proved to be NP-complete then MaxTasks2(T) is also NP-complete and if
MaxTasks2(T) can be solved in polynomial time, then it proves that Permutation Sums can also be
solved in polynomial time. Indeed, let us suppose that

Jdo1,09 such that V1 <i<p, o1(i)+o02(i) +; <T.
Then, V1 <1i <p, o1(i) + 02(i) < a;. Moreover, let us suppose that
i, Ul(i) +02(i) < ag,

then
p

p(p+1):Z(1(2) + o2(i <Z“l_ (p+1),

i=1
which is absurd. Thus, finally
Vi € [l,p] : Ul(i) + Ug(i) = a;.

Thus, we can expect that the general instance of MaxTasks2(T) is intrinsically difficult.

10

4.3 Simulations

In this section, we compare solutions given by the approximation algorithm proposed in Section 4
with the optimal ones. For a given instance of the problem, we compute the difference between
number of tasks processed using the optimal permutations (found with an exhaustive search) and
the number of tasks processed using the approximation algorithm proposed in Section 4. Figure 8
depicts the mean value of this error for several tests when the number of processors varies :

1. In Figure 8(a), cycle times are not strongly heterogeneous (numbers at random between 15
and 25) and communication time can be large compared to cycle times (numbers at random
between 10 and 90).

2. In Figure 8(b), cycle times are still not strongly heterogeneous (numbers at random between
15 and 25) but communication time are rather small compared to cycle times (between 1 and
9).

3. In Figure 8(c), cycle times are strongly heterogeneous (numbers at random between between
5 and 35) and communication time can be large compared to cycle times (two numbers at
random between 10 and 90).

4. In Figure 8(d), cycle times are still strongly heterogeneous (numbers at random between
between 5 and 35) and communication time are rather small compared to cycle times (two
numbers at random between 1 and 9).

In all cases, the matching gives very satisfying results, since the difference between the optimal
number of tasks that may be processed and the number of tasks processed using the matching
algorithm is small. As we could expect, this difference grows with p and doesn’t depend on the
degree of heterogeneity.

5 Solution with communications before each task

In this section, we present an asymptotically optimal algorithm for MaxTasks3(T): when T' becomes
large, the ratio of the number of tasks processed by this algorithm over the number of tasks executed
by the optimal solution tends to one.

5.1 Theoretical bounds

In order to prove the asymptotic optimality of our algorithm, we need to determine the optimal
number of tasks that can be performed if the cost of a communication between the master and
the slave is tcom and the cycle times of slaves processors are t; < 3 < ... < t,. Consider a
valid communication and computation scheme, i.e. three functions fstartcomm, fstartcomp and fproc
satisfying the conditions given in Section 2.4. Let T be the time bound and let N denote the
maximal number of tasks that can be processed within 7" units of time:

N = max{n, Vl S n, fstartcomp(i) =+ Tfproc(i) < T}

Moreover, let

o Card{j, fproc(j) = Z} tcom

B T

be the ratio of the time spent by the master to perform communications with slave P; over the time
bound T'.

Via]-S'Lgpa ;

11

Mean error

Mean error

Matching ——

Processors

(a) comp 20 £ 5 ; comm 50 =+ 40

Matching —+—

Processors

(c) comp 20 £ 15 ; comm 50 % 40

Mean error

Mean error

18

16

14

12

08

0.6

04

0.2

25

Matching ——

Processors

(b) comp 20 +5 ; comm 5 +4

Matching —+—

Processors

(d) comp 20 £15 ; comm 5 +4

Figure 8: A few simulations

12

Lemma 1 With the above notations, we have

N<Y (5.1)

m + tz'
A
T
N < (5.2)
tcom
Proof
1. Since V1 <i <p, a; = W JoreeDZi} teom “ppen T9% = Card{j, firoc(j) = i} and
TSY o &
% =3 Card{j, foroclj) =i} = N. (5.3)
com

i=1

2. Let us determine the maximal number of tasks that can be performed by slave P;, V1 <1 <p.
Since the overall cost of a task on slave P; is tcom + t;, we have

. . . T . teom
Card {7, =il < —— e o < —0m 5.4
{] fproc (]) } o tcom + tz’ ‘= tcom + tz’ ()

3. Let us determine the number of communications that can be performed by the master. The
cost of a communication is teom s0 that Ntcom < T and then, using equation 5.3, we deduce

<L (5.5)

4. Using equations 5.3 and 5.4, we have

5. Using equations 5.3 and 5.5, we deduce

N <

tcom

In order to determine the optimal number of tasks that can be performed during 7' time steps,
we need to distinguish two different cases, according to the value of Y7, 1%?:2—1& Indeed, it turns
out that the communication network is not the limiting resource if >_% beom _ < 1 but it becomes

L. . 1=1 tcom~+t;
the limiting resource otherwise.

13

Py

Py

5.2 Solution of MaxTasks3(T) if Y 7 | feem_ <]

=1 tcom+l; —

To solve MaxTasks3(T), we propose an algorithm that consists in determining a pattern for com-
munications and computations, that will be reproduced periodically throughout the execution.

Let tc; = teom + ti, for 1 < 4 < p, denote the overall cost of the processing of a task on slave
P;, since we cannot overlap communications and computations. Let TP3%™ be the least common
multiple of these p values tc;: TP#™ determines the length of the pattern. Let nbP*"™ = %ﬁem
be the number of tasks processed by processor P; during the execution of the pattern.

Consider the following example: t.om = 1 and p = 4 slave processors with ¢ = 2, to
t3 = 3 and ty = 5. We have tc; = 3, tcg = 4, tez = 4 and tcy = 6. In this case Y7 teom

i=1 tcom+t;
rppattern _ 127 and nbrl)a.ttern — 4’ bgattern — 3’ bgattern — 3 and bgattern -9
To formally build the pattern, we need some complicated notations. We advise the reader to
follow the construction for the example, using Figure 9. First we define time-steps and processors

1 . . tt tt tt .
within the pattern, using three new functions fho oo Sﬁzrtif;lp and fhoc " which we define as
follows (initially nbh™"*™ = 0):

Il
—

e Determine which processor executes task number ::

p j—1
V1<i< angamem : gg}gem(i) = min {] |7 > angamem}

k=1 k=0

e Determine the beginning of the communication and of the computation for task number i:

time

j—1 Jj—1
pattern @) = L0 b (oo 1) 4 (0 — L= S mbP g,
k=0 k=0
j—1 j—1
frt)ﬁztr?éf)%p() =1+ Z bpatterntcom + Z bpattern (Z 1= Z nbgattern)t]“
k=0 k=0 k=0
processors | 1 1 : : : :
. f—— ‘ ‘]
o | " ! -
0 4 7 10 12 16 19 23

Figure 9: Example when > ¥ | tczfn% <1.

14

The important fact about this pattern is that V2 <4 < p,
i—1
pattern pattern pattern pattern
(startcomp (Z b) +ti) - (fstartcomp (Z nbk) + ti_l)
k=0
i—1 i—2
o pattern pattern pattern pattern
- (startcomm (Z nbk + 1)) - (startcomm (Z nbk + 1)) :

k=0

This condition states that the difference between the date of the end of the processing of the
last task on slave P; and the date of the end of the processing of the last task on slave P;
is equal to the difference between the beginning of the communication required by the first task
processed by slave P; and the beginning of the communication required by the first task processed
by processor P;_1. This is the key-condition that ensures the periodicity of the whole computation
and communication scheme from one pattern to the next one: it is possible to execute the pattern
defined above every TP time steps, as illustrated Figure 9. During the execution of one pattern,

D pattern
we process » ,_; nb, tasks.

We are now able to define the functions fsartcomm (), fstartcomp(n) and fproc(n) correspond-
. . p pattern p pattern -
ing to our algorithm. Let k s.t. k) ., nb; <n < (k+1)> 7 nb and let ¢ =
n—kY" nb?attem. Then

tt -
fstartcomm() = kTpattern + f%zrtg)%m(z)v

Fstartcomp () = KTPMr 4 fEE e (0),
Foroc(n) = fhioe™ (0).

One can easily check that the functions fstartcomm, fstartcomp and fproc satisfy all the conditions
stated in Section 2.4.

5.3 Solution of MaxTasks3(T) if Y 7 | feem_ >]

=1 tcom+t;

To solve MaxTasks3(T) when >°F tcz:‘j; > 1, we slightly modify the algorithm proposed in pre-
vious section. Indeed, in this case, the network is the limiting resource. The algorithm consists
in determining a communication and computation pattern so that the communication network is
always in use. Some slower processors will be kept idle at some periods, or even will never be used.

First of all we sort the cycle-times of the slave processors and assume that
ty <ty < ... <t

Let tc; be defined as previously and let

k
tCOI’I’l
P =max{ k E — < 1;.

Pmaz 18 the index of the last processor whose computation power will be fully used in the pattern.
Let TP he the least common multiple of t.om and of the tc;, 1 < i < ppas- Moreover, define

atte
nby*" ™" as follows:
pattern
- attern T
V1 <i< Pmaz, nbf =)
tci
attern Pmazx pattern
nbpattern . " — tcom Z nb
pmam‘i‘l -

tcom

15

and let
nbfmem =0, Vi>pnw +1.

We see that processor number pp,q, + 1 is not used fully, while following processors are not used at
all.

atte atte atte : : .
With these notations, we define fgiy ¢ omm, fatartcomp a0d fhroc as in the previous section.

Again, the only difference is that slaves P, ¢ > ppar + 1 are kept idle all the time, while slave

P, ..+1 1s kept idle during the last (Tpattem - nbﬁﬂjﬂr_lltcpmaxH) time steps.

The construction of the pattern is illustrated in Figure 10, with t,om = 1, and p = 5 processors
st. t1 =2,ty=3,t3 =3, t4 =4 and t5 = 6. In this case), tczfziti > 1, Pmaz = 3, TP — 60,
and nbpl)attern _ 207 nbgattern _ 157 nbgattern _ 157 nbiattern _ 607(20+115+15)*1 — 10 and nbgattern - 0.
Slave Ps is not used at all, while slave Py stays idle the last (60 — 10 x 5) = 10 time-steps of the

pattern.

processors

time

: : | : :
20 35 50 60 80 95 110

Figure 10: Example when ZZ 1 tcz:ﬁitl > 1.

pattern pattern pattern
We extend the definition of fg; tcomms: startcomp and fproc tO fstartcomm, fstartcomp and fproc
exactly as before. Again, one can easily check that the functions fetartcomms fstartcomp and fproc

satisfy all the conditions stated in Section 2.4.

5.4 Asymptotic optimality

In this section, we show that the algorithm presented in Sections 5.2 and 5.3 is asymptotically
optimal.

e Consider first the case Y% tCOm < 1. Let N be the number of tasks that can be performed

=1 tcom+

using our algorithm. We define & such that

p—1

LPattern <T — teom Z nbgattern < (k + 1)Tpa.ttern.
i=1

In this expression, tcom Z‘Z’:—f nb?attem represents the delay before slave P, begins to receive

its first message, as illustrated in Figure 11, and k represents the number of patterns that can

16

Py
Py
Py

Py

processors

be entirely completed before time bound T'. Then,

T prl nbpattern
_ =1] _
k > Tpattern Tpattern L.

time

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - T

Figure 11: Several consecutive patterns.

Therefore,

p
N Z k Z nbg)attern

i=1
p ppattern
>k) ——
i—1 tcom + &
T prll nbpattern p Tpattern
_ 1= 3 -1 -
sl T pattern T pattern P tcom + ti

p T p—1 4 1
S L) (S o) (2
tcom + ti ; tcom + ti

=1 =1 =1

Lemma 1 (equation 5.1) states that the optimal number of tasks N,y that can be performed
within 7" units of time satisfies
T
Now <3 — L

=1 tcom + tz’ .

Then we have,
1>

1
>140(=),
e (7)

p tCO[I]

which achieves the proof of the asymptotic optimality of our algorithm in the case >
1.

17

1=1 tcom—+t; —

o Consider now the case Y ?_; tcz”it > 1. Let N be the number of tasks that can be performed

using our algorithm. We define k£ such that

Pmaz

kTpa.ttern S T — tcom Z nbﬁ)attern < (k + I)Tpa,ttern.
i=1

In this expression, feom Y o7f" bpattern represents the delay before slave P, .. 11 begins to

receive its first message and k represents the number of patterns that can be entirely completed

before time bound 7". Then,

T tCOIIl meam bpa.ttern
p— 2 p—
k 2 Tpattern Tpattern L.

Therefore,

Pmax
N Z k (Z nb?attern + nbpmaz‘i‘l)

i=1
Tpa.ttern

tCOl’l’l

pmaz
Z (> Z bpattern Tpattern)
tcom tcom

Lemma 1 (equation 5.2) states that the optimal number of tasks N,y that can be performed
within 7" units of time satisfies

T
N, opt S e
com
Then we have N |
1> >14+0(=),
opt T
which achieves the proof of the asymptotic optimality of our algorithm in the case Y F_; tci:‘itl >

1.

We formally state this important result:

Theorem 2 Let Nop(T') be the optimal number of tasks that can be executed within T time-steps.
Let N(T) be the number of tasks executed by the algorithm of Section 5.2 if SF_ Lteem < 1 and

Z 1 tcom+t
by the algorithm of Section 5.2 if Y0, 7 fmﬁt > 1. Then

LN
7500 Nopt(T)

5.5 Comparison with a greedy algorithm

In this section, we compare the results obtained with the algorithm presented in Sections 5.2 and 5.3
against the results obtained with a greedy algorithm, which works as follows: at each time step,
if k slaves with respective cycle times t;, < t;, < ... <t; are waiting for a communication from
the master, and if the communication network is free during the next t.om time steps, then a

18

Py

Py

Py

communication is performed between the master and the fastest slave P;,. In Figure 12, we display
the solution obtained with t.,;m = 1 and p = 4 slave processors with ¢ = 2, to = 3, t3 = 3 and
ty = 5. These results are to be compared with those obtained by our algorithm (here, we have
b tczfn%tl = 1), and displayed in Figure 9.
The greedy algorithm also leads to a periodic allocation (the time period is 9); it is able to
process 8 tasks every 9 time steps but neither the computing ressources nor the communication
medium are saturated. Our algorithm is able to process 12 tasks every 12 time steps, thus leading

to an improvement of order %.
Processors

time

Figure 12: Execution with the greedy algorithm.

6 Solution with communications both before and after each task

In this section, we present an asymptotically optimal algorithm for MaxTasks4(T). The algorithm
is very similar to the one presented in Section5, so we only outline the sketch of the algorithm, and
describe it through an example, without detailing the proofs.

As previously, we define a pattern for communications and computations, that will be reproduced
periodically. The pattern consists in two main phases:

e The first phase consists in both backward and forward communications between the master
and the slaves,

e The second phase consists in task processing by the slaves.

Let tl,,, be the communication cost for the messages from the master to the slaves, #2, the

communication cost for the messages from the slaves to the master, ¢;, 1 <14 < p the cycle times of
the slaves, and T the time bound. Basically, the pattern of communications and computations is
the same as those defined in Section 5, with teom = tiom + t2om-

The construction of the pattern is illustrated in Figure 13, with ¢}, =2 2 =1, and p = 3
processors: t; = 8, to = 8, and t3 = 9. In this case, tcom = 3, _; tczf:‘nFti < 1, TPattern — 132 and
nbrl)a.ttern — 12’ nbga.ttern — 12 and nbgattern - 11.

Of course, the first pattern is not executed entirely, since no backward communication is required

between the slaves and the master at the beginning of the execution. Similarly, the processing of

19

processors,
I

P ! backward comm.
. —— forward comm.
P o
| i) | | i
P, R s it [

time

36 72 105 132 168 204 237

Figure 13: Pattern when communications are required both before and after each task

tasks during the last pattern may be useless, since corresponding backward messages from the slaves
to the master may well not have been completed.
Nevertheless, this does not impact the asymptotic optimality of this algorithm:

Theorem 3 Let Ny (T') be the optimal number of tasks that can be ezecuted within T time-steps,
and let N(T) be the number of tasks executed by our algorithm. Then

. N(T)
Iim ————— =
T—00 Nopt (T)

7 Related work

To the best of our knowledge, the most related work is presented in the paper of Andonie et al [1]
which we have already quoted in Section 3.

Several theoretical papers deal with complexity results for parallel machine problems with a
server, establishing complexity (NP-completeness) results [8, 10, 4] and providing guaranteed ap-
proximations [11]. Before processing, each job must be loaded on a machine, which takes a certain
setup time. All these setups have to be done by a single server which can handle at most one job
at a time. Our first problem (with initial messages only) is a very special instance of this class of
server problems.

Our second problem (with initial and final messages) is a special instance of the job-shop schedul-
ing problem (see problem SS18 in [5]) where each job consists of only three tasks, the first and last
of which having to be executed by the two machines dedicated to communications. Because this
instance is very specific, we do not know its complexity (polynomial versus NP-complete).

Generally speaking, note that our four problems differ from those studied in the literature with
a server and start-up times in that (i) all tasks are identical and independent, and (ii) communica-
tion times (the counterpart of the set-up times) are identical too. The difficulty lies solely in the
heterogeneity of the computing resources.

8 Conclusion

In this paper, we have shown that deriving efficient algorithms for the master-slave paradigm, in
the framework of heterogeneous computing resources and communication links used in exclusive

20

mode, turns out to be surprisingly difficult. More precisely, we have designed an optimal polyno-
mial algorithm in the case of an initial scattering of data and provided a guaranteed polynomial
approximation algorithm in the case of initial and final communications. We conjecture this last
problem to be intrinsically difficult even on (intuitively) simple instances. Finally, we have presented
asymptotically optimal algorithms for the case where each task processing must be preceded (and
possibly followed) by a communication from (back to) the master.

The different variants of the master-slave problem that we have addressed in this paper seem
quite representative of a large class of regular problems that exhibit a simple solution in the context
of homogeneous processors but turn out to raise several algorithmic difficulties in the context of
heterogeneous resources |2, 3]. Data decomposition, scheduling heuristics, load balancing, were
known to be hard problems in the context of classical parallel architectures. They become extremely
difficult in the context of heterogeneous clusters, not to speak about metacomputing platforms. This
is a nice challenge to investigate for adventurous algorithmicians ...

References

[1] R. Andonie, A.T. Chronopoulos, D. Grosu, and H. Galmeanu. Distributed backpropagation
neural networks on a PVM heterogeneous system. In Parallel and Distributed Computing and
Systems Conference (PDCS’98), pages 555-560. IASTED Press, 1998.

[2] Olivier Beaumont, Vincent Boudet, Fabrice Rastello, and Yves Robert. Matrix-matrix multi-

plication on heterogeneous platforms. In 2000 International Conference on Parallel Processing
(ICPP’2000). IEEE Computer Society Press, 2000.

[3] Pierre Boulet, Jack Dongarra, Fabrice Rastello, Yves Robert, and Frédéric Vivien. Algorithmic
issues on heterogeneous computing platforms. Parallel Processing Letters, 9(2):197-213, 1999.

[4] P. Brucker, C. Dhaenens-Flipo, S. Knust, S.A. Kravchenko, and F. Werner. Complexity re-
sults for parallel machine problems with a single server. Technical Report Reihe P, No. 219,
Fachbereich Mathematik Informatik, Universitdt Osnabriick, 2000.

[5] Michael R. Garey and Davis S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1991.

[6] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM Parallel
Virtual Machine: A Users’Guide and Tutorial for Networked Parallel Computing. The MIT
Press, 1996.

[7] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley & Sons, 1984.

[8] N. Hall, C.N. Potts, and C. Sriskandarajah. Parallel machine scheduling with a common server.
Discrete Applied Mathematics, 102:223-243, 2000.

[9] Steve Hedetniemi. Open Problems in Combinatorial Optimization. World Wide Web document,
URL: http://wuw.cs.clemson.edu/"hedet/algorithms.html.

[10] S.A. Kravchenko and F. Werner. Parallel machine scheduling problems with a single server.
Mathematical Computational Modelling, 26:1-11, 1997.

[11] H. Lee and M. Guignard. A hybrid bounding procedure for the workload allocation problem on
parallel unrelated machines with setups. Journal of the Operational Research Society, 47:1247—
1261, 1996.

21

[12] Kizhake Soman, Robert Fraczkiewicz, Christian Mumenthaler, Berthold von Freyberg, and
Thomas Schaumannand Werner Braun. FANTOM - (Fast Newton - Raphson Torsion An-
gle Minimizer). World Wide Web document, URL: http://www.scsb.utmb.edu/fantom/fm_
home.html. a program for "the calculation of conformations of linear and cyclic polypeptides
and proteins with low conformational energies including distance and dihedral angle constraints
from nuclear magnetic resonance experiments or for modeling purposes.".

[13] J.R. Stiles, T.M. Bartol, M.M. Salpeter, and M.M. Salpeter. Monte Carlo simulation of neuro-
muscular transmitter release using MCell, a general simulator of cellular physiological processes.
Computational Neuroscience, pages 279-284, 1998.

[14] J. Watts and S. Taylor. A practical approach to dynamic load balancing. IEEE Transactions
on Parallel and Distributed Systems, 9(3):235-248, 1998.

[15] D.B. West. Introduction to Graph Theory. Prentice Hall, 1996.

22

