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Probléme de grandes déviations pour les réseaux en étoile
sous la politique min
Partie I : temps fini

Résumé : Dans cet article, nous prouvons un principe de grandes déviations pour
un processus renormalisé n1Qp;, ot @Q; représente le nombre de connexions au
temps ¢ dans un réseau en étoile oil la bande passante est partagée entre les clients
selon la politique min. La fonctionnelle d’action est calculée explicitement. Une des
principales étapes consiste a dériver des bornes locales de grandes déviations pour
un processus appelé générateur empirique, décrivant sur chaque routes le nombre
de connexions présentes et le nombre de connexions qui se sont établies entre 0
et . L’analyse repose sur un changement de mesure adéquat et une procédure de
localisation.

Mots-clés : Grandes déviations, générateur empirique, changement de mesure,
contraction, entropie, réseau en étoile, partage de bande passante, protocole min.



LDP FOR STAR NETWORKS: THE MIN POLICY 3

1 Introduction

The model Consider a star shaped network consisting of N channels linked to the
other N —1 through a central hub: there are N(IN —1)/2 routes of length two. In the
sequel, the set of channels is denoted by & = {1,..., N} whereas the set of routes
is simply the set of ordered two-uples ij', i,5 € S. Denote by ¢;;(t) (resp. gi(t)) the
number of calls on route 75 (resp. the number of calls involving channel ¢) at time ¢.
Each channel has a capacity or a bandwidth equal to C;. Note that ¢;(t) = >_; gi;(?).
Then Q(t,z) = (¢i;(t),i,j € S) represents the state of the network at time ¢ when
it starts initially from state x. For the sake of simplicity, we shall sometimes omit x
or t when they do not play a role.

Calls arrive on route 4j according to a Poisson process of rate A;;. We shall denote
by R the set of active routes, i.e. with A;; > 0. The duration of a call on route 7j is
supposed to be exponentially distributed with parameter p;;. Each call on route 4j
is allocated a portion v;j(x)/z;; of the bandwidth when the state of the network is x.
Hence a call on route ij is released at rate p;;v;j(x). There are several possibilities
in order to allocate a fair proportion of the bandwidth to customers. A classical one
is to choose the coefficients v;;(z) according to the max-min fairness allocation. It
consists in maximizing the smaller bandwidth dedicated to a call, v;;(z)/z;;, under
the constraints

Y vij(z) <Ci,  Vi€S.
J

This network is proposed as a model for a router where the bandwidth is shared

fairly between calls. However, the max-min fairness allocation is not explicit and

hard to analyze at first. In order to get a more tractable model, we focus on the
min-policy,

c  C; .

ii— N —, lfxij>0,

vij(z) = Ti T

0, otherwise.

It has been shown in [9] that the system under the max-min fairness allocation
is stochastically smaller than the one with the min policy. Hence, the min policy
represents a conservative approximation to max-min fairness.

Extensions We present in this paper a sample path large deviation principle for
ergodic star shaped networks under the min policy. We would like to emphasize what

'For the sake of simplicity, we do not distinguish between ij and ji (i.e. we consider non-oriented
routes), but there is no additional difficulty to handle oriented routes.

RR n°® 4143



4 Franck Delcoigne & Arnaud de La Fortelle

kind of further results we aim at deducing from this theorem. First, it seems that
the optimal paths of large deviation can be calculated, leading to explicit expres-
sions for the asymptotics of stationary distribution (which is not known). This is a
performance criteria of practical value: bounds for buffer size could be optimized,
or simulation accuracy (trough importance sampling using optimal paths) could be
improved.

Besides, the ergodicity of the network is not crucial. Large deviations can be proved
for transient networks, at the cost of some more detailed analysis. This is an im-
portant feature since it is linked with the study of networks under max-min fair
allocation (or similar ones). The reason is that, for an ergodic network under max-
min fair allocation, when some routes are made saturated, the rest of the routes can
behave as a transient network, still under max-min fair allocation: the local rate
function must include the cost for this transient network to stay near 0. This is to
the opposite of our framework, where only ergodic network are considered, for which
the cost to stay around 0 is null.

Moreover, the topology of the network can be extended as well as the length of the
routes (but not arbitrarily) to include more realistic networks. However, the notation
becomes very heavy and our aim is to present tools (extending those developed for
polling networks [3]) in a fairly simple way for achieving the above program.

Notation In our settings,

Q= {Q(t,.’l)’o), t> 0}

is a Markov process with generator R such that

Rf@) = Y a@y)(f0) - f@), veezl, vieB(Z}),

yEZZf
Aijs o o ify —z = ey,
e def ) ] .
where g(,y) £ pig(@) S pyg— AL, ify -z = —ey,
T X
0, otherwise,

using the convention that 0/0 = 0 (i.e. when z;; = 0). Let us recall that it has been
shown in [9] that the network is ergodic if, and only if,

> Xj Ci, Vi € 8. (1.1)
J i

INRIA



LDP FOR STAR NETWORKS: THE MIN POLICY 5

For any set A, A will denote its complementary and 14y its indicator function;

for any space E, B(E), represents the set of bounded functions on FE;

D ([0, T}, ]Rf) is the space of right continuous functions f : [0,7] — ]RZE with
left limits, endowed with the Skorokhod metric denoted by dg;

C ([0,T],R}) is the space of continuous functions equipped with the metric of
the uniform convergence denoted by d;

AC ([0, T], ]Rf) is the space of absolutely continuous functions;

PL ([O,T ],]Rﬁ) is the set of piecewise linear functions whose derivative has
only finitely many discontinuities.

The relation between these sets is: PL C AC C C C D.
Definition 1.1 (Face) For z € RY, the face A(z) is defined by:
Az) & {ij € R : x5 > 0}.
By an abuse of notation, the following subset of ]Rf will be also called face A:
{y e R :4;; >0, Vij € A, and y;; =0, Vij € A°} (1.2)
From a face A, a partition of the routes (see Figure 1) is defined by A and

A € {ijeA®:TkeS, ik e A orjkeA}.
Ay & {ijeA®:VkeS, ik & A and jk & A}.

We also define the vector space relative to A

RA = [y e RR 1y = 0, Vij € A°}.

Structure of the paper In this paper, we aim at deriving a sample path large
deviation principle or LDP for the rescaled process n~'Qy; on finite intervals of time.
Our main concern is to identify the rate function. The major difficulty comes from
the fact that the coefficients of the generator are not spatially continuous (the ser-
vice rate p;j(x)). It seems that one of the first paper dealing with large deviations
for processes with discontinuous statistics is [8] where the case of Jackson networks

RR n°® 4143



6 Franck Delcoigne & Arnaud de La Fortelle

@®  saturated channel
O  ergodic channel

—— activeroutes. /\, /\y

A jammed routes: /\q

Figure 1: Representation of a star-shaped network: lines symbolize routes using two
channels (circles at the ends of the lines). The routes are partitioned into saturated
routes (A), jammed routes (A1) — the service rate being null on these routes — and
ergodic routes (Ag).

was investigated using partial differential equations techniques. In [7], a sample
path LDP is proved for a wide class of jump Markov processes with discontinuous
statistics. However, the methodology of proof uses subadditivity arguments and the
rate function is not identified. The identification of the rate function in this general
framework is still an open problem when the dimension of the network is arbitrary.
General results were obtained in [6, 11] where the LDP has been established. Never-
theless, in such examples, there are at most two boundaries with codimension one or
two where discontinuity arises. Using special features of the models and the fact that
fluid limits could be completely identified, this program was carried out for example
in [1, 3, 10].

In order to establish a sample path LDP, one of the main task is to establish the
local linear large deviation bounds of Theorem 1.1.

Theorem 1.1 Assume that Q is ergodic and let ¢ € RZE and D € RAM®) . Then,
writing lim; s .o for lim,_,¢ lims_,q lim,_,o,

1
lim inf  liminf — log IP [ sup |Q(t,y) —nz — Dt| < én (1.3)

7,0,e—=0 |[y—nz|<en M—00 NT t€[0,nr]

1
= lim sup limsup—IlogIP | sup |Q(¢,y) — nz — Dt| < én
7,6,6=0 |y _pg|<en n—oo NT te[0,nT]

Moreover, if a face A and a drift D € R® are fized, then the preceding limit in T is
uniform w.r.t to x in compact sets of A (see Definition 1.1). The common value of

INRIA



LDP FOR STAR NETWORKS: THE MIN POLICY 7

these limits is denoted by —L(xz, D) and

L(z,D) =Y I(DijllAij, pij(z)), (14)
iEA(DUA (2)

where

. D + /D? + 4
l(DIIA,u)dszlog< ks 2/\+ u)+/\+u—\/D2+4/\u20 (1.5)

stands for the cost that a M/M/1 queue with parameters A and u, starting far from
the origin, follows the drift D (see [13], for ezample).

Nx+nD T

Figure 2: Structure of the local linear bounds of Theorem 1.1. L(z,D) is the cost
per unit time for the path Q(t,y) (starting near nx) to stay in the neighborhood of
nx + Dt over the time ¢ € [0, n7].

Let us explain briefly the meaning of the different terms appearing in L(x, D) (see
equation (1.4)). Owing to the fact that the service rate p;;(z) tends to 0 when z;;
becomes null while z; V z; remains strictly positive, the arrivals must be cut on the
routes belonging to A;(z) in order to keep these routes in a neighborhood of 0. The
cost to do this is ), jeA(z) Aij- Since the arrivals are cut on the routes belonging to
A1(z), the routes belonging to As(x) are isolated from the rest of the network (see
Figure 1) and so by (1.1) this set of routes behaves as an ergodic star network (with
R = As(x)) since @ is ergodic by assumption. Hence the cost for these components
to stay in a neighborhood of 0 is null. Now locally, the routes belonging to A(z)
behaves as a set of independent M/M/1 queues with arrival and service rates A;; and
pij(x). The first term in L(z, D) represents the cost that this set of queues follows

RR n° 4143



8 Franck Delcoigne & Arnaud de La Fortelle

the prescribed drift D. The proof is done introducing a functional so called empirical
generator consisting of (); and of the join number of arrivals on routes belonging to
A(z) U A1(z). Large deviation bounds are first derived for this functional. Then
Theorem 1.1 is obtained by means of an adaptation of the contraction principle.
Theorem 1.1 states large deviation bounds for ergodic networks. However, at the
expense of cumbersome notation, it is possible to compute these bounds directly
without ergodicity assumption introducing a more detailed empirical generator. For
the ease of the exposition, the study was first performed for ergodic systems. We
show now how one can compute in general L(x,D). The discussion after Theorem 1.1
explains with hands that locally in time and space the set of routes belonging to
A§(z) behaves as an ergodic star network under the min policy and that this set
of routes is separated from the rest of the network. Moreover when @ is ergodic,
this sub-network is ergodic whereas when @ is not ergodic, it evolves as a possibly
transient star network under the min policy. Hence the main difficulty to overcome
is to compute the cost for an arbitrary star network under the min policy to stay in
a neighborhood of 0.

Proposition 1.2 Let Q be not necessarily ergodic. Then, for all 7 > 0

1
lim inf liminf —logIP | sup [Q(t,y)| < én
b,e—0|y|<en n—00 NT te[0,nT]

1
= lim sup limsup —logIP | sup |Q(¢,y)| < on| .
4e=0|y|<en n—oo NT tefo,nr]

The common value of these limits is denoted by —L(0,0) and

2
L(0,0) = inf (\/Az-j - ,/—Wjuz-j) = inf 3 10 Nij, pigri)  (1.6)
VeV ~ veV “
iJER iJER
where 1(.]|.,.) is defined in (1.5) and the set V by

Vd:ef {VERE:ZVUSC“ VZES} (17)
jES

Note that Proposition 1.2 is a bit stronger that the equality (1.3) of Theorem 1.1
applied to x = D = 0 since the time 7 is not necessarily short. Besides, the rate
function L(0,0) is not explicit, but is an algorithmically fairly simple problem since
it is a convex program in ,/Vjj.
Taking into account Proposition 1.2, one gets the following expression for L(z, D)
for a network without ergodicity condition:

INRIA
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Theorem 1.3 Let @ be not necessarily ergodic, x € ]RZE and D € RAM®) . Then
Theorem 1.1 is valid with the extended local rate function

L(z, D)= Y (DA, () + inf > 10Ny, pigvig)  (1.8)
ijEA(z)UA () €N (z)
where V' is defined in (1.7).

Now, the rate function Ir(.) for the sample path LDP is expressed as

T
Ir(0) et /0- L (p(t),¢(t)) dt, if ¢ is absolutely continuous, (1.9)

400, otherwise.

Remark : I7(.) is defined by all the values L(z,D), z € R and D € RM®)
(i.e. such that D;; =0, Vij € A°(x)). Indeed, assume that for some ¢, ¢;;(t) = 0
and ¢;;(t) exists. Since p;;(t) < ¢;;(s) for all s, this implies ¢;;(¢) < 0. Then,
necessarily ¢;;(t) = 0. Moreover, ¢ being absolutely continuous, ¢;;(t) exists
for almost all ¢.

"

Introduce the scaled process

Qr def{ Q(nt, [nz)), ¢t > 0},
n
and define the level set
3,(K) = {p e D ([0,T),RY) : Ir(p) <K, p(0) =z}. (1.10)
The main result of the paper if the following one:

Theorem 1.4 (Sample path LDP) Assume Q is ergodic. The sequence {Q%, n >
1} satisfies a LDP in D ([0,T],R¥) with good rate function Ir: for every T > 0,
T € RZE,

i) for C C RY compact, ®,(K) is compact in C([0,T],RY);
+ +
el

(i5) for each closed set F of D([0,T],R),

hmsup logIP [Q} € F] < —inf{Ir(¢), ¢ € F,¢$(0) = z};

n—oo

RR n°® 4143



10 Franck Delcoigne & Arnaud de La Fortelle

(i) for each open set O of D([0,T],R%),
1
lim inf  log P [Q5,, € O] > —inf{Ir(¢), ¢ € 0,4(0) =z},
T—00 ’

The organization of the paper is the following one. In Section 2, we introduce the
localized empirical generator and study various properties of the functionals I(.,.) and
I7(.). In Section 3, large deviation bounds are obtained for the localized empirical
generator from which Theorem 1.1 is derived using an adaptation of the contraction
principle. The proof of Theorem 1.4 is discussed in Section 4. Some technicalities are
postponed to Appendices A and B. Finally, we turn to the proof of Proposition 1.2
and Theorem 1.3 in Appendix C.

2 Localized empirical generator, entropy and the rate
function

2.1 Localized empirical generator

Take =z € ]Rf and D € RA®) . We are interested in computing large deviations
bounds of the form (1.3) (i.e. linear bounds as presented in Figure 2). In order to
prove Theorem 1.1, we introduce a functional which allows one to measure how the
different arrival rates should be modified in order that the rescaled process Q7 follows
a prescribed drift D. Moreover, the explanation exposed just after the statement of
Theorem 1.1 suggests that the transition rates of routes indexed by As(x) should not
be modified and so it is useless to measure the arrivals on routes belonging to Ay(x).
Let us introduce the localized empirical generator at point x as well as suitable state
spaces associated to this process:

Definition 2.1 (Localized empirical generators) Let A be a face and denote

o A;i(t), the number of arrivals on route ij till t;
e the restriction AMt) &< (Aij(t), ij € AUAy);

1 _
o GM = (;AA(t), w) , the localized empirical generator on the face A.

The set TA of localized empirical generators is the set of elements (A%, D) with D €
RR satisfying
(i) ai; > 0, Vij € AUAq,

(ii) aij — Dy >0, Vije AUA,. 21)

INRIA
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The space T'® is equipped with the distance d defined by
d(G,GNE Y ey —ajl+ > Dy —Diyl,  VG,G eTh.
1JEAUA, IJER
The inequalities (i) and (ii) in (2.1) refer respectively to the mean number of arrivals
a;; and to the mean number of deconnections per unit time a;; — D;; being positive.

Since it is difficult to analyze at first the behavior of Q(¢) as in (1.3), we shall first
establish large deviation bounds for the event

B (2,G) < {Gﬁ@ € B(G,6), sup |Q(t,y) —nz —Dt| < 6n} (2:2)
” te[0,nT]

where B(G), 6) is the ball of center G and radius § (within the metric space (T®), d)).
As it will emerge, strong constraints must be imposed on G in order that the event

E:&y(m, G) occurs at a large deviation scale. More precisely, the arrivals must be

cut on routes belonging to A(z):

Lemma 2.1 Take z € R} and G = (4,D) € TA®) such that D € RM®) . [f there
exist m and p such that

Tm =0, and z,>0, and ap, >0,

then the event E;"gy(x, G) almost never occurs at a large deviation scale, i.e:

1
lim limsup— sup logIP [E(") (m,G)] = —00. (2.3)

[
T,&,E—)O n—oc NT \y—nm|<6n T:0Y

Proof : In fact, on Eit”g’y(w, G) the service rate on route pm tends to 0 when the

different limits are taken. Since on E;"g y(x, @), the arrival process is not cut on route

pm, the cost to keep the component pm of the rescaled process near 0 is infinite.
Details are provided in Appendix A. [

Lemma 2.1 states that in order to prove large deviation bounds for the localized
empirical generator, it will be sufficient to deal with the following subspace of TA®):

Definition 2.2 G* denotes the set of localized empirical generators (A, D) such
that:

(i) D e R,
(’L"i) aij = 0 and aij — D,‘j >0, Vije Al, (24)
(iii) a;; > 0 and a;; — D;; >0, Vij € A.

RR n°® 4143



12 Franck Delcoigne & Arnaud de La Fortelle

In this setting ?A will represent the closure of GA.

Owing to Lemma 2.1, it is sufficient to deal with empirical generators satisfying (ii).
In order to prove the large deviation local bounds, it will be sufficient to deal with
empirical generators such that arrival and service rates are not cut, for ij € A(z),
hence condition (iii). A simple continuity argument will allow to extend the bounds

obtained for G € GA®) o G € EA(w).

2.2 Correspondence between localized empirical generators
and star networks

Let G = (A,D) € ?A be a localized empirical generator. It is associated a unique

localized star network (S\ij, Rij(y),y € RZS) by the relations:

(i) S\ij = 045, Vij € AUA;

(ii) S\ij = )\ij; V’L] € Ag,

(iii) jiij(y) = Nij — Dij, Vij € AUA;, Vy € RR

(iv)  fii(y) = pij(y),  Vij € Ay, Vy € RY.
Let us describe the behaviour of this network when it starts from z (with A = A(z)).
In this case, the routes belonging to Ay behave as a star network of the type presently
studied and the parameters of the routes belonging to this set are left unchanged.
Moreover, they are independent from the rest of the network. Indeed, if 45 € Ay

then z;; = 0 for all k£ such that ik ¢ Ay (actually ik € Ay, see Figure 1), hence the
constraints imposed on G insures that A;; = 0. Hence

i Hj - c
pij(Q(s)) = Qij(s) A , Vij € Aj(x)
Y Y Zz’keAg Qir(s) ijeAg Qjk(s)
proving the asserted independence. Moreover, the network consisting of the routes
belonging to Ag is ergodic when the initial network is. Indeed, for all ergodic channel
i (see Figure 1),

(2.5)

> e Y sy <o
g igers P jigen, Fi Ges M
Besides, routes belonging to A behave like independent M/M/1 queues up to the

initial conditions whereas the routes indexed by A; remain null. Now, the parameters
have been chosen so that:

INRIA



LDP FOR STAR NETWORKS: THE MIN POLICY 13

Lemma 2.2 Assume that Q is ergodic. Let z € RY, G = (A, D) € GM®) g localized

empirical generator and denote IP the law of its associated star network. Then, for
all T,

lim inf liminfP [E®)(z, G) N {Aj(nT) =0, Vij € Ai(2)}] = 1.

6,6e—0|y—nz|<en n—00

Proof : The proof is omitted: it is a classical fluid limit. [ |

2.3 Entropy

Definition 2.3 Let z € R, R(z) = (\ij, pij(z)) denotes the generator of the star
network at z, G = (A, D) € GM% be q localized generator and (j\ij,/]ij(y),y € ]Rf)

its representation as a star network. The relative entropy of G with respect to R(x)
18

HG|IR=) = > L(XglAi) + Ip (sl i ()
ijEA(z)UA1 ()

where I,(v||A\) is the relative entropy of Poisson processes of intensities v and A
defined by

def

Lv|X) % vlog 5 — v+ (2.6)
with the convention % =0 and 0log0 = 0.
The entropy has an easy interpretation in terms of information theory: it can be
defined as the mean information gain. H(.|[R) is decomposed as the sum of the
information gain for the arrivals I, (As;||Ai;), the information gain for the service
time Ip(ﬂZ]H/LZ](JZ)) Note that Aij = Ip(OH)\”) and that ,uij(ac) = jtij; = 0 for all

ij € Ai(z). Hence Ip(fis||pij(z)) = 0 for all ij € Ai(z) and these terms do not
appear in the expression of the entropy.

Lemma 2.3 For fized x, the entropy H(.||R(x)) is continuous on EA@).

Proof : It is an easy consequence of the expression (2.6). [ |

RR n°® 4143



14 Franck Delcoigne & Arnaud de La Fortelle

2.4 The local rate function L(z, D)
Definition 2.4 The local rate function L(x,D) is defined by

L(z,D)¥ inf H(G|R(z)), VD ecRM®, (2.7)
GESy i) (D)

where f(z) GAM=) 5 RAM®) s the projection fa@)(G) = D.

It appears that L(z, D) is the cost for a set of M/M/1 independent queues indexed
by A(xz) U Aq(z) to follow the prescribed drift D when the queues are far from all
boundaries?. The Aij represent the intensities of arrivals to these queues whereas
the intensity of departures of the queues belonging to the set A(x) [resp. Ai(z)] are
given by p;i(x) [resp. 0]. A simple computation yields

2
DI, 1)  Dlog (D+ v g +4A"> A+ pu—VDEr >0

for the cost that a M/M/1 queue with parameters A and p follows the drift D (see [13],
for example). Using this remark and the identity (0||A,0) = A, one can deduce the
explicit representation (1.4) for L(z, D) (which is equal to (2.8) under the constraint
Dij = pij(a:) =0 for ¢j € Al(:c))

In equations (1.4) and (2.7), L(z, D) is only defined for D € RM®) . In order to study
the properties of the rate function Ir(.), it is convenient to extend the definition of
L(z, D) for all D such that D;; > 0 for all ij € A°(x) by

Lz, D)E Y U(DyllAg, pij(z)). (2.8)
ijEA(T)UA1 (x)

In the rest of this section, a number of useful properties of L(z, D) are derived. Note
that L(z, D) is a rate function derived by the contraction of H(.||R(z) and that these
properties could be derived taking advantage of this fact. Nevertheless, in this case
it is simpler to use (2.8).

Proposition 2.4 The local rate function L(x, D) possesses the following properties.

(i) It is positive, finite, strictly convex and continuous with respect to D such that
D;j > 0 for allij € A(z). It has compact level sets;

20r equivalently this is the cost for a set of independent random walk in Z to follow the drift D.
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(ii) there exists M € R such that,
1
L(z,D) > S||D||log ||D||,  Vz € RE, V|D|| > M;

(#i1) for a fized D and a prescribed face A, L(x,D) is continuous for x € A (see
equation (1.2));

(iv) L(z, D) is jointly lower semi-continuous w.r.t. z and D.

Proof : Properties (i) and (ii) are obvious from (2.8).

(iii) is clear from (2.8) noting that the functions p;;(z), ij € A, are continuous for z
belonging to the face A. Moreover, Ai(z) = A; is constant for z € A.

Let (z™,D™) tends to (z,D). First, it is clear that for n large enough, A(z) C
A(z™) and also A(z) U Ai(z) C A(z™) U A1(z™). Hence, since [ is positive, for
sufficiently large n,

Lz™,D™) > " UDF | Nijs pij(a™)). (2.9)
ij€A(z)UA ()

Now, Aj; > 0 (since ij € R) so that I(.[|As,.) is continuous. Moreover p;;(z™) —
pij(x), Vij € A(z) U Ai(z). Therefore the right part of (2.9) converges to L(z, D)
and the lower semi-continuity (iv) is proved. ]

2.5 The sample path rate function Ir(.)

In this section, we verify that the rate function Ir(.) (see definitions (1.9) and 1.10))
possesses the usual properties.

Proposition 2.5 The rate function I7(.) possesses the following properties.

(i) Assume IT(p) < K for some K. Then, for all € > 0, there exists 6 > 0 inde-
pendent of ¢ such that for any collection of non overlapping intervals [t;, ;1]
in [0,T] with Ej tjiy1—tj =0,

D i) — et <6
i

(i) Ir(.) is lower semi-continuous in (D([O,T],Rﬁ),dd) ;
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16 Franck Delcoigne & Arnaud de La Fortelle

(ii1) for C C RY compact, U ®,(K) is compact in C([0,T],R¥);
el

() consider a function ¢ € AC([0,T],R¥) with Ir(p) < co. Then, for all € > 0,
there exists o € PL([0,T],RY) such that:

(a) de(pe, ¥) <€,
(b) Ir(pe) < Ir(p) +e.
Proof : One proves (i) using Proposition 2.4 (ii) in a way similar to [13, Lemma 5.18].

In order to prove the lower semi-continuity of Ir(.), (i) shows it is sufficient to
consider sequences of absolutely continuous functions. Since on C([O,T],Rf), the
metrics d. and dg are equivalent, one can use d.. Now, using Proposition 2.4 (ii),
the fact that L(z, D) is lower semi-continuous in (z, D) and convex with respect to
D by Proposition 2.4, (ii) is proved by means of [12, Theorem 3 of Section 9.1.4].

(iii) is a consequence of (i) and (ii) (see [13, Proposition 5.46]).
The proof of (iv) is a simple adaptation of [3, Proposition 5.1 (iv)]. |

Remark: The points (ii) and (iv) imply that for ¢ € AC([0,T],R%) with
IT(p) < oo, there exists a sequence {¢n, n > 1} with ¢, € PL([0,T],R}) for
all n and satisfying

lim d.(pn, ) =0 and lim Ir(p,) = Ir(p).

n—o0

3 Large deviations bounds for the localized empirical
generator

In this section, we aim at proving the following theorem:

Theorem 3.1 Let z € R¥ and G = (4,D) € EA(E) be a localized generator. Then

_H(G|R()) = lim inf liminfilogIP[E(“) (a:,G)]

7,6,6e—=0 |y—nx|<en N—00 NT 05y

1
= lim sup limsup— logIP [E(") (z, G)] ,

T,6,6—>0‘y_n$|<€n n—soo NT T’(s’y

where E:g,y(a:,G) is the event defined in (2.2). Moreover, if a face A and a drift

D € RM are fized, then the preceding limit in T is uniform w.r.t to x in compact sets
of A (see Definition 1.1).
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3.1 An exponential change of measure
Fix an empirical generator G = (A,D) = (Nij, fiij(y),y € RY) € ?A(x). Let us
describe how IP can be obtained from IP. For, denote by

e N, the number of jumps of the process till £.

o Q(k) = {Qi;(k), i,j € S}, the embedded Markov chain® at time k € N.
Define

e the mapping h : Z7f X ZE — R by

)\.. ~
rlog)\—? ify —x =r¢; and \; > 0,
ij
def i
h(z,y) = S log Z”Eg if y —x = —ej; and fi;(z) > 0,
ij
L0 otherwise.

e the compensator K : Z% — R by

K@) % 3 gla,y)(he9 - 1) (3.1)
yEZZ_2
= > (S\ij — )\ij) + ) (ﬂij(w) - Hz'j(iv))-
iER iJER

e and the process

Ng—1 ¢
M, & exp{ > (QK). Qk+1)) —/ K(Q(s)) dv}.
k=0 0

Note that the compensator is always bounded, so that M; takes only finite values.
Since K has been exactly defined so that?

Ny—1
K(z) = %IE [exp{ kz_o h(Q(k,:B),Q(k + 1,33)) }]tzo,

3We shall distinguish between discrete and continuous time by using k for discrete and s or ¢ for
continuous time.

4Note that the derivative is independent of A, so that it is dropped.
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18 Franck Delcoigne & Arnaud de La Fortelle

it is easily checked that the derivative of IE[M,;] at ¢ = 0 is null. Then using
the Markov property, one can get that the derivative is null for all ¢ > 0, so that
IE [M;] = 1. Using again the Markov property, this proves that IE [M,|Fs] = M,
for all t > s > 0, hence {My, t > 0} is a martingale w.r.t. the natural filtration F;.

Then define a new probability measure by

P[B] £ E [IipM], VBEF.

It is a matter of routine to show that under 113, X is again a Markov process. In fact,
under IP, the system behaves like a star network where the arrival and the service
rates at node ¢j are respectively given by A;; and fi;;(y) (whence the notation).

Remark : The probability measure IP is not necessarily absolutely continuous
with respect to IP. This is the case for instance if for some ij € R, \; ij =0
(whereas \;; > 0).

"

3.2 Proof of the upper bound of Theorem 3.1

Since IP is not necessarily absolutely continuous with respect to ]1~3, in order to prove

the upper bound, we introduce a sequence of change of measure {]TD(W), n > 0} such
that

/127]7) >0 and hm ui’;) = ,U/z]( x), Vij € A(z).

In this setting, {M{™, ¢ > 0} is the martingale defining P with respect to IP and
R (z,y) and K™ (z) are the functions used to defined M{™ according to Section 3.1.

Now, P and IP are mutually absolutely continuous and,

n ("7) -1
P [ ;gy(x G)] [H{Ei?g,y(w,g)} (Mg]T)) : (3-2)
Let us majorize (M%?T))_ E;"gy(x,G) when |y — nz| < én. First, recalling

j\ij = )\ for ij € Ay and fi;;(y) = pi(y) for ij € Ay UAy and y € ]RE, one
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has the following bounds:

Npr—1
- Z ™ (Q(k), Q(k + 1)) (3.3)
i . A
< —nr Z flij log Y + Z Aijlog Y
ient) sup p(Q(s)) eA(EToAL( Xij
J s€[0,n7] JEA(z)UAL(Z)
i A
+nTd Z log o J Q6) + Z log%
iGeA®)  selomr] "V iEA@UA ()
Moreover the compensator K is bounded in 3.1 by
/ K™ (Q(s)) ds (3.4)
0
< a7 Z (AP = Xij) +n7 Z ( () SEIEIET]MJ(Q( ))).

ijEA(x)UA1 () 1jEA(T)
Besides, on E;”gy(x, G), for ij € A(x) one has
OZ(LEZJ -6+ SDZ'j) Cj(wij -6+ SDz'j)
- >
i@ y)) 2 = s (z; + 6+ sD;)*
Ci(zij + 6 + sDyj) A Cj(zij + 6 + sDyj)
(i — 6+ sD;)* (xj — 6+ sDj)*t
Hence, on Eié)y(a:, G), we have for ij € A(x)
0 < pij(z) = lim inf  liminf inf p;(Q(s,)) (3.5)

7,0,6—0 |[y—nz|<en M—00 s€[0,n7]

i (Q(s,y)) <

= lim sup limsup sup p;(Q(s,v))-

7,6,6=0 |y _ng|<en n—00 s€[0,nr]

Finally, bounding M using (3.3), (3.4) and (3.5), majorizing ]I{E(n) (@) by 1 and
T,6,y\"?

taking into account the order in which the different limits are taken, the representa-
tion formula (3.2) yields

1
lim limsup— sup log]P[E(") (m,G)]

7,0,e—0 pn—soco MNT ly—nz|<en 7,0,y
(n) ~(n)
z -
= D0 glog 3t = NP+ hy = D i log s — i)+ g (o).
ijEA(x)UA () ij€A(x)
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20 Franck Delcoigne & Arnaud de La Fortelle

The proof of the upper bound is concluded letting 7 tends to 0.

3.3 Proof of the lower bound of Theorem 3.1
Take G € GM®) and denote the event (appearing in Lemma 2.2)

F) (2,G) & E&)(x,G) N {Aij(nt) =0, Vij € Ay()}.

Although IP is not absolutely continuous w.r.t I’[V), by definition of GA®), iij > (0 and
fiij > 0, Vij € A(z) so that IP is absolutely continuous w.r.t IP on FT(:"S),y(x, D) and

P B, (,6)] > P [F5,(2,6)] > el M P (£, @.6)].

By Lemma 2.2, P [Ff:;y(x, G)] tends to 1. Therefore, reversing the inequalities
obtained for the upper bound yields

1
lim liminf — inf logP |E") (z,G
Jim fmint | inf og P [0, 0, @)
S O i B
> = Y Ajlog T =N+ — Y i log 29 — jiy; + pij(x).
. Aij y pij(z)
JEA(z)UA1(z) ijEA(T)

This concludes the proof of the lower bound when G € GA@) . Consider G € EA(w).
For any 6 > 0, there exists G’ € GM®) and §' > 0 such that B(G',é') C B(G,5).
Hence

1
lim liminf—  inf 1og1P[E;"gy(x,G)]

7,0,e—0 n—00 NT |y—nz|<én

1

> I Tminf—— inf loglP B} (2,G")] = ~H(G'|R()).
T;lSIl,ICILO oo nrT nyrglkafn 8 7,6 ,y(w’ ) (G| R(=))

Since this is true for any G’ € GM®) arbitrary closed to G, by continuity of the entropy

(see Lemma 2.3), the lower bound of Theorem 3.1 is proved for any G € ?A(w).

The uniformity of the limit stated in Theorem 3.1 is easily checked. Nonetheless,

this uniformity is clear as far as x evolves on compact sets of some face A. Indeed,

if z;; goes to 0 for some ij € A, then p;j(x) possibly vanishes and difficulties can
appear (see Lemma B.1).
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Proof of Theorem 1.1 Now Theorem 3.1 implies the large deviations local bounds
of Theorem 1.1. Moreover, if a face A and a drift D € R? are fixed, then the limits
in (1.3) in 7 are uniform w.r.t to z in compact sets of A. The proof relies on a simple
adaptation of the contraction principle, similarly to the proof of [3, Theorem 4.2].
Details are omitted. u

4 The sample path large deviations principle

Using Markov property, Theorem 1.1 and the continuity of L(z, D) with respect to
x € A(D) for fixed D, we start proving large deviations bounds for the probability
that the process stays near some linear path.

Figure 3: The structure of the bounds for the proof of Theorem 4.1.

Proposition 4.1 (Linear bounds) Let z € R¥ and D € R® satisfying = + DT €
R . Denote ¢ the function such that ¢(t) = z + Dt for all t € [0,T]. Then

sup [Q(,y) — nep(t)] < én
te[0,T]

—Ir(p) = lim liminf 1 inf logIP

§,e—0 n—oo 1 |y—nz|<en

1
= lim limsup— sup logIP | sup |Q(t,y) — ne(t)| < in|.
660 nooco M ly—nz|<en te[0,T

Proof : First, note that A(p(t)) = A(D) for all ¢ €]0,7[. The bounds obtained in
Theorem 1.1 can be used in all intervals of the form |7, T — 5[ where 7 is a positive
constant.
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Upper bound Fix 7 and denote by {¢;} the partition of [n,7 — 5] such that

def

t; €+ AT where AT £ (T — 2)/K and K € N is fixed for a while; let

;& ©(t;). Introduce a sequence of numbers 0 < éy < ... < 6g. Then using the

Markov property at times ¢; (as suggested in Figure 3), we get:

sup logIP [ sup |Q(t,y) — ne(t)| < é1n
ly—nz|<bon t€[0,T]

K-1
< Z sup logIP | sup |Q(t,y) —nz; —nDt| < §ipin| .
i—0 |y—nw;|<éin t€[0,AT)

For the sake of brevity we introduce the notation

= of 1o 1
I(tp,t1) & lim limsup — sup logIP | sup |Q(t,y) — np(t)| < én
6,e=0 n—ooo N ly—nep(to)|<en t€[to,t1]

which, combined with the previous bounds yield:

1,00,7) < 37 I(ti, tisn)-
1=0

Fix 7 > 0. The linear path ¢(t) pertaining to a compact set of A(D) for all ¢ €
1, T — [, Theorem 1.1 (applied for each I(¢;,t;1+1)) ensures that there exists K
such that for all K > K,

1,(0,7) < —ATKZ (L=, D) - 7).
0

Letting first K tends to infinity and then <y to 0, one obtains using the continuity of
L(.,D) (see Proposition 2.4 (iii))

- T=n
1,(0,T) < —/ L(p(t), $(2)) dt.
n
The functional I7(p) being finite, the upper bound follows letting 7 tends to 0.
Lower bound As for the upper bound, the bounds obtained in Theorem 1.1 are
used in an interval of the form |n, T —5[. Using additionally Lemma B.1 dealing with

the intervals [0,7] and [T"— n,T| when 7 tends to 0, the proof of the lower bound is
similar to the upper bound one. Details are omitted. [ |
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From linear paths to LDP The sample path local bounds of Theorem 1.4 are
now proved for linear paths (Proposition 4.1). There are some steps to reach the
LDP, which we outline here.

First, the local bounds are extended to piecewise linear paths (i.e. for ¢ belonging to
PL([O,T ],]Rf)) Using the Markov property and bounds as described in Figure 3,
the proof looks very much like that of Proposition 4.1.

Second, the local bounds are extended to absolutely continuous paths (i.e. for ¢
belonging to .AC([O, T],]RZE)) with finite entropy, using the remark of p. 16 and the
properties of Ir.

The next step is to prove the exponential tightness of {n_lQ(nt, [nz]), n > 1}
over finite interval of time (uniformly for z belonging to a compact set). Finally
Theorem 1.4 is proved. These last two steps use various properties of the rate
function Ir and Proposition 2.5. The reader is referred to |7, Section 5] for details.

Appendix A Proof of Lemma 2.1

Lemma 2.1 Take z € R and G = (4,D) € M@ such that D € RA®) when
zij = 0. If there exist m and p such that z,, = 0, ©, > 0 and ap,, > 0, then the
event E;"gy(x, G) almost never occurs at a large deviation scale (see equation (2.3)).

Proof : The proof uses a change of measure as described in Section 3.1, which we
keep the notation of. Let the parameters \;; and fi;;(y) be chosen so that

Xij > 0, Vij,
fiij(y) = fii; > 0,  Vij, Vy € RE,
Dij = Xij — fiij, Vij.

The probabilities IP and IP are mutually absolutely continuous and so that the rep-
resentation formula (3.2) is valid with M,,,;. Let us majorize M_! more explicitly
on E{)(x, D), on which the following rough bounds hold.

Npr—1

- > 1(QK),Q(k +1))
k=0

flij
1ij (Cs A Cj)

< nTt Z(S‘” +9)

log

5.
log i‘ + (fizj + 6)
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For the term due to services on route pm, remembering that fipy, > 0, Zp, = 0 (since
Zm = 0) and so Dy, > 0, one has the following bound at least when ¢ and 7 are
sufficiently small (since z, > 0),

Npr—1

= > WQMK), QE + D)) (k1) @(k)=—epm}
k=0

fipm(nzp — | Dp|Tn — 6n)
popmCp(Tn Dy, + 1)

< —n7(jipm — 6) log
Now, note that all quantities in the compensator K (z) (see (3.1)) are bounded w.r.t.

z, hence there exists Ky < oo such that K(z) < K, for all z € R¥. Combining the
previous inequalities yields

— logP [ET,é,y(x, D)] = —log e []1 5 <z,D)}MW]

- i 5 i
< Aii + 6)|log =2 ii + 6)|log ——2——
LY ijEpm
y fipm (zp — | Dp|T — 6)
- —6)lo + K.
(Mpm ) g ﬂpmcp(T-me +6) +

Taking into account the order in which the limits are taken and using the fact that
Zp > 0, fipm > 0, one can conclude since the right hand side tends to —oo. [

Appendix B Irreducibility matters

- ! .

Figure 4: Different cases for the Lemma B.1.

In the proof of LDP bounds for linear paths (Proposition 4.1), we can use the local
bounds of Theorem 1.1 since it is required that D belongs to RA®) (hence cases (a)
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and (b) in Figure 4 fit with Theorem 1.1). The beginning or the end of a linear
path are the two sole points where this is not necessarily true (see cases (c) and (d)).
Nevertheless Lemma B.1 proves that there is no extra cost for entering or leaving a
face (at a large deviation scale). Hence there is no irreducibility® problem (at a large
deviation scale) with the star network.
For the sake of brevity we shall denote

Eé”éy(ar,D) = sup |Q(t,y) —nz — Dt| < ény,
” te[0,nn)

Lemma B.1 Let z € Rf and D € R? satisfying x + DT € RZE. Denote by ¢ the
function such that ¢(t) = z + Dt for allt € [0,T]. Then

. .. 1 . (n) _
77,}5}?—{0 lim inf n Iy—vlzg\f«n log IP [E"’(s’y(x, D)] =0 (B.1)

. . . 1 . (n) _
i it t |l [ - D)] <0 @

Proof : Tracing back where the limitation D € RM®) comes from leads to (3.3): it
is necessary that p;;(Q(s)) be bounded away from 0, uniformly over [0,n7]. Since
the service rate is only changed for ij € A(x), equation (3.5) fix the problem, hence
the limitation.

This analysis allows to solve the case (c) in Figure 4) which only happens when eziting
a face (i.e. Dj; > 0). It is easily checked (using a change of measure as in the proof of
Theorem 3.1) that one can modify A;; and p;;(z) so that the path follows a drift D.
The cost is less than cutting the service to 0 (for a cost I,(0||pij(x)) = pij(z) < 00)
and putting the arrival rate to D;; (for a cost I,(D;j||Aij) < oo because A;; > 0).
Since the finite cost is multiplied by a time 7 decreasing to 0, we get equation (B.1)
(case (d) does not apply to (B.1)).

The case (d) is much more difficult to handle. Note that D;; < 0 and z;;+ D;;T = 0,
hence p;j(z + DT) = 0. A rough analysis similar to the case (c) shows that it is
necessary to increase the service rate to at least —D;; > 0. But the cost per unit
time to do that is I,(—Dj;||0) = oo in the neighborhood of  +DT'. So it is necessary
to get more precise bounds.

Denote z' & (T — 7). First we shall only focus on the set R’ of routes ij for which
z;; > 0 and zj; + 7T = 0. In the other cases, the above discussion shows that the
cost to follow D;; is finite (say bounded by C).

®This feature is not obvious, since the intensities p;; () are not bounded away from 0).

RR n°® 4143



26 Franck Delcoigne & Arnaud de La Fortelle

We shall denote by Féfg’y(a:, D) the event when g;;(¢,y) jumps downwards once, and

only once, over the time interval [k|DZ-;1|,(k + 1)|Di;1\), for all k < nn|D;j| and
all ij € R'. When n is large, it is easily checked that Fn(né) y(ﬂc,D) is included in
E;:gjy(x, D). Without loss of generality, assume also nzj; + ne/2 < y;j < nzj; + ne.
In this case, the g;;(¢,y), for ij € R’ never reach 0 over [0,nn]. This assumption is

necessary so as to focus on F\" (z, D), since g;; can not jump downward if it reach

7,6,y
0: it protects F;’"g ,(z, D) from being the empty set.
When |y — nz'| < en, on A;"‘)Sy(a:, D) (hence on Fn(’gy(:c, D)), there exists a constant
K;; independent of n, 7, é, € satisfying

pij (Q(s)) 2 pigai(s)= = - (B.3)

Now we introduce the change of measure:
Xij £0, and ji(2) € pyKi; V2 €RE, Vij € R,

with the same Kj;; as in (B.3). Since all intensities A;j, pij(2), j\ij and fi;;(z) are
bounded, the compensator K (z) in (3.1) is bounded, say by Ky. The new probability
measure (defined as in Section 3.1) IP is absolutely continuous w.r.t IP so that

(n) —Cnn -1
P [En’é’y(:v,D)] > e=Cnif [Mnn]l{p,gjgy@,n)}] . (B.4)
Moreover, the martingale M, is bounded on Fn(:':s),y(:v, D) by
Noap—1 Py
log My < nnKy + Z Z log (%) I[{Qij(k-l-l)—Qij(k):—l}' (B.5)
k=0 ijeR! MU(Q( ))

We used the fact that there are only downward jumps on Féng y(:z;,D), so that the
arrival rates do not appear. In (B.4), Q(k) is the state of the process after the k-th
jump (counting all jumps): for the coordinate ij we denote by T,:] the time of k-th

jump. On Fn(j‘é),y(x, D), the embedded chain is deterministic coordinate by coordinate,

ie. ¢;;(T}’) = yij — k. This means that

Pig o M i (B.6)
pif(QTY)) ~ nijaii(TP)Kij — maijKe(ai; + €/2 = k/n)
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using successively the bound (B.3) and the assumption y;; > nz;; + ne/2. Inequali-
ties (B.6) yield, on F) (z, D).

7,8,y
Nypy—1 .
-1 Mg
n 1og(7)11 o)t
kz_% J;Z Q) ) Mt )-as =1}
nn|Dij| ~
< - Z] log +6/2—k/n)
,u’Z]K’L]
. 77|Dz\ ii(zh, +€/2 —u
noos _/ N og Pl F 2w (B.7)
0 pij K
Finally, using (B.5) and (B.7), the bound (B.4) is transformed into
hnm 1nf log]P [Eé"gy(x, D)]
n|D u\ T +€/2—u
Z (C+K+’I]+Z/ MZJ / )du
ijeER’ 'MZJKZ]
The bound (B.2) follows easily and thus Lemma B.1 is proved. ]

Appendix C The transient case

C.1 Proof of Proposition 1.2

The main point is to prove Proposition 1.2. As in the ergodic case, the proof relies
on four steps: the introduction of a suitable empirical generator, the association of
a star network to each empirical generator, the proof of large deviation bounds for
empirical generator and finally the proof of Proposition 1.2 using an adaptation of
the contraction principle.

C.1.1 Empirical generator

Let us introduce a functional which allows one to measure how the different arrival
and service rates should be modified so that the rescaled process Q7 stays in a
neighborhood of 0. This process is a bit different than the one defined in the ergodic
case (see Definition 2.1). It takes into account the sole case z = D = 0, but in the
transient case.
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Definition C.1 The empirical generator Gy is the functional defined by

G = (%A(t), % /0 t v(Q(s))ds)-

where v(z) = (vij(x), i,j € S). The set I' of empirical generators is Rf x V; its
elements will be denoted by G = (A,v). It is equipped with the distance d defined by

def
d(G,G)E Y aij —ajjl+ > vy —vil, VGG €T.
1JER iJER
In order to prove Proposition 1.2, in a first and main step, large deviation bounds
are established for the event (similarly to (2.2))

B} (G) 2 {Gur € B(G,6), sup Q1) < bn)} (1)
” te[0,nT]

where B(G, ¢) is the ball of center G and radius 6. Roughly speaking, when vy, =0
the service rate are cut on route pm and so some constraints must be imposed on A.
More precisely

Lemma C.1 Take G = (A,v) € T'. If there exist m and p such that
Vpm =0, and apy >0,

then Ei”;y(G) almost never occurs at a large deviation scale, i.e:

1
lim limsup — sup logIP [E(") (G)] = —00.

T,0,e—=0 p—ooo NT ly|<en T8y

Proof : It is enough to select a change of measure where the transition rates are
changed only on route pm. Choose Apm, and fipm(y)

Apm = Gpm,
N . C C
Npm(y) = ,Upmypm_p A —m, Yy € Rﬁ,
Yp Ym

where [iy, is an arbitrary strictly positive number. Then IP and P are mutually
absolutely continuous and

1 a I
lim limsup — sup logIP [E(") G ] < —a (10 L 4 1o ﬂ).
dim lim sup 27 sup log r6.5(G)| < —apm(log Mo 18

The proof is concluded letting fip,, tends to +oo. [
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By Lemma C.1, it is enough to deal with the following subspace of I'.

Definition C.2 G denotes the set of empirical generator (A,v) such that

(i) a;j =0 when v =0,
(Z’L) Z]- Vi; < C;, Vi.

G stands for the closure of G.

C.1.2 Correspondence between empirical generators
and star networks

Let G = (A,v) € G. Tt is associated arrival and departure rates:

S\ij & Qij, Vij ER
~ ef . C C ..
fiij(y) = ﬂijyijj A y_j_]I{yij>0}7 Vij € R, Vy € RY,
i j

where fbii =
Y 0 otherwise.

X'L ..
- def{ ﬁ Vij such that v;; > 0,
Then (S\ij, fiij(y), y € R%) simply describes a star network under the min policy
where the arrivals intensity and the duration of calls on route ij are respectively
given by A;; and fi;;.
Similarly to Lemma 2.2, we now prove:

Lemma C.2 Let G = (4,v) € G and denote P the law of its associated star net-
work. Then Q is ergodic under IP. Besides, for all T,

lim inf liminfP £ [ =1. (C2)

6,e—0 |y|<en nm—00

Proof : Since G € G, the ergodicity condition (1.1) are easily checked for (5\1-]-, fij ),
so that @ is ergodic under IP. Moreover a straight application of the ergodic theorem
yields

.1t S\ij .
tliglo 7, v (Q(s))ds = e vij, Vij. (C.3)
Equation (C.2) is thus just a statement about fluid limits. ]
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C.1.3 Entropy and local bounds

Definition C.3 (entropy) Let G = (A,D) € G be an empirical generator and
()\ij, ﬁ,ij) its representation as a star network. The relative entropy of G with respect
to R, the generator of the initial star network is

HGIR) = Y (5 (lhg) + I (i llvigns))
iJER
where I,(v||A\) is the relative entropy of Poisson processes of intensities v and A
defined by
def v , . 0
I,(v||A) = vlog S + A with the convention 0= 0 and 0log0 = 0.

We are ready to state large deviation bounds for the empirical generator

Proposition C.3 Let G = (A,v) € G be an empirical generator. Then

~H(G|R) = lim inf liminfilogIP[E(") (@)]

6,6—0 |y|<en n—oo MT 7.y

1
— lLim sup 1imsup—1og]P[E<"> (G)],

6,5—»0‘y|<€n n—oo MNT 7,0,y

where E™)

T,é,y(G) is the event defined in (C.1).

Proof : The proof is similar to the one of Theorem 3.1 and will not be repeated.
Note simply that the lower bound is first proved for G € G using in particular
Lemma C.2. It is then extended to all G € G using the continuity of the entropy H.
|

Proof of Proposition 1.2 It is derived from Proposition C.3 and from Lemma C.1
by means of an adaptation of the contraction principle as in [3, Theorem 4.2|. Details
are similar to the proof of Theorem 1.1 and thus omitted. Note that

L(0,0) = (i;IéfEH(GIIR)

Taking G = (4,v) € G and minimizing w.r.t A yields (1.6). |
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C.2 Proof of Theorem 1.3

In Proposition 1.2, we have discussed how to treat the main difference with the
ergodic case, that is the calculation of the cost for the routes belonging to As(z) to
stay in a neighborhood of 0. Indeed, using the same change of measure defined by
IP in Section 2.2 as well as the asserted independence between routes belonging to
As(z) and the rest of the network under IP when the network starts from z, Theorem
1.1 and Proposition 1.2 yield

1
—L(z,D) = lim liminf— logIP l sup |Q(t,z) —nz — Dt| < 6n]

7,6,—0 n—oo NT te[0,n7]

1
= lim limsup —logIP | sup |Q(¢,z) — nz — Dt| < én
7,6—0 p—oo NT te[0,nr]

Using the same type of arguments as in Lemma B.1, one can prove that

1
lim  inf liminf — logIP [ sup |Q(t,y) —nz — Dt| < én

7,0,6—=0 |y—nz|<en N—00 NT te[0,nT]

1
= lim liminf —logIP | sup |Q(¢,z) — nz — Dt| < én
7,6—0 n—oo NT te[0,n7]

and
. ) 1
lim  sup limsup—IloglP | sup |Q(t,y) —nz — Dt| < én
7,6,6—0 ly—nz|<en m—oo NT te[0,nT]
1
= lim limsup —1logIP | sup |Q(t,z) —nz — Dt| < én
7,050 nooo NT tE[O,nT]
This concludes the proof. [ |

Remark : At the expense of heavier notation, this theorem could have been
derived at once as in Section 3 studying the following more detailed empirical
generator

L= (1407 [ o (@)is, @)

where vp, (o) = (vi5(y), i) € A2(z),y € RF).
*
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