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Abstract: For a class of dynamical systems, with uncertain nonlinear terms considered
as “unknown inputs”, we give sufficient conditions for observability. We show also that
there does not exist any exact observer independent of the unknown inputs. Under the
additional assumption that the uncertainty is bounded, we build practical observers whose
error converges exponentially towards an arbitrary small neighborhood of the origin. For
the general case, when the system might be not observable with unknown inputs, we build
polytopic observers providing time-varying bounds (depending on the uncertainty bounds)
on the state variables. We illustrate these results on a biological model of a structured
population.
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Observateurs pratiques et polytopiques pour des
systémes non-linéaires incertains

Résumé : Nous donnons des conditions suffisantes d’observabilité pour une classe de sys-
témes dynamiques avec des termes mal connus. Nous montrons qu’il n’existe pas d’observateur
exact classique; sous ’hypothése que l'incertitude est bornée, nous construisons un obser-
vateur pratique, dont ’erreur converge vers un voisinage arbitrairement petit de l’origine.
Dans un cas plus général, quand le systéme peut ne pas étre observable, nous construisons
des observateurs polytopiques donnant des bornes dynamiques (dépendant des incertitudes)
sur les variables. Nous appliquons ces résultats & un exemple de modéle biologique d’une
population structurée en stades ou en age.

Mots-clés : estimation robuste, observateur non-linéaire, entrées inconnues, observateur
pratique, observateur polytopique, modéles biologiques
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1 Introduction

In this paper, we are interested in the problem of observation of uncertain (partially known)
systems. Let us consider a nonlinear system on a domain Q, subset of R™ (n > 2), with a
scalar measurement y of the following form :

©: {32 [eo H0=m (1)

where C € M™*1(IR). We shall assume that the map (¢,z) — f(t,z) is measurable w.r.t to
t and Lipschitz w.r.t. z. When the map f is perfectly known and the system is observable,
one might be able to design an observer of the following form :

& = f(t,2) + K(t,%)(Ci —y)

with an asymptotic or even exponential error dynamics (under some additional properties,
see the “high-gain” observers in [4, 9]). The rate of convergence towards zero of the error
can then be adjusted, under good hypotheses, with the gain vector K.

We now consider the case when the function f is, in some sense, “uncertain”. Qur aim will
be to estimate the state variables, taking into account the uncertainty on the model. It is
often the case in modeling that some part of the models are not well known : for instance, in
mathematical models of biological systems [21], the analytical form of the involved functions

*INRA Biométrie, 2, place Viala, BP 93, 34060 Montpellier, France
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4 Rapaport and Gouzé

may be difficult to obtain; or some parameters can fluctuate with time in an unknown way.
Consider for instance the dynamics of a biological population structured in three age classes
(larvae, young adults and adults), whose stocks (or densities) are : (z1,z2,23) € RY :

.i‘l = —Q1r1 — M1 +T‘(t,$2,$3)
.i‘g = Q1T1 — OT92 —MoT2
.’i‘g = Q29 —M3T3

where the positive coefficients «; and m; represent respectively the growth and mortality
rates. The reproduction law r(t,z2, z3) is usually not well known but can often be assumed
to fluctuating over the time between two known functions r, 7 :

r(t, o, x3) < r(t, 2, 23) < T(t, 22, 23),

The only available measurement is the stock of the adults population : y(t) = z3(¢). What
can we say about the estimation of z; and x5 ? This example is studied in the last section.

More generally, we will suppose that the nonlinear map f is not well known, but is
functionally bounded, i.e. there exist known maps f, f such that :

ft,z) < f(t,z) < f(t,z), Y(tz)eRy xR" (2)

What are the classical approaches for observation when dealing with such an uncertainty ?

A possible approach to design robust observers with respect to the uncertainty on f is

to choose an arbitrary map f (bounded below by f and above by f) and to consider the
vector

w(t) = f(t,2(t)) — f(E,2(1)) ®3)
as a disturbance. Then, we can study conditions under which there exist observers that do
not depend on w (what is usually called in the literature observers with unknown inputs). For
the linear case, necessary and sufficient conditions for the existence of such observers (with
the same dimension as the state of the system) are known (see for instance Darouach and
al. [6]). But, for the nonlinear case, even when the system (S) is differentially observable
with unknown f, we show that there does not exist any ezact observer (see section 2).
Designing discontinuous or sliding mode observers is another available technique but the
convergence of the error requires restrictive matching conditions of the uncertainty (see for
instance [7]).

The most classical approach may be the linear optimal filtering or Kalman filter [1],
but under quite restrictive assumptions : the nominal system has to be linear, and the
disturbance w(t) must be a white gaussian noise. In its deterministic (or robust) version,
the disturbances have to fulfill an integral quadratic constraint [22].

Another approach could be to design an observer Z attenuating as much as possible the
effect of the disturbance w on the error e = Z — z. For this purpose, the H* filtering theory

INRIA



Practical and polytopic observers 5

proposes to study the following optimization problem (see Bagar, Bernhard [2]) : given 7 a
positive number and R a definite symmetric matrix, find an observer Z such that

sup / 2(t) — 2(6)| % — 12l dt <o.

Then, the solution (when it exists) leads to an error dynamics of the following form :
é=F,e+Gyw with F, Hurwitz.

When w belongs to L2, the error exponentially converges towards 0. Unfortunately, in our
case w does not necessarily belong to L? (which would imply that lim;_ ., w(t) = 0, i.e.
that the disturbance vanishes with time).

Nevertheless, it is easy to show that there exist sufficient conditions on the set F of
unknown f for the system (S) to be differentially observable with unknown f. When these
conditions are fulfilled, the problem is then to build an observer, that cannot be of the usual
form, as we have seen above. We propose to consider a weaker kind of observers than the
usual one, that we shall call practical observers, in the sense that we no longer require the
error to converge asymptotically towards 0 but to an arbitrary small neighborhood of the
origin. Then, we show that this is feasible when the uncertainty on f is bounded (i.e. f— f
uniformly bounded). B

For the general case (when the system might be not observable), our approach is based
on a dynamical interval analysis, in the spirit of the interval computation of solutions of
o.d.e. [5, 24] but with control theoretical tools : given guaranteed intervals on uncertain-
ties on the components of f, we compute guaranteed intervals for the variables in some
coordinates; we build therefore what we call interval observers (see [11]). In the original
coordinates, we obtain then a guaranteed time varying polytope for the unmeasured vari-
ables. For the differentially observable case, the asymptotic size of this polytope can be
made arbitrary small.

In the spirit, our approach is close to set-valued estimation techniques. For noisy discrete
time systems, there exist algorithms to compute recursively an exact or guaranteed set of
possible states (cf. [25, 15]); some of them are based on interval analysis (see [20]). For
continuous time linear systems, ellipsoidal techniques provide an effective way to compute
sets (see [3, 17]). For nonlinear systems, the set of possible states conditioned to past
observations can be characterized by a level set of the solution of a non-stationary p.d.e. [18]
or “information state” [13], but this approach does not seem to be very practicable due to
its infinite dimension.

Our aim is, at the expense of stronger hypotheses, to obtain mathematical conditions for
some kind of observability, to build explicitly observers as finite dimensional systems, and
to characterize their asymptotic behavior. The present work is a generalization of a simpler
case [23], where the uncertain functions depend only on the measurement.

RR n° 4079



6 Rapaport and Gouzé

What could be the advantages of such an approach, compared with classical ones, where
one seeks bounds on the norm of the error? Firstly, we are able to characterize in a more
subtle way the influence of the uncertainty on the dynamical behavior (cf. the decompo-
sition of f in section 5). Moreover, when the bounds on the uncertainties on the inputs
are provided independently on each coordinate (i.e. by intervals), we would like to use this
information. So we naturally seek guaranteed bounds on each coordinate of the unmeasured
variables (i.e. in terms of intervals or polytopes).

The paper is organized as follows: after some definitions (section 2), we propose condi-
tions for the observability with unknown inputs (section 3), compute practical observers if
the system is observable (section 4), and, if not, compute “polytopic observers” and study
their asymptotic behavior (section 5). Finally, we illustrate these results on an example
inspired by biology (section 6).

2 Definitions

We assume, without any loss of generality (see the remarks below), that the nonlinear system
(1) can be written in the following way :

(S) : {z' z féi+¢(tvx)v z(0) = xo reR" (4)

where A € M™*"(IR) such that :
Assumption A1 : The pair (A4, C) is observable.

Remarks :

1. If the system (1) is not defined on all IR™ or if ¢ is not Lipschitz w.r.t.  on all R™ but
only on the domain 2, then one can consider a Lipschitz extension of ¢ on all R™ (see for
instance the MacShane formula [19)]).

2. When the assumption Al is not fulfilled, it is always possible to choose a matrix A such
that the pair (A, C) is observable and define 9 (t,2) = ¥ (¢, z) + (A — A)z. Then, the system
(1) can be rewritten as follows :

(S) : {;7 z fgﬁ"'J(tax)a

We shall denote O the observability matrix of the pair (A4, C), S the anti-shift operator
and k(P) the condition number of a nonsingular matrix P :

C 0
0= : , 8= o , o w(P)=IP7[IP]]-
CAn! 1 0

INRIA



Practical and polytopic observers 7

Although solutions of the system (S) are well defined for ¥ which are only measurable
w.r.t. t and Lipschitz w.r.t. x, we shall consider, when studying differential observability
with inputs, a dense subset of smooth “inputs” ¢ (see Gauthier and Kupka [10]), for which
the map t — y(t) can be differentiated n — 1 times :

Assumption A2 : The set ¥ of unknown % is such that ¥ NC*~2(IRy x IR"*,IR™) is dense
in ¥ 1!

We define now a notion of observability (cf. [10]) that will be sufficient for our needs.

Definition 1 : For ¢ € ¥ N C"~2(IR; x R™,R™), consider the map :

o — Dy(t),a) = : ,

y ()
1. (8) is said to be differentially observable (of rank n) (for known ) € ) if and only if the
map z — I';(¢, z) is injective for any time ¢ and any ¢ € ¥ NC" 2(IR, x R™,IR™).
2. (8) is said to be differentially observable (of rank n) for unknown ¢ € ¥ if and only if
¥y 9 € TNCM ARy x R™RY), {Tu(y7,0%) = Tu(y",2") } = {a® =2"}

for any time ¢.

3 Observability with unknown inputs

It is easy to write down sufficient conditions for the differential observability for unknown

.
Proposition 1 : If
1. (8S) is differentially observable (for known i € ¥),
2. For any ¥%, ¥* in ¥ and (t,z) € Ry x R™,
CA (p*(t,x) —*(t,z)) =0 for alli €0,--- ,n—1,
then the system (S) is differentially observable for unknown ¢ € 0.

Proof For ¢ € ¥ NC" 2(IR; x R™,IR™), we have :

n—2 dk’l/}
I‘t(’(p,.’Ij) =0z + Z Sk+1O W(t,x)

1¢7»=2(IR4 x IR™,IR™) is the set of maps R4 X 1870 R™ continuously differentiable n — 2 times.

RR n° 4079



8 Rapaport and Gouzé

So, for 1%, 4* € T NC" 2(Ry x R",IR™), we have :

- b b o by NSkt (B b
k=0
n—2
dkz a dk a
= O(:c“—:cb)—i—ZSk“O ( d;i (t,z%) — dtw’“ (t,:cb))
k=0
n—2
dk a dk: b
+ Y stio (S e - D) =0
k=0

From condition 2, we have :

d a dk b
Zs’““o ( d;/; (t,2°) — d;ﬁ (t,xb)) =0.

Then,

Ty (9, 29) = Ty (¥?,2%) = O(z" — b ) + Z g+l (dd;ia (t, %) — d;;i“ (t,xb)> =0
k=0
= Tu(y* %) =Tu(y?,2°).

According to condition 1, (S) is differentially observable for ¢%, so ® = z®, thus the differ-
ential observability of (S) for unknown . g

Remark : Tt is clear that as soon as there exist two maps 1%, 9* € ¥ NC* 2(IRy x R™,IR")
and (t,z) € Ry x IR™ such that ¥2(t,z) — ¥°(t,z) ¢ ker(SO), then (S) is not differentially
observable.

As O is full rank, ker(SO) is of dimension 1, we consider now particular systems for
which the set ¥ has the following structure :

Hypothesis H1 : There exist a known map ¢ : Ry x IR — IR™ and a fixed vector d; in
ker(SO) \ {0} such that :

\V/¢ € lI]7 ¢(ta$) = (,D(t7 C'T) + 1ﬁl(tﬁL‘)dla \Vl(t,.’IJ) € IR+ x R™
where 1; are unknown scalar functions.
Remark : This hypothesis means that we consider systems in output feedback form :

% = Ax + ¢(t,y) (for which the observability of the pair (A, C) is a sufficient condition
to build an observer with linear error dynamics [12]) with an additional uncertain term that

INRIA



Practical and polytopic observers 9

belongs to ker(SO).

Corollary 1 : Under hypothesis H1, the system (S) is differentially observable for unknown
P ev.

Proof For any known ¢ € ¥ NC" 2(IRy x R",IR"), we have
n—2 dk(.p

— k+1

which is independent of 1. O being invertible, we have the following equality :

n—2

=071 (Ft(w OEDY 5’“+1(9dk—“0(t y)>
b dtk )

k=0

whose right member depends only on the measurement y(¢) and its derivatives, thus the
map = — [';(¢, x) is injective. Condition 1 of Proposition 1 is then fulfilled. Condition 2
is also fulfilled by hypothesis H1. So, by Proposition 1, (S) is differentially observable for
unknown ¢ € U. g

Under the hypothesis H1, we now naturally look for the existence of eract observers
i.e. dynamical systems in finite dimension of the following form :

3\ - z = f(tvz7y)7 Z(O):zo P p n
®: {1z fe e’ (p>n) 6)

with fmeasurable w.r.t. t and f,g Lipschitz w.r.t. (z,v), such that for any pair (zg, z9) €
R™ x IR?, the solution of the coupled system (S,S) verifies lim;_. , ||Z(t) — z(t)|| = 0 for
any unknown ¢ € 0.

Proposition 2 : Under hypothesis H1, there does not exist any exact observer for unknown

.

Proof An exact observer has to leave the manifold = g(z, Cz) invariant for any 1, which
implies, at points (z,y) where g is differentiable (by Rademacher [8] theorem, the Lipschitz
map ¢ is almost everywhere differentiable) :

Az + o(t,y) +¥rdi = g.f(t, 2,Cx) + g,C(Az + @(t,y) + ¢1d1)
or

-~

(I —g,C)(Az + o(t,y)) — 9. f(t, 2,Cx) = h1(g,C — I)dy

for any unknown scalar ;. So, necessarily dy € ker(g,C — I) i.e. d; = g,Cd;. But, by
hypothesis H1, C'd; = 0 which implies d; = 0, thus a contradiction. g

RR n° 4079



10 Rapaport and Gouzé

Remarks :

1. On the contrary to differentially observable systems with known inputs, for which it is
possible to build an exact observer under some additional regularity properties (see [9]), this
is not possible in the presence of unknown inputs.

2. For the scalar output case, it is not a surprise that there does not exist any observer with
unknown inputs, as the conditions found by Darouach and al. [6] are never fulfilled.

4 Practical observers

We assume that the hypothesis of Proposition 2 is fulfilled, so the system is differentially
observable with unknown inputs. Since an exact observer does not exist (cf. above), we build
practical observers, converging towards a small neighborhood of the actual state variables.

We consider observers Z for the system (S) as outputs of a family (indexed by K) of fi-

~

nite dimensional dynamical systems (S) of the form (5) parameterized by a vector of gains K.

Definitions 2 :

1. 7 is o weak practical observer if for any € > 0, there exists a (S) such that
V(zo,%o), 3T >0, ||Z(t) —2(t)|| <€, VE>T

The second definition imposes that the rate of convergence towards the ball of radius € can
be adjusted arbitrarily (with the gain K).
2. ¥ is a strong practical observer if for any € > 0, there exists a (S) such that

3A(e) > 0, V(o,Zo), [|2(t) —2(t)]| < e+ e V(||2(0) — 2(0)]| —¢)

with A\(e) — +o0o when € — 0.

-~

We shall now consider observers (S) of the following form :
7= A%+ o(t,y) + U1 (t,7)dy + K(CF — ) (6)
where the vector K and the function 121 have to be chosen.

When (A, C) is observable, it is well-known (see [14]) that A is similar to a companion
matrix : take
0

H=0"| i | and P=(HAH . A"'H),

INRIA



Practical and polytopic observers 11

then CH=CAH =...=CA" 2H =0and CA"'H =1. So
o) 1
1
OP =
1 *

P is non singular and we have :

0 ... 0 —a,

_ 1 0 : .

A=P1AP = ) ) C:CP:(O ... 0 1)
O 1 —ai

where X™ +a; X" ! 4+ ...+ a, = 0 is the characteristic polynomial of A.

We shall use the following notation for diagonal and Vandermonde matrices :

A1 0O D VISR Vot
A2 1 A ... At

Apgy = Voy =
O A, 1 Ay o At

We consider now the following hypothesis :

Hypothesis H2 : Under hypothesis H1, there exists a positive number L such that 1 is
Lipschitz w.r.t.  with constant L, for any ¢ € ¥. Moreover, there exists functions ¥, ¢,
measurable w.r.t. ¢ and Lipschitz w.r.t. x such that :

Vel ¢ (tx)<i(t,x) <P(t,z), Y(t,z) € Ry xR
and a positive number M such that ¢, — %, is uniformly bounded by M.

Remark : If the functions ¥ € ¥ are not Lipschitz with constant L globally on IR™, but
there exists a compact set K of IR™ which is positively invariant by (S) for any ¢ € ¥, then
one can consider instead of ¥ the set ¥ of unknown functions v defined as follows :

U(t, z) if ||z]| <r

J(tvl') = T
P (t,r—) if ||z|]| > r
|||

PYev

RR n° 4079



12 Rapaport and Gouzé

where 7 is a positive number such that £ C IB(0,r). Then, hypothesis H2 is fulfilled.

Proposition 3 : Under hypotheses H1 and H2, for any function {b\l measurable w.r.t. t and
Lipschitz w.r.t. @ such that ¥, (t,2) < ¢u(t,z) < Py(t,2), V(t,2) € Ry x R", K can be
chosen such that the system (6) is a strong practical observer.

Proof The matrix P~!(A + KC)P is in companion form for any K. If K is chosen such
that A + KC has n distinct real negative eigenvalues \,...\,, then P71(4 + KC)P is
diagonalizable by the Vandermonde matrix Vi, :

V{Aj}P_l(A + KC)PV{;j} = Ay
Make the change of variable :
z= V{,\j}P_lcc, zZ= V{/\j}P_lﬁE,
the dynamics of the error e = 2 — % is then :
¢ = Apjye + Wit z) — P1(t,8)Vin, P s
The hypothesis H1 provides :
0 1 1
Ody = O & dy=6H & P 'dy =6 0 o Vo, Pl =8|
: ; ;

Write A = min |\;|, we have :
J

Lilell < Flell + W (t,2) — (6.7
= =Alle|[ + [¥1(t,z) — ¥ (8,7
= lell + (Roa(t,2) — (6, B)] + Woa(4,8) — B (6, D))/l
< (X4 DIPVRY IValoDlell + Mymls| (by hypothesis H)

[[Vir, 3 P~ |

The coefficients of V{j\]l_} being rational functions in A; of degree less or equal to zero, we can

choose eigenvalues of the form A; () = O)) (where the set {)’} is fixed and  is a positive
number) to obtain :

Jim —X(6) + LI[PVE, (5)]1v/n]8] = —o0
So, for # large enough, e(t) converges exponentially towards the ball :

M +/né|

B|0,— :
—A6) + LIIPV,, (03] V19|

INRIA



Practical and polytopic observers 13

Define

p(0) = ||1DV{1 I My/nld| , then p(6) — 0 when 6§ — oo

MO _
—A(0) + LHPV{)\;(@)}“\/E‘ﬂ

The error in the original coordinates (x — Z) converges then exponentially towards the ball
1B(0, p(#)), which can be made arbitrary small by taking large values of 8. In the same way,
the rate of convergence can be made arbitrarily fast. g

5 Guaranteed polytopic observers

We relax now the hypothesis of differential observability and focus on obtaining guaranteed
estimates of z(t), conditioned to known bounds on the uncertainty.

Hypothesis H2b : There exists a positive number L such that any ¢ € ¥ is Lipschitz
w.r.t. z with constant L. Moreover, there exist known maps ¢, ¢ in ¥ and a number
M < +o00 such that :

{ Y(t,z) < Y(t,z) < Y(t, ),
[[0(t,z) — Y(t, z)|| < M,

Note : The operator < between two vectors of IR™ should be understood as a collection of
n inequalities between their coordinates.

Vi e T, V(t,z) e Ry xR

Remark : If the functions ¢ in ¥ are not globally Lipschitz but there exists a compact set
invariant by the system (S) for any ¢ € ®, then one might consider an alternative set ¥ of
unknown 1, as suggested in the remark after Hypothesis H2.

In order to simplify the writing, we shall use in the following the interval notation,
introduced in [20] : B
P(t,z) € [Pt x) = [Y(t, ), (2, 2)].

Then, considering the set of intervals of R™: I™ = {[£,£], (£,€) € R*™ | £ < £}, we can also
use the notation of interval computation on Z" : when F is a continuous map from IR™ to
IR™, the notation [¢] = F([p]) stands for [¢] = [¢,q] where :

g = min Fi(r), T =maxFyx) (i=1-m)
I E ) n€(p]

When p is function of time and [p(t)] = [p(t), P(t)], then [p] denotes by convention [p, p].

RR n° 4079



14 Rapaport and Gouzé

Lemma 1 : If a function ¢ : R" — R is Lipschitz with constant L, then the functions
¢, ¢ : R*™ — IR such that :

#([€,€]) = [9(£,8), 6(£,8)], VIEE eI

are also Lipschitz with constant L.

Proof Fix £ and consider &, &,

If $(§,&,) = 6(&, &), there is nothing to prove.

Assume that ¢(£,&,) > ¢(£,€;) (otherwise, we exchange the role of & and &,). Consider
& such that 8¢, &) = #(&). Necessarily, & € [€,&)\ [€,&]. Take now & € [€,]
such that ||¢& — &]| < ||€, — &,]| (for instance & = Proj[g’gll(gg)). Then, we have 0 <
3(6,86) — 8(¢,€) < 6(&) — 6(&) < Ll — & < LI& — &l So, ¢ is Lipschitz with

constant L, w.r.t. . In the same way, ¢ is again Lipschitz with constant L, w.r.t. £.
Exchanging ¢ by —¢, we obtain that ¢ is also Lipschitz with constant L. g

We consider again the matrix P defined in the previous section.

Definition 3 : For any 9 € ¥, we define the map :

y: (tz) = y(t,z) = P~ Yyt x).

Under Hypothesis H2b, the maps ~ are Lipschitz with constant ||[P~1||L and bounded by
two maps 7,7, measurable w.r.t. ¢ and Lipschitz w.r.t. z :

[y, 2),7(t, 2)] = D¢, 2) = P71 ([W](t,2)) (7)

such that 7 — + is uniformly bounded by ||[P~!||M.

Remark : The coordinates of v are precisely the decomposition of ¥ on the columns of the
matrix P :

Y(t,w) =Y wlt,x)AH
1=1

that could be written:

n

Y(t,e) =Y yilt,2)d;

=1

where the vectors d; belong to ker(S'0Q)\ {0}. We recognize in this decomposition the vector
dy of the preceding section. If the hypothesis H1 is fulfilled, then v, =0,i=2...n.

INRIA



Practical and polytopic observers 15

Definition 4 : For (y,[z]) € R x ™, we define the polytope in R™ :
Q[ ={ PV, 2|z € [d fn{z| Co=y}
and the set X C IR x Z™ of compatible (y, [2]) i.e. such that Q(y, [2]) # 0. We define also

the maps v~, vT :
[v~ .y, [2D. 7 (89, [2])] = ] Qy, [2]))

Proposition 4 : Under hypothesis H2b, given a vector K such that A+ KC has n distinct
eigenvalues A\; in R\ {0} and o compact set Xy of R™, then there exists [20] € I™ such that
Xy C PV{;\}}[Z(]] and, for any unknown initial condition x(0) € Xy and unknown ¢ € U,
the trajectory x(.) of the system (S) belongs to the time-varying polytope :

z(t) € Qy(8), [2](#),  vE=0 (8)

where [2](.) is solution of the interval observer :

. [Z] = A{)\j} [z] - V{)\j}P_le + V{Aj} [’7_(t7y7 [z])”y-l—(tvyv [z])]
©: { o = ©)

Proof Take [zo] € I™ such that X, C [zo] and consider :

[20] = V{)\j}P_l[xo]. (10)
Denote :
z = V{,\].}Pil.’t,
(z,7] = [¢], (11)

[V{)\j}:)ji(tﬂ/v [z]) ) V{)\j}:‘y/+(t7y7 [Z])] = V{)\j} [’77(7:7 Y, [Z]) ) ’Y+(t7 Y, [Z])] .

By hypothesis H2b, v is Lipschitz w.r.t. z with constant ||[P~!||L, and by Lemma 1, v* and
4~ are also Lipschitz w.r.t. (z,%) with constant ||[P~1||L. So, the second members of the
equations (9) are Lipschitz w.r.t. (z,%) and the solutions of (O) are then well defined as long
as (v, [2,7]) € X.

We have :
Lz—n) = AppE-2+ Vi G0 —(t1)
p where x = PV{_>\1}2
%(z —z2) = Apj(z—2)+ Vi, (@ 2) -5y, [2))
But, ( . )
. v 23 Vi (6, [2]) —a(tz) > 0
€QCrz7) = { Viuy (1(B2) =5 (4, ) > 0
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16 Rapaport and Gouzé

So, we have z — 3 > Ay »;}(Z — 2) i.e. the solution of (O) leaves " invariant. Furthermore,
we can write :

2E-2) > ApyE-2)

zel] = zeQEnl) = {°

dt
So, for any x(0) € Xo we have z(0) € [20] = 2(¢t) € [#](t), Yt > 0 and we conclude that

z(t) € Q(Cxz(t),[#](t)) and that the solution of (O) is well defined : (y(t), 2(t),z(¢)) € X for
any time t. g

—(z—2) > App(z—2)

Remarks :

1. This result means that, if we are able to obtain initial bounds for the state variables to
estimate, then we are able to build an interval observer, providing a guaranteed frame for
the state variables of the uncertain system. Of course, these initial estimates can be very
loose, and consequently not difficult to obtain.

2. The interval bounds of [v] in (7) and [2] in (10) when X, C [z,,Zo] can be computed in
the following way :

y(t,z) = %[P L@(t,2) + ¢(t,2) + [P (9 (t @) — (¢, 2))]
Vta) = 3 [P D) + ot ) — [P x) — (¢, )]
Z0 = 5[V, }P (To +zo) + [Vir, 3 PH(@o — zo) ]
2 = 5 [V P @0 + ) — Va3 PH(To — 29) ]

where | P~!| stands for the matrix whose coefficients are the absolute values of the coefficients
of the matrix P~1.
When the eigenvalues \; are negative, the maps 7% (¢,v, [¢]) defined in (11) are :

( rcrzl(a)% D%(t@) gzln[ ])'y (t, m)) ifi=1 mod 2
~ ~_ zeQ(y,[z z€Q(y,[2])
(’Y’L—I_(t7y7 [Z]), Vi (tv Y, [Z])) =

min t,z), max 7,(t,x ifi=0 mod?2
(zeQ(y,[Z])_’( ) aceQ(y,[Z])7 ( >>

3. We could have added a known function ¢(t, y) to the function ¥ (¢, x), as in hypothesis H1.

Of course, the proposed bounds can become unbounded with time. So, we give now
sufficient conditions that guarantee an asymptotic upper bound on the size of the set
Q(y(¢),2(t),Z(t)). We shall use the decomposition of ¥ mentioned above, that shows explic-
itly and gradually where the asymptotic bounds come from :

n

Tﬁ(’% ZI,') = Z 7i(t7 .T)dl

=1

INRIA



Practical and polytopic observers 17

where the vectors d; belong to ker(S*0) \ {0}.

The first step is already known : when only ~; is non-null, we are in the case of hypoth-
esis H1 :

Corollary 2 Under hypotheses H1 and H2, K can be chosen such that the size of Q(y(t), [2](t))
converges arbitrary fast towards an arbitrary small value.

Proof Write | =Z — z, we have :
=Nl + Y N7 Gy ) =7 (s [2), d=1...n (12)
i=1

As ker(SO) = span{H}, we have 7; = 0 and 7;” = 7, = 0 for j # 1. So, with A;
negative and X\ = min |);],
J

i < =X+ 67 (0 12D~ 37 (. [D)VA
X+ 1P + ZIPVG DV
(=X + K(P)LIVE IV -+ [P M7

As in proposition 3, we can choose eigenvalues of the form 6); and obtain the exponen-
tial convergence of the set Q(y(¢), [2](t)) towards a ball of radius arbitrary small (with an
arbitrary fast convergence), by taking large values of 6. g

IN

IA

Now we consider the next step, when ~ys is non null.
Hypothesis H1b : Vi) € U, ¢(t,z) € ker(S20), V(t,z) € Ry x R™.

Proposition 5 : Under hypotheses H1b and H2b, when L < (k(P)\/n)~1, for any ¢ >
0, K can be chosen such that the size of Q(y(t),[2](t)) converges arbitrarily fast towards

[0, M/((s(P)y/n)™" = L) + ].

Proof As ker(S20) = span{H, AH}, we have v; = 0 and 'y]T" =q; =0for j > 2in (12).
So

d - ~ — ~ ~

%“l” S _)‘”l“ + (’7;—(t7 Y, [Z]) - N (tv Y, [Z]) + )‘(’72 (tv Y, [Z]) - 'Y;(t7y7 [Z]))) \/E
=AU+ IPHIM + LIPVEL TN + X)vn
(=X + &(P)LIVLA A + Nyl + [[P7HIM (1 + N)v/n

IA

IN

From [4], if the n eigenvalues of A + KC' are chosen as A\; = \j(c) = —0o”, then

. -1
Jim [[VeZonll =1.
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18 Rapaport and Gouzé

So, when k(P)Ly/n < 1, there exists ¢ = X large enough such that p, = —O'—E—H(P)L“V{;\;(U)}H(l-f—
a)yv/n < 0, then [(t) converges towards the ball :

B (07 IIP‘lllﬂf;:|+0)ﬁ> 7

thus the convergence of Q(y(t), [2](t)) towards a ball of radius :

_ "C(P)HV{;\}(U)}“M(ZL +o)vn

Po =
l1o |
We have also :
lim =—00 and lim = M
ooo Ho = o—too " T T ((P)Wn) - L

Remark : The hypotheses of Proposition 5 imply that (S) is differentially observable for any
known ¢ € U : in the coordinates £ = P71z, (S) can be rewritten as follows :

§ = AL+t Pg)
y = C¢

Thus

’72(t7P£a) - 72(t7P£b)
0
Ti(y,2%) =Ty(h,2") = (€"—¢€)+ : =0

0
that implies that { = 5? for j = 2...n. There remains one equation in & . If we consider
the scalar function & — & + 72(t, P§), where the other coordinates of £ are fixed, it is
easy to see that this function is increasing (because v, is Lipschitz with constant ||[P~!||L
with L < (k(P)y/n)™') and therefore £f = £2. The two observers defined in Proposition 4
are then strong observers (when M = 0). Note that we do not require T'; to be a global

diffeomorphism neither the system (S) to leave a compact invariant, as it is required for the
exact convergence of the “high-gain” observers (see [10]).

The following steps (73 non null, ...) give unbounded dynamics when the eigenvalues be-

come large. Further work needs to be done for the determination of the optimal eigenvalues,
with respect to a compromise between speed and accuracy of the error.

INRIA



Practical and polytopic observers 19

6 An example : a biological model

Consider the dynamics of a biological population structured in three classes [21] whose stocks
are : (21,22,23) € 2 =1R3 :

T4 = —o1x1 —mMiT1+ T(t,.’l]’z,l’g)
.’i‘g = Q1T1 — OaT92 —MoT2
.’i‘3 = (222 —MN3T3

where the positive coefficients a; and m,; represent respectively the growth and mortality
rates. The classes could be age classes (i.e. larvae, young adults and old adults) or stages in
the life cycle. The same model exists within the metabolic domain [21].

We assume that the births in class x1 are produced only by the classes z2 and z3 (the
young and old adults) with a reproduction law of the classical Beverton-Holt type [21] :

T2 + 23

T(t, o, .Z'g) = a(t) m

a(t)>0,b>0 (13)

Note that the system leaves 2 invariant. We suppose that online measurements on the
stocks are available only for the adults population :

y(t) = z3(t), Vt>0
One can always choose loose bounds on initial values of unmeasured variables :
(0) € [z(0),7(0)].

For simplicity of notation, we shall write 8; = a1 + my, f2 = as + mo and B3 = mg.
Write then :

-5 0 0
A= aq —52 0 s C:( 0 0 1 )
0 a —f

For simplicity of calculi, we shall study only the case where
Bi=Pr=ps=B and oy=az=a with B>a>0.
Then, the matrix P is :
1/a* —B/a* %o
P=| o 1/a —28/a
0 0 1
6.1 Uncertainty on the reproduction law

In the reproduction law (13), the parameter b is assumed to be known but a(t) is unknown
and fluctuating over the time between two known functions :

a(t) € [a(t),a(?)].
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20 Rapaport and Gouzé

Then, the dynamics of the system can be written in the following way :

) T = Az +i(t,x)dy
(S): {y = Cx
with
1
di=1| 0
0

One can easily check that the pair (A4, C) is observable and d; € ker(S0O), so hypothesis H1
is fulfilled : the system is observable for unknown ;. Furthermore,

wl(tvx) € [%1(757 3027503%@1('579527953)]

where

(gl(t,$27$3)7al(t,.Z'Q,.{Us)) — (Q(t) o + 3 (¢ M)

b+x2+x3’a b+ zo + 73
with _
¢1(t’$2,$3) _%1(]571.273:3) S E(t) - Q(t) S M7

where M is a given constant, so hypothesis H2 is fulfilled. Consider then the matrix
00 a71k1
A+ KC=-BI+al| 1 0 alk
01 Oé_lk,‘3
We can fix the eigenvalues of A + KC to be Ay, A2, A3 with :
ki :(1(—1)“_10'1' (/Ll,ﬂg,,u/g), 1=1...3

where p; = (\; + )/« and o; are the symmetric functions of the roots :

o1(pa, iz, 3) = p1piai3
oo, 2y 3) = papie + pap3 + paps
o3(p1, iz, p3) = pn + p2 + p3

For any set {A;};=1..3 of distinct negative real numbers, A + KC is diagonalizable by
the Vandermonde matrix V7,3 and we can write the interval observer in the coordinates
2=V

.
N
Il

{ ; NZi — (ky + kaps + ksp?)y + 07 (8, v, [2,2]) 1 3
i=1...
i )\igi - (kl + k2,ui + k3ﬂ?)y + "zbl_ (taya [57 E])

|22,
I
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with :

3
i (t,y,[2,2]) ¥, (t%zmax{w%ziaw%éi})

1=1
3
¢; (t7 Y, [gv E]) = ﬁl <t7 Y, Z min{w2izi7 w2i§i}>
i=1

where w;; are the coefficients of the matrix V{;l_} :
2

P2+ ps
w21 = ——3
i+ pops — pafle — Hips3
B+ p3
w22 = 2
—py + H2p3 + i — p1p3
M1+ po
w2z = -

13 — pafiz + fi1ple — p1fi3

because ¥ 1 9, are non decreasing functions w.r.t. zs.

With the initial condition :

{ zi(0) = Z1(0) + max{uT2(0), piz5(0)} + iy(0)
2;(0) = 2,(0) + min{p;T(0), pizy(0)} + p?y(0)

the Proposition 4 guarantees that z(t) belongs to the polytope :
Qy(t), [2(t), 2(1)]) = {=| Vi3 € [2(t),2()] and w3 = y(t) }, V> 0.

and Corollary 2 ensures that the asymptotic size of this polytope can be reduced as desired
by taking large negative values ;.

Remark : In this example, the conditions of [6] are not satisfied.

Numerical experimentations :

a1 = 0.3, mp = 0
a = 03, mo = 0 =a=03, =03
msz = 0.3

[a,@] =[0.1,04], b=1
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0.5 0.7
— a(t) - y@®

0.45
0.65

0.4
0.6

0.35
0.3 0.55

0.25
0.5

0.2
0.45

0.15
0.1 0.4

0 5 10 15 20 0 5 10 15 20

Unknown input a(t) and observation y(t)

The eigenvalues \; have been chosen such that p; = —6*, which ensure reasonable values
for the norm of the matrix V{;l_}.
J

Simulation 1 : Sp(A+ KC) = {-1.1,-2.4, -6}

15— 1
\ — x1(t) \ — x2(t)
\ 0.9} 1
1 \
1 0.8F \
b \
~
‘. 07 ~
~
~
~ -
Seel 0.6
0.5 Se=- |
P 05} 4
’ S 1
1 -T== 04} -~
] 1 =
0 0.3
0 5 10 15 20 0 5 10 15 20

Unmeasured variables x1(t) and z5(t) with the guaranteed intervals
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0.7

0.65

0.6

N 0.55
x

0.5

0.45

0.4
15

x1 time
State trajectory in the (x1,2) plane, bozed by the time varying polytope

Simulation 2 : Sp(A+ KC) = {-2,-10,-55}

15

1

0.9

0.8

0.7

0.6

- —

0.5

0.4

0.3
0 5 10 15 20 0 5 10 15 20

Unmeasured variables x1(t) and zo(t) with the guaranteed intervals
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0.7

0.65

0.6

N 0.55
x

0.5

0.45

0.4
15

20
15
05 10

0 o
x1 time

State trajectory in the (x1,2) plane, bozed by the time varying polytope

We see on these simulations that the convergence of the observer is a practical one : the
asymptotic error is not equal to 0 but can be made arbitrarily small, taking large negative
eigenvalues A;. We see also that the effect of the unknown input on the width of the
guaranteed polytope is larger in the direction of the vector (100)’ (the first column of P),
which corresponds to the image of the vector (111)" by the matrix PV{;}.

6.2 TUncertainty on an harvesting effort

In addition to the uncertainty on the reproduction law, we consider that an uncertain mor-
tality or harvesting effort e(t) > 0 exists on the class x2 :

.’i‘l = —Q1r1 — M1 +r(t,x2,x3)
.’i‘g = Q11 — O2T9 —M2T2 — €(t)l'2
T3 = Qo2 —Mm3x3

where e(t) is bounded between two known functions :
e(t) € [e(t),e(t)] C [0, E™**], Vt>D0.

Moreover, it is easy to check that the variables are bounded (and non negative). With the
same notations as before, the dynamics of the system can be written :

(8S): {x = Az +i(t,x)ds + a(t, v)ds

y = Cx
with
0
do=11
0

INRIA



Practical and polytopic observers 25

One can easily check that do € ker(S20), so the system is not observable for the unknown
input 1. But hypotheses H1b and H2b are fulfilled :

Va(t, ) € [, (t, 32), Vo(t, 22)] = [e(t)w2,8(t)2]

and B
Po(t,w2) — U, (t,w2) < H™™

where H™?* ig some constant depending on the bounds on the variables, for instance H™2* =
Emaxgpiax (where ' is a global upper bound on z2). Then, a guaranteed interval observer
can be written in the coordinates z :

{ Zi = ANZi— (k4 kaps + ksp?)y + ¥, (6 y, T2) — pitho(t, 25) Z1 3
i=1...

Zi = Nizg— (ko + kopi + Kapd )y + 9, (8,9, 25) — pat, (¢, 72)
where

3 3
(T2, 25) = (Z max{wa;Z;, w2iZ2;} Z min{ws;Z;, waiz; } )
=1 =1

if the \A; are large enough (then the p; are non positive) and Proposition 5 guarantees
that the polytope Q(y(t),z(t),Z(t)) converges exponentially towards a bounded set when

E™2x < 1/(v/3k(P)).
Numerical experimentations : We used the same parameters as before with :

Em™ =0.25 and H™* =1.

0.5 0.25 0.6
— aQ — y@®
0.45
0.5
0.4
0.35 04
0.3 0.2
0.25 0.3
0.2
0.2
0.15
0.1 0.15 0.1
0 10 20 0 10 20 0 10 20

Unknown inputs a(t), e(t) and observation y(t)

Simulation 1 : Sp(A+ KC) = {-1.5,-5.1,-19}
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15

' o
1 0.7
0.6
0.5
0.4

0.3

0.2

,'--—----———--

0 0.1
0 5 10 15 20

Unmeasured variables x1(t) and x2(t) with the guaranteed intervals

o o
x1 time

State trajectory in the (x1,22) plane, bozed by the time varying polytope
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Simulation 2 : Sp(A+ KC) = {-3,-25,—-220}

15

0.8

T T

1 1

1 0.7y
1 1
1

0.6

0.5

0.4

0.3

0.2

7 TN e e e

0 0.1
0 5 10 15 20 0 5 10 15 20

Unmeasured variables x1(t) and x2(t) with the guaranteed intervals

0.7
0.6

0.5

0.3

0.2

014
15

0 o

x1 time

State trajectory in the (x1,22) plane, boxed by the time varying polytope

We see on these simulations that the system is not observable for the unknowns inputs :
even when taking large negative eigenvalues \;, there is always a residual error on the variable
x1, but the guaranteed polytope stays bounded.

7 Conclusion

We have studied the observability for unknown inputs for a class of nonlinear systems, for
which we proposed practical observers. For the general case, we have proposed guaranteed
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28 Rapaport and Gouzé

polytopic observers. In this work, we have considered that the measurements y(t) were
available free from any error. It is also possible to consider deterministic and bounded un-
certainties on the measurements : y(t) € [y(¢),y(¢)] using similar interval techniques. This
will be the purpose of a forthcoming work.

Acknowledgments : The authors would like to thank the G.d.R. Automatique (French
Research Program in Control Science) for its support.
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