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Abstract: We study the impact of random noise (queueing delay) on the performance of a multicast
session. With a simple analytical model, we analyze the throughput degradation within a multicast
(one-to-many) tree under TCP-like congestion and flow control. We use the (max,plus) formalism
together with methods based on stochastic comparison (association and convex ordering) and on the
theory of extremes (Lai and Robbins’ notion of maximal characteristics) to prove various properties of
the throughput.

We first prove that the throughput obtained from Golestani’s deterministic model [1] is system-
atically optimistic. In presence of light tailed random noise, we show that the throughput decreases
like the inverse of the logarithm of the number of receivers. We find an analytical upper and a lower
bound for the throughput degradation. Within these bounds, we characterize the degradation which is
obtained for various tree topologies. In particular, we observe that a class of trees commonly found in
IP multicast sessions [9] (which we call umbrella trees) is significantly more sensitive to network noise
than other topologies.
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Impact de la variabilité des délais sur les performances d’une session
multipoint contrélée par un mécanisme de type TCP

Résumé : Nous étudions 'impact de perturbations aléatoires (files d’attente) sur les performances
d’une session multipoint. Gréice & un modéle analytique simple, nous analysons la dégradation du
débit de la session dans le cas d’une source unique et lorsque le controle de congestion et de flux est
de type TCP. Nous utilisons ’algébre (max,plus) ainsi que des méthodes de comparaison stochastique
(association et ordonnancement convexe) et des résultats de la théorie des extrémes (caractéristique
maximale de Lai et Robbins) pour analyser les propriétés asymptotiques du débit d’une telle session
lorsque le nombre de récepteurs est grand.

Nous montrons d’abord que le débit obtenu par le modeéle déterministe de Golestani [1] est sys-
tématiquement optimiste. En présence d’un bruit dont la distribution est & queue exponentielle, le
débit de la session décroit en fait comme l'inverse du logarithme du nombre des récepteurs. Ce com-
portement est établi au moyen de bornes inférieure et supérieure explicites du debit. Nous étudions
aussi I’évolution du débit entre ces deux bornes en fonction de la topologie de ’arbre multipoint. Nous
montrons notamment qu’une classe d’arbres fréquemment rencontrés dans les sessions IP multipoint
[9] (et que nous appelons arbres parapluie dans ce qui suit) est particuliérement sensible au bruit.

Mots-clés : Controle de congestion, contrdle de flux, internet, multipoint, arbre, TCP, débit, algébre
(max,plus), ordre stochastique, ordre convexe, association, caractéristique maximale.
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1 Introduction

TCP-friendly congestion control has been advocated by the IRTF Reliable Multicast Research Group
in the past [13]|, where a TCP-friendly flow is a flow that competes "fairly" with TCP-connections.
Several recent papers focused on a TCP-friendly solution for the control of multicast [10, 11, 12]. In
particular, Golestani has made fundamental observations on multicast flow and congestion control in
[1] using a deterministic model.

The present paper goes a step forward from Golestani’s in providing an understanding of further
properties of TCP-like congestion control in a network with random noise. This step is of practical
importance in that it establishes the dependence of a multicast session throughput on the number of
receivers, and consequently refines observations realized with a deterministic model. Since multicast
deployment will most probably be pushed by single source applications with high bandwidth require-
ments and a large number of receivers, it is important to check whether TCP-like congestion control
does not in fact force multicast sessions to suffer very low bandwidth. Bhattacharyya et al. [16] ana-
lyze the impact of TCP-like congestion control on the throughput of a multicast session. They show
that for loss based additive-increase multiplicative-decrease algorithms, there is a severe degradation
of throughput for large multicast groups.

We generalize the findings in [1] and [16] by showing that even in the case of an ideal TCP control
where the flow control window size is kept equal to its maximal value, there is a severe throughput
degradation within a one-to-many multicast tree when the group size grows. Intuitively, the session
throughput is expected to decrease when the number of receivers increases for the following two reasons:

e Due to the stochastic assumptions, when a new receiver joins, it can add a new link whose
bandwidth is less than that of any of the links already present in the tree.

e Due to the fact that the congestion control mechanism is based on feedbacks stemming from all
receivers, slow receivers will "slow down" the sender.

In other words, the higher the number of receivers is, the more likely one of them is slow enough to
affect the global performance.

The influence of the tree topology on throughput that we establish analytically is another key
contribution of this work.

We choose to model a multicast session as follows: packets are sent by a unique sender, located at
the root of a tree of routers, to a set of receivers located at the leaves of this tree. This tree will be
referred to as the forward tree.

The packet transmission at the sender is controlled by a "TCP-like" congestion control mechanism
where each receiver sends acknowledgements back to the sender, and where the sender throughput is
controlled by a classicl sliding window mechanism.

We have chosen to model a homogeneous tree: each receiver is equally distant from the source, and
all the routers in the tree have the same service time distribution. This assumption allows us to design
a simpler model without losing the properties we want to observe.

The model captures congestion via the queueing delay that each packet experiences in each router
it passes through. In particular, the fluctuations due to the processing of packets of other (unicast
or multicast) connections sharing the same interface of the router are represented by random service
times for packets of the reference multicast connection. Our random service times are assumed to be
independent in time and space, and light-tailed (i.e. the tail is exponential). The queuing strategy
is assumed to be FIFO. Within this framework, the sender and the receivers are modeled as routers,
possibly with different mean delays and different distributions.

Since we are not interested in the effect of losses (but only in the effect of an ideal flow control
having reached its maximal window size), we assume that all routers have infinite buffers and consider
that the network is lossless and that the window size is fixed.

RR n° 3987
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All the assumptions that we make about the network (homogeneity), about transmission control (no
losses, window size always equal to its maximal value) and about noise (light tails) have been carefully
selected to provide an optimistic network environment. We will show that even in this favorable context
there is a severe decrease of the throughput when the number of receivers increases.

To the best of our knowledge, this work is the first to address analytically the question of multicast
session throughput degradation due to network noise (queueing delay), for different tree topologies,
in a TCP-like (single-rate) control environment. Although we limit this first study to some simple
cases, we believe that our mathematical methodology can be expanded to analyze more general cases
(e.g. adaptive window, heavy tailed noise, non-homogeneous trees or windows) as discussed in the
conclusion.

The paper is structured as follows: in Section 2, we build our analytic model on the (max,plus)
formalism [3, 4, 5]. In Section 3, an algebraic simulator is derived from the model. Simulations show
that the throughput obtained from Golestani’s deterministic model [1] is systematically optimistic.
We study throughput degradation for a large number of receivers and for different tree topologies.
We further generalize our simulation results with the help of the (max,plus) model. In Section 4,
we analyze the model using the notion of positive correlation (also called association), as well as the
notion of maximal characteristics (Lai and Robbins). In the presence of a light tailed random noise,
the throughput is shown to be bounded by functions that decrease like the inverse of the logarithm
of the number of receivers. This qualitative result explains the general shape obtained by simulation
for throughput degradation. Within these bounds, we characterize the fine structure of degradation
depending on the tree topology. We analyze three different families of tree topologies. First, we analyze
classical binary trees. We then consider a class of trees commonly found in IP multicast sessions, [9, 14],
which we call umbrella trees. We show that this class of trees is significantly more sensitive to network
noise than other topologies, and that in some cases, these topologies reach the upper bound. We finally
characterize the throughput degradation curve for a class of optimal trees called "reverse-umbrella"
trees. To make the paper more readable, the proofs are given in Appendix A-D.

2 (max,plus) Representation

We introduce first the (max,plus) algebra, show how it can be used to represent a network, and apply
this technique to multicast packet transmission.

2.1 Introduction to the (max,plus) algebra
2.1.1 Operations in Ryax

We consider the scalar algebra, namely, the set Ryax = RU{—00}, which we endow with two operations
that are different from the usual ones: the max operation (denoted by V) replaces the usual addition,
and addition, with the convention (Va € Ryax, —00 + a = —00), replaces the usual multiplication.
Note that this structure has all the properties required to make a commutative semi-ring: associa-
tivity, commutativity, neutral elements!, and distributivity (Va, b, ¢ € Ryax,a+(bVc) = (a+b)V(a+c)).

2.1.2 Ryax matrices

(Rmax, V, +) being a semi-ring, we can construct operations on matrices as in the conventional algebra,
with the addition of matrices obtained by term by term maximization, and multiplication defined by
the rule :

(AB);,; = max(Ay + By,;) (1)

Mor vV, —oo that we will denote by &, and for +, 0 that we will denote by e.

INRIA
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We will denote by € the matrix filled with £ everywhere, and I the identity matrix (e on the diagonal
and ¢ everywhere else).
Norm Let ||.| denote the matrix norm:

4] = max(as,)

2.2 (max,plus) Representation of a Network

We illustrate the (max,plus) modeling of a network via a simple example : a point-to-point end-to-end
connection through routers R;,1 < i < L, with window flow control with a fixed size window W (this
model was introduced in [6]). The sender is modeled as the first router, and the receiver as the last
router. The multicast model we will present in the next section is an extension of this network model.

Each router is represented as a FIFO queue with an infinite buffer? and a service time for each
packet of the connection. The service time includes the waiting time due to the processing of packets
of other connections present in the routers. Assuming that the multicast session reaches a steady state,
it is natural to make the assumption that the service times in all routers are identically distributed.
We will also assume service time independence for the sake of simplicity, i.e. service times on different
routers in the network are independent and the sequence of service times on a router is made of
independent and identically distributed random variables.

We denote by 357? the service time of the m-th packet on router 7, and :1:%) the time when router ¢
has completed the processing and forwarding of packet m.

e Router R;,¢ > 1 starts processing packet m as soon as it has finished processing packet m — 1,
and the upstream router has forwarded packet m. Once a router R; starts processing packet m,
it takes sg,? to complete processing. sg,? actually includes the processing time of all the packets
of the other connections interleaved between packet m — 1 and packet m. So we have for ¢ > 1 :

all) = (565:?_1 Vo) 4 50,

e The sender R; sends packet m as soon as it has finished with packet m — 1, provided that the
window control allows packet m to be sent. So that we have :
) = (aly vl ) + s,
Let X,,, be the vector of dimension L with entries (x%))lgig L, and Y,, be the block-vector of dimension
LxW with blocks X, Xon—1, ..., Xm—w+1. We can capture the dynamics of the network by a (max, +)
linear recurrence

(2)

Yy = vector with all its coordinates equal to e
Y, =P,Y,._1 form>0

where the matrix P consists of the different square blocks (each of dimension L) as indicated below:

Sm € ... € Wy
I E ... € ¢
P,.=1] € I
. €€
€ € I &€

%Note that buffers being of infinite size, no loss occurs. As a result, the window size is assumed to reach its maximal
value and to remain constant. The effect of congestion is expressed by the variations of service times in routers.
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e W,, represents the window control mechanism. In this case we have (W,,); ; equal to € if j # L
and to 37(7%)—%---4-5%) fori=1,...,L and j = L.

e S,, represents the forwarding mechanism in the network, and (S,,); ; is generally given by the
maximum over all paths leading from ¢ to 7 of the sum of service times for packet m on the path
from router j to router i (including both i and j).

Note that if service times are independent and identically distributed, then the matrices (P, )., are
also independent and identically distributed; we can apply Corollary 1 shown in appendix A, which
implies the existence of limy,—co min = ~ in [; and with probability 1. + is called the Lyapounov
exponent of this sequence of matrices. Since ||Y,|| represents the epoch between the times when
packet m started at the sender and arrived at the receiver, v is therefore the inverse of the asymptotic
throughput, which can be defined as the long term averaging of the instantaneous throughput at which
packets are sent by the source (i.e. average throughput since the beginning of the session).

In the following section, we extend this model to multicast.

2.3 Representation of Multicast Flow Control
2.3.1 Multicast extension of the network model

In our multicast model, a single source broadcasts packets over a unidirectional homogeneous tree to
N receivers. Homogeneous means that the path from the sender to each receiver is statistically the
same for all receivers; i.e. there is the same number of routers and the service time distribution is the
same for all routers of level /). Note that homogeneity allows for quite complex tree structures, where
nodes may have different degrees depending on their level in the tree.

Acknowledgements are forwarded through a backward tree which is a mirror version of the forward
tree up to the source. The backward tree is chosen to be functionally independent of the forward
tree for the sake of simplicity. Similarly, the way back from a receiver to the sender is statistically
the same for all receivers. The implosion problem (see [1]) is taken care of via the aggregation of
acknowledgements in each router of the backward tree.

Packet transmission is controlled by a unique fixed size window (instead of various receiver based
windows). This is a major difference with Golestani’s model. But, given his conclusion that each
receiver should choose a window size proportional to its distance from the source, it makes sense to
consider a unique window in the case of a homogeneous tree.

This model is illustrated in Figure 1, in the case of a binary tree.

We denote the window size by W , the number of receivers by N, the number of routers in
the network by L, and the depth of the (forward) tree by D. For all receivers i, we denote by

s%(l’i)), cees s%(QD’i)) the service times of packet m in the routers® from the source to itself via receiver
1. Let

S = s 4y [P 3)

denote the round trip time of packet m on the route that contains receiver i.

2.3.2 (max,plus) Representation of the Model

The network model described above can be written in a way similar to that of Section 2.2. Let X,,, be
the Ryax vector of dimension L where entry ¢ is the departure time of packet m from router 7. The
first entry corresponds to the first router of the network (the source), and the last entry corresponds
to the last router at the end of the feedback tree, just before the control loop. Let Y, be the block
vector of dimension LzW built on top of (X,,)men and which captures the history of X, in the same

3f(d,i) is the index of the d-th router on the path that leads from the source to itself via receiver i (cf figure 1)

INRIA
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Broadcasting Tree Feedback Tree

Figure 1: The “broadcast and feedback” graph

way as above. We have the same (max,plus) linear system for Y,, as in Equation (2), though with
different matrices.

P, has exactly the same shape as before. The block W,,, is the same as before and the block S,,
has the same interpretation. S; ; is the sum of the different service times along the path from 7 to j in
the tree if this path exists (¢ if it does not).

The assumptions that we make about service times and the block structure of (P, )men allow us
1Yol

to deduce from Corollary 1 the existence of the Lyapounov exponent, which is given by lim,, .o 5>

and represents the inverse of the average throughput.

3 Algebraic Simulation

The algebraic simulator described below does the same job as a discrete event simulator. Its advantages
are twofold: (a) since this type of simulation consists in products of matrices and vectors, it is of low
complexity, which is important when the number of receivers becomes large, and (b) the same formalism
is used in the simulation and in the analytical sections.

3.1 Description of the Simulator

As explained in the previous section, the average throughput is obtained through the Lyapounov
exponent, which can itself be obtained accurately by simulation. In practice, we can estimate v by
|Yar]|/M for a large enough value of M. The algebraic simulator picks different random values for
service times in the routers, then builds the matrix P, and multiplies the current value of Y by P.
After M steps, we have Yy, and hence a reasonable approximation of 4 (if M is chosen properly).
Preliminary convergence studies that we made reveal that M = 400 steps is sufficient to analyze the
throughput behavior. As far as the simulation is concerned, there is a trade-off between accuracy and
computational complexity: the estimation of the Lyapunov exponent requires the simulation of a large
number of packets (or equivalently the computation of the product of a large number of matrices),
whereas that simulation of multicast groups with a large number of receivers requires the manipulation
of large matrices. In order to simulate large multicast groups, we had to accept moderately accurate
estimates (i.e. rather large confidence intervals) for the Lyapunov exponents. This choice results in
rather non-smooth shapes for most of the simulation curves produced below. However, this is sufficient
to estimate the general shape and the relative ordering between the curves in question, as we see in
the next section.

RR n° 3987
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In the remaining of this paper, we discuss simulation and analytical results in term of average
throughput rather than of in term of Lyapounov exponent.

3.1.1 Modeling the Topology

Let us first consider a complete binary tree with height D and with total number of leaves 27).

To study the throughput dependency on the size of the group, we need to vary the number of
receivers of a multicast session. For every binary tree of size 2P, we consider a set of N “active”
receivers which is a subset of the leaves of the complete binary tree (N < 2P). For this we simply
set the service times to be equal to zero in all the routers that do not forward packets to an active
receiver. So we can use the general equations for the complete binary tree with these special values of
the service times to analyze the sub binary tree corresponding to this subset of IV leaves.

CcL FO UL

Common links Fan-Out Unicast Session at the end

Figure 2: Trees generic topology

The above technique allows us to study any kind of tree topology that can be represented by the
generic topology described in Figure 2. These topologies consist of three parts :

o A first set of C'L links which is common to all receivers.

e A Fan-Out whose total depth is FO. The first step of this fan-out is k-ary (degree* k for the
first node of the fan out), all the other fan-outs are binary (degree 2 everywhere else).

e A unicast transmission of depth UL (unicast in the sense that there is no replication of the packet
in this part of the tree, and no link shared by different receivers).

Using this parametric representation of tree topologies, we simulate three types of trees represented in
Figure 3. In addition to complete binary trees we consider:

e Umbrella Trees: these trees end by a long unicast transmission after a short fan-out (large value
of UL). The limiting case is one path from the source to all receivers. It characterizes multicast
trees where receivers share few links only. This kind of topology is often found in IP Multicast
sessions [9, 14].

o Reverse Umbrella Trees: packets are forwarded first along a long common path, and then a short
fan out ends the transmission (large value of C'L). Intuitively this kind of topology is optimal,
as receivers’ behaviors differ only by few links.

These categories will be more precisely defined and analytically studied in Section 4.3.

4The method to emulate a k-ary fan out in binary trees consists in starting the binary expansion before the real fork
and in using appropriate values for service time ensuring that this represents the desired fork.

INRIA
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\ /

Umbrella Tree Complete binary tree Reverse Umbrella Tree

Figure 3: Fundamental types of tree topologies

Tree : CL=0, FO=6, UL=0
09 Window = 12 1

0.8 | 1

Throughput

0.7 i\ Deterministic Noise case
\ Light Tailed Noise case ------—-

06| T .

05 ! ! ! ! ! !
1 10 20 30 40 50 60

Number of Receivers

Figure 4: Average throughput vs. number of receivers in a binary tree with light noise.

3.2 Average throughput vs. Number of Receivers

This section analyzes the evolution of the average throughput with the number of receivers in a mul-
ticast group.

We start the simulation by taking one active receiver in a binary tree, and by computing the
associated (max,plus) linear recurrence on Y in order to estimate 7. Then we pick another receiver in
the tree, add it to the current tree and run the same type of simulation again (which gives the value
of ~ for two receivers). Then we progressively fill in the tree with more and more receivers.

We simulate different ways of filling in the tree. "Best Filling" consists in starting from receiver 0
(numbers refer to Figure 1) and taking at each step the "next" receiver in the order suggested by the
numbering. We also consider "Random Filling", where each new receiver to join is chosen randomly.

Simulation results are shown in Figures 4 to 10. The service times in the routers follow an expo-
nential distribution with the same parameter for each router in the network, so that the homogeneity
condition is satisfied.

Note that in homogeneous trees with deterministic service times, throughput does not dependent
on the number of receivers, as each receiver has the same round trip time and behaves synchronously
with other receivers in the multicast group. Each plot below includes the deterministic value of the
throughput as found by Golestani.

Figure 4 is obtained by simulating a complete binary tree of length 6 (CL = 0,FO = 6,UL = 0),
with a window of size 12. Each router of the tree has an exponential service time with average 1. The
feedback tree has a null service time on all routers.

The first important observation is that the average throughput decreases like the inverse of the
logarithm of the number of participants.

RR n° 3987
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Tree : CL=0, FO=6, UL=0
Window = 12
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Figure 5: Average throughput in the presence of bounded and unbounded light noises.

The significant throughput drop between 1 and 2 receivers can be explained by the homogeneous
nature of the tree which implies that the second receiver joins the tree with a path of length CL +
FO+4UL. Then the throughput keeps decreasing significantly until we reach 20 receivers. Between 40
and 60 receivers, the throughput degradation stabilizes at around 40% of the deterministic case. If we
refer to the throughput observed with 1 receiver, the maximum degradation is limited to around 25%.

The same kind of throughput degradation has also been observed in [16] under different assump-
tions.

3.2.1 Influence of the noise on the throughput

Before further investigating the shape of the throughput degradation, we have to study how this
degradation varies with network noise assumption.

Figure 5 shows throughput as a function of the number of receivers for service times belonging to
the class of (bounded support) truncated exponential distribution functions. Since the mean values
are not preserved by truncation of a given exponential density, the relative positions of the curves is
not particularly meaningful.

So, the most interesting remark to be made bears on the shape of the curves. We observe the very
same logarithmic decrease as in the bounded case. This is particularly clear when looking at the case
where the truncation threshold is large (i.e. equal to 5), which leads to throughputs that are quite close
to the unbound case. Thus, we can conclude from these curves that the shape of the degradation is not
bound to the exponential assumption per se. Our conjecture is rather that all distribution functions
with a tail bounded from above by a negative exponential function lead to such a decrease provided
variance is large enough. For heavier tails, (e.g. Pareto tails) preliminary results suggest that the
growth of the Lyapunov exponent is polynomial. So, the bounded support and the light tail cases are
qualitatively the same, at least when variance is not too small, and this generic case seems to be the
most favorable one when compared to heavier Pareto type tails.

3.2.2 Analysis of various network parameters

In order to understand the impact of network parameters on the throughput degradation, we vary
network parameters. Figure 6 shows how the throughput decreases for various tree depth values. Trees
being homogeneous, tree depth influences the throughput by the fact that each receiver joins the tree
with a path whose length is the maximum tree depth (i.e. CL + FO + UL). The deeper the tree,

INRIA
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deterministic noise case
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Figure 6: Throughput for different tree depths.
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Figure 7: Throughput with varying window size.

the faster the throughput decreases. We have chosen a default tree depth of 6 because it allows us to
simulate a sufficiently large number of receivers with still a good throughput accuracy.

In Figure 7, we vary the window size. As expected, we observe that the window size significantly
affects the throughput. We have chosen 12 as a default window size for our experiments because it is
a credible value, that it is close to the optimal throughput observed, and that it does not increase too
much the complexity of the simulations.

We finally check, Figure 8, the impact of the filling algorithm on throughput degradation. As
expected, randomly filled trees suffer a more severe throughput decrease than best filling trees. This
difference is easy to explain. In the random filling approach, adding a new receiver generally adds more
network links than in the best filling approach, where a new receiver systematically adds the minimum
possible number of links.
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Figure 8: Throughput with different tree construction approaches.
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Figure 9: Throughput in the case of umbrella trees.

3.3 Analysis of the Tree Topology

We now simulate the tree topologies described in Section 3.1.1 with window size equal to 12 and
with a random filling technique. The total depth of the tree is always equal to 6. We only vary the
value of CL, FO, and UL with the sum being 6. In a deterministic model, all trees of same length
would have the same performance. Figure 9 plots various umbrella trees and Figure 10 plots various
reverse-umbrella trees. In both cases, the binary tree case is given as a reference.

First, varying the topology of the tree significantly influences the throughput (up to 20% between
the best reverse-umbrella tree and the worst umbrella tree). The second observation is that reverse-
umbrella trees perform systematically better than binary trees, themselves performing better than
umbrella trees.

We also observe that the closer the fan-out is to the receivers, the higher the minimum throughput.
Thus, trees where receivers share fewer links are much more sensitive to the number of receivers
in the group. The throughput of an umbrella tree has already decreased to 60% of the deterministic
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Figure 10: Throughput in the case of reverse-umbrella trees.

throughput for 3 receivers, while a reverse-umbrella tree reaches the same throughput with 10 receivers.
This is an important observation as the current Internet topology favors umbrella trees [9, 14].

4 Mathematical Analysis

In this section we give mathematical arguments substantiating the average throughput degradation in
In(N) that was observed in the simulations. We propose a mathematical framework to evaluate and
compare the throughput in a predictable way depending on the tree topology and on the number of
receivers.

4.1 Mathematical Tools

In order to have more means to characterize the throughput in our model, we use a few basic notions
of stochastic comparison convex ordering which will help us to compare the deterministic case and the
random case; the notion of association of random variables which will help us to express the correlation
between different receivers; lastly the notion of mazimal characteristics which comes from the theory
of extremes, and which will allow us to explicitly define bounds on the performances.

4.1.1 Comparison with the deterministic case

Proposition 1 Let A and B be two random Ryax matrices. Then for all i and j : (E[AB]);; >
(E[AJE[B]):; which implies |[E[AB])| > |E{AJE[B]|

Proof We just need to verify this formula for the two basic operations. This is clear for the addition;
concerning the max operation, for all random variables X and Y with value in R,.x, we have (by a

direct convexity argument):

Elmax(X,Y)] > max(E[X], E[Y])
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Let now P,,, be the matrix describing the same network as above, where each random service time
has been replaced by its mean value. We have P,, = E[P,,] < E[P,,] (because P is made of max and
sums of service times) and so

Vi =Pp...P1Yy <EP,]...EP]Y,
< E[P,, ... P1Yy] = B[Y,,].

This implies 4 < =, proving that the deterministic model always leads to a better throughput
indeed. Hence, Golestani’s deterministic model is actually proven to give the best possible throughput
within the range of all stochastic models of the same class and with the same means.

4.2 Bounding the Throughput Degradation

We now analyze the way throughput decreases when new receivers join the group.

4.2.1 Upper Bound

Theorem 1 Consider a network with exponential service times in routers; then - is bounded from
above by a function that can be expanded as

RTT In(N)(1+ o(1)) for N — o0 (4)

where N is the number of receivers, RTT is the average round trip time of a receiver (RTT = ]E[Sgl)],
where Sgl) is defined in (3)).

Proof is given in Appendix A.
O

This upper bound can be reached, this is the case when the window size is W = 1 and when we
have an umbrella tree made of maximally disjoint branches.

4.2.2 Lower Bound

Theorem 2 Consider a network with exponential noise in routers, and assume that receivers are
distinct (i.e. the last link for every receiver is different); then ~y is bounded from below by a function
that can be expanded as

W

where N is the number of receivers, W the window, and s a typical service time in a router °.

n(N)(1+ o(1)) for N — +o0, (5)

Proof is given in Appendix A.
O

It is possible to have a better lower bound for v under some additional assumptions on the tree as
we see in the next subsection. Again this bound is reached by the reverse umbrella tree with maximal
common path.

®In the homogeneity hypothesis that we have made, E[s] is the average service time of the last router before receivers,
that is by assumption the same for all receivers.
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4.3 Tree Topology Dependence : Notion of Aggregation

We have been able to compute a lower and an upper bound on « which both grow in proportion to
In(N'). We now give a finer grain classification within these bounds, based on tree topologies. We show
that, based on the tree topology, it is possible to define a partial order on trees. We consider trees
with N receivers, under the assumptions of homogeneity and independence described earlier.

4.3.1 Definition of a partial order on tree topologies

We still assume that the service times on the backward tree are all equal to zero.
Consider two receivers ¢ and j, with paths from the source to every of these two receivers. For

(FG) g SUGD)

every [ =1,... D, the service times sy, are either:

e The same variable - when receivers ¢ and j share their /-th link.

e Two independent random variables with the same distribution - when paths from the source to
i and j are different at a given depth, and for all the following links in the tree.

Definition: Aggregation. Given the above statements, we can define the aggregation of receivers

i and j, that we write a(7, ), by
a(i,j) = max{l = 1... D|[s{0D) = s(GD)Y (6)

The round trip times Sﬁ,? and Sq(ﬂ;) for receivers ¢ and j can be described as a sum of service times
along the transmission path. The aggregation is exactly the number of common service times in the
sum between ¢ and j; all others terms of these sums are independent.

Aggregation indeed quantifies the correlation beetween two receivers: receivers with large aggrega-
tion appear to have similar performances. It is possible to show that a given aggregation characterizes
a tree 5.

Definition: Aggregation order. We will say that a tree T is less aggregated than another tree
T' if their aggregation functions are such that a < o’ (i.e. aggregation beetween any receiver and
another one is higher is tree a' than in a). This is of course a partial order relation on trees. This
order is compatible with the performance of the tree as shown in the next result.

Theorem 3 If two trees T and T' are such that a < a’, then Vo < 7q.
Proof is given for a particular case in Appendix D, with a brief description of the general proof.

O

This theorem gives us another proof for the upper and lower bounds of Section 4.2. The upper
tree” (given by a(i,j) = D —1) provides the lower bound, the lower tree (given by a(i,j) = 0) provides
the upper bound.

4.3.2 Characterization of Umbrella Trees

Definition: Umbrella Tree of Class [. A tree (given by its aggregation a) is said to be an umbrella
tree of class [ if we have a < D — [. It represents a tree that finishes for every receiver by a unicast
connection of length at least [.

Umbrella trees typically correspond to a worst case situation, as receivers share few links. We have
observed via simulation that for this type of trees, the throughput seems to degrade more when the
number of receivers increases. In an umbrella tree, the lower bound for 7 can be reached.

A consequence from the study of the equivalence relation i = i’ < a(i,4') > [ is that we can build the tree using
only the aggregation function.
"when making the assumptions that the receivers are distinct.
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Theorem 4 Under the foregoing assumptions, the Lyapounov exponent for an umbrella tree of class |
s bounded from below by a function that can be exrpanded as:

E
%Rl(l +0(1)) for N — o0, (7)
where s s the sum of service times of routerss D — 1+ 1,...,D, and Ry is the function defined in

Appendiz C (Corollary 3).

Proof According to Theorem 3, we just need to verify this formula for the tree (a = ). The following
formula established in the proof of the lower bound holds:

5 Bmaxicr..v(51")]
- w

(8)
Let us look at the performance of the tree (Vi,j, a(i,j) = 1). We have, for all 1,

S > GG g 6P,

We can then apply Corollary 3 to this sum of random variables that has a Gamma distribution.

O

As we can see, in spite of all the optimistic assumption we have made, an umbrella tree sys-
tematically results in a severe degradation of the throughput. The results observed in the algebraic
simulation, as well as the intuition we have on tree topology impact, are confirmed and generalized by
analytical results. Aggregation seems to be a key concept, as it gives us a parametric representation
of the tree topology which allows direct performance comparison. An important result of this study
is that umbrella trees, that are frequently encountered in the Internet [9] suffer severe throughput
degradation even in the case of light tailed fluctuations in queueing delay.

Notice that Theorem 3 shows that the link established on umbrella trees between aggregation and
throughput is actually valid for more general trees.

5 Conclusion

In this paper, we study the impact of random noise (i.e. queueing delay) on the performance of a
one-to-many multicast session in the presence of a "TCP-like" congestion control mechanism. With
a simple analytical model, we analyze the degradation of throughput when the size of the multicast
group increases. In addition, we study the impact of tree topology on the throughput of the multicast
session.

In presence of a light tailed random noise, we show that the throughput decreases logarithmically
when the number of receivers increases. We analytically find an upper and a lower bound for the
throughput. Within these bounds, we characterize the degradation depending on the tree topology.
The throughput decreases very significantly as the number of receivers increases from 1 to 20. With 40
receivers, the throughput is only 70% of what it would be with a single receiver. Then the throughput
seems to stabilize around 60 receivers. In particular, we have identified a class of trees commonly
found in IP multicast sessions [9, 14] as a worst case of throughput degradation. This observation is
quantified by simulation and then explained analytically.

This work analytically proves that TCP-like congestion control might be harmfull with reliable
multicast transmission. Consequently, applications may prefer multi-rate control mechanisms to single

8if we make the same assumption of a network where every router has the same service time, we then have lx]E[sgf 1)) 1,

which can be interpreted has %RTT.
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rate reliable multicast transmission. This results extends to unreliable applications that have difficulties
in managing a 30% drop in average throughput when the number of receivers increases.

Multi-rate (layered) control mechanisms are best suited to multicast sessions with a large number
of receivers. Rubenstein et al. [11] has shown that multi-rate control can preserve TCP fairness with
regard to TCP flows sharing the same congested node, while not penalizing all receivers in case of
localized congestion. Subcasting (single group with filtering in nodes) is another area of investigation.

Another major contribution of our work is a new analytical framework that can be used to study
various problem related to flow and congestion contol (in multicast and unicast environements).

In future works, we will extend and generalize our analytical framework. Extension to adaptive
window size is possible based on a generalization of the (max,plus) representation of TCP Tahoe and
Reno known for unicast [15].

In this framework, we will also study various sub-grouping approaches and try to define new classes
of congestion control mechanism that might be applicable to unicast transmission as well. We will also
analyze how TCP-like congestion control affect shared trees.

6 Appendices

A Proof of the Main (max,plus) Representation Results
A.1 Product of a Large Number of Matrices, Lyapounov Exponents

We start from the following result shown in [3].

Theorem 5 let (A, )nen be a sequence of random square matrices in Ry, independent with same law
and with coefficients with finite expectation; then we have :

i A A
=7

m—oo m

(9)

in expectation and with probability 1, where v is a constant called the (maz,plus) Lyapounov exponent
of this sequence of matrices.

In the article, we will make use of the following corollary where the assumptions are those of the
above theorem; the dimension of the matrices is LW; Y (n) is a vector of dimension LW which satisfies
the (max,plus) linear recurrence :

Yy, =P, Y1 for m > 0. (10)

We assume in addition that Y, is the block vector (X, X;n—1,- .-, Xm—w+1), where each block is of
dimension L, that Yj has all its coordinates equal to 0 and that the sequence X,, is coordinatewise
non decreasing. All these properties are satisfied in our models.

Corollary 1 Under the foregoing assumptions,

Xm
lim Xl =7 (11)

m—oo  m

in expectation and with probability 1, where v is the Lyapounov exponent of the sequence {P,}.

Proof || X[l = lymll = [|Am Am1 ... A ]
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A.2 Proof of the Bounds on the Throughput

Theorem 6 (Upper Bound) consider a network with exponential service times in routers. Then -y
1s bounded from above by a function that can be erpanded as

RTTIn(N)(1+ o(1)) for N — o0, (12)

where N is the number of receiwvers and RTT is the average round trip time of a receiver (RTT =
E[s;"]).

Proof We have

[Yonll _ [P Pa¥oll _ [Prall + - 4 [[Pu
m m o m
The strong law of large numbers gives us

— m—+oo m

= E[|[P1 ]

with probability 1.

We will now use the interpretation we have on the elements of the matrix P;. The largest element
in Py is the sum of the service times of packet n along a path from the source to the last router, that
is [[Py]| = maxi—1_n(S{").

The random variables ng), i=1,...,N are associated (see Proposition 2 in the appendix), so that
Proposition 3 in the appendix tells us

_ (i) &(0)
v < E[[|P1]]] = E[ig%(sl )] < E[ig%(sl ),

where the random variables are an independent version of the variables Sgi) i.e. the random variables

Sgi) are independent and for all 7, Sy) and 5’%2) have the same law.
Using the homogeneity assumption we have made in 2.3, we have:

(GIOD 4L gUeD)

GO 4y max, 5/CP).

(i
max; S§ ) = max;

< max; §

where f(d,%) is the index of the d-th router on the path from the source to receiver ¢ and then
complete aggregation.

For every max we can apply Corollary 2 of appendix C, so that we have sum of 2D functions that
can be expanded as In(IV)(1 4 o(1)) multiplied by E[sgf(i’l))], ... ,E[sgf(QD’i))], respectively, so that the
sum can be expanded in the same way with a multiplicative constant equal to E[s(lf (l’i)))] +...+
Blsip )] = s}

O

Theorem 7 (Lower Bound) Consider a network with exponential service times in routers, and as-
sume that receivers are distincts (ie. the last link for every receiver is different); then -y is bounded
from below by a function that can be expanded as

W n(N)(1+ o(1)) for N — +o0, (13)

where N is the number of receivers, W the window, and s a typical service time in a router °

9Due to the homogeneity hypothesis, this is the same distribution for all receivers.
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Proof Let us consider the packets W, 2W, 3W,.... Since window has a fixed size, packet kW cannot
start until the packet (k—1)W has arrived in all receivers (which is the definition of ||Y;_1)w||). Since
we then need to forward packet kW from the sender to all receivers to reach time ||Yew||), we have :

v, Sy, (%)
Yo | 2 [[¥m—yw [l + max S,5,

where S,(,? is the sum of service times for packet m, along the path from source to itself that passes
through receiver 1.
. . Y,,
So that we have, using v = lim,;, 4o %,

. 1 (i) (i)
> R ..
vz tim plmax (Sw) ..+ max (S )]

Now, as (max; Sr(r?W)mEN are i.i.d random variables, the law of large number gives us the inequality

Elmax;—;..x(5{")]
Y2 .
w
If RT'Ts were independent for all receivers, we would be able to conclude immediately that there is
an asymptotic behavior in In(N'). But this is not true as the RTTs of two receivers are made of a first
common term which is the sum of the service times of the common routers they use from the source
and of a second term, which is independent for each receiver.
Now for each receiver, there is at least a link that belongs only to the path from the source (this
is indeed the last link). These links are supposed to have independent service times with the same
exponential law s so that, applying Corollary 2, Equation (14) leads to the relation of the theorem.

(14)

O

B Association

Definition and construction property: A set of real random variables is said to be “associated” if
for every n € N, and for every subset of cardinality n X7i,..., X, of random variables in this set, and
for all functions f and ¢ increasing in each of its variables, we have

E[f(Xla---,Xn)g(Xla--- 7Xn)] >

E[f(X1,..., Xn)|Elg(X1,...,Xn)]- (15)

The three following properties hold, that help us to build associated sets of random variables:

Proposition 2 1. A set containing a unique random variable is associated;
2. The union of two independent associated set is associated;

3. If {X1,..., X} is associated, and ¢ is increasing in every composant, then the set
{6(X1,..., Xm), X1,...,Xm} is associated.

For a proof of this result and of the next two propositions, see [8].

Proposition 3 let Xi,..., X, be n associated random variables, and X1,..., X, an independent ver-
sion of it (i.e. (Xi)i are independent and for all i, X; and X; have same law); then we have

P(max X; < t) > P(max X; < t) and (16)

Elmax(X;)] < Elmax(X;)] (17)
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Association and stochastic order The stochastic order (that we will note <) is defined by
X<Y if Fx > Fy where Fx(z) = P(X < x) (18)
We will further in the article need some property of the stochastic order.

Proposition 4 Assume that the random variables X; are independent, and that the random variables
Y, are independent too. Then

1. Stochastic order is preserved by max operation: if for all i, X;<Y;, then max; X;< max; Y;.

2. Stochastic order is preserved by sum : if for all i, X;<Y;, then >, X;<> . V..

3. If the random variables (X;); are associated, we have max; X;< max; X;

C Maximal Characteristics

We need an analytical tool, giving us the behavior of max¥ X; as a function of N and of the law of
X;, when the X;’s are independent and identically distributed. The maximal characteristics theory of
Lai Robbins (described in [7]) provides such results, with a few assumptions on the law of X; (verified
by the exponential case and the Gamma law case).

Theorem 8 (Lai and Robbins maximal characteristics) Let (X,,)men be a sequence of Ry -valued
i.1.d. random variables. Assume that their common distribution function F satisfies :

(Vx >0, F(z) <1)

(Vo> 1, limy o Tpct = 0) (19)
Let my=inf{z > 0,1 — F(z) < 1/N}, then we have
]E[_Erlla%v X;] = mn(1+0(1)), for N — 4oo0. (20)

Here are two corollaries (the first of which is immediate):

Corollary 2 (exponential case) Let (X,,)men be a sequence of i.i.d exponential r.v.’s with parame-
ter A\, then . .

]E['Ellla)?\f X;] = E[X1]In(N)(1 + o(1)), for N — +oo. (21)
Corollary 3 (Gamma case) Let (X,n)men be a sequence of i.i.d Gamma r.v.’s with parameter (X, u)
where A > 0 and v > 1, then for N — +o0,

Elmax;—1. n Xi] = Ru(N)(1+ 0(1)) (22)
= LIn(N)(1 + o(1))
for R,(N) function defined by being the solution of the equation
1T
X" exp(—AX) = N%' (23)
Proof The distribution function is:
F:z—1- % exp(—Az)

I'(u)

F verifies the conditions (19), so that we can apply the previous result, and the formula for my gives
the definition of R. The fact that R(N) ~ %ln(N ) is immediate from (23) when taking the logarithm
on both sides.

O
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D Proof of Theorem 3

For the sake of simplicity, we will assume that the service times on the backward tree are all equal to
0.

D.1 Preliminary

The r.v.’s sg(i’l)) and sg(il’ll)) are independent if [ # I'; for [ = I', these can be the same random value

or two independent random values with the same law depending on the aggregation. All service times
of the same depth have same law, that we call s; for depth .

Lemma 1 Let T and T’ be two trees with same service times at all levels (s1,...,sp) and such that
their aggregations satisfy a < a'; then

E[S(a)] > E[S(a")],

where S(.) is the longest path in the tree :

Before proving this lemma, we will need a few definitions and a preliminary lemma. For an aggre-

gation a, let = be the binary relation on the set of receivers, defined by
i~ & ali, i) > 1.

This is an equivalence relation, creating a partition of {1,..., N} in J(a) equivalence classes (Cf);=1... s(a)-
Each of these classes is made of receivers that share the same first link, so that we can consider for
every class C7, the sub-tree a; obtained by taking the restriction of the tree a to these receivers, and by
starting after this common link. So the aggregation of a; is equal to the restriction of the aggregation
a — 1 to the receivers of C7. The definition of ~ gives us the following result:

Lemma 2 If a and o’ are two aggregations such that a < a’, then z“gz“', so that for all j, there
exists j' such that C C C;-I,’.

From the definition of S(a)

Sa) = max;_y,y@(s] ) + maxiecy Y2y {™) o)
1,i;
= man:l,...,J(&)(S{( ) + S(a]))

where ¢; is some receiver in Cj. Note that the random variables (.9:{c (L5 ))j are independent, as well as
the random variables (S(a;)); (because they are made of service times taken in sub-trees that do not
share any link). As a consequence of Lemma 2, if a < a’, we can write (for 7; defined as above)

1,25 X}
S(a') = man:l,...,J(a) (t{( ]) + maXiec;} Zl';Z t{( ))

. 25)
f(1,2; (

— max;_1 st + R(d}))

where t{ () denotes the service times in a’ ; the random variables R(a}), j = 1,...,.J(a), are associated
rather than being independent; similarly the random variables t{ (145 ,jJ=1,...,J(a) are associated

rather than being independent.
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Proof of Lemma 1 Let us show by induction on D that S(a’) <g S(a) so that we will have
the relation we want on expected values. The result is known for D = 0, let us make the induction
assumption that D > 1 and that we have the result shown for D — 1.

For all j, the sub-trees a; and a;- have the same receivers (the ones in class Cf), and the value of
their aggregation is a — 1, a’ — 1, respectively, so that we have the same comparison (i.e. a; < a’), and
by induction assumption we have S(a}) <st S(a;).

So, to conclude the proof we just need the following classical result:

Lemma 3 For (X;); and (Y;); independent, (X',), and (Z;); independent, if (X'Z)Z is an independent
version of (X;);, and if for all i Y; <g Z;, then

max(X; +Y;) <g max(X; + Z;).

D.2 Proof of the theorem

We do not prove here the result with complete generality. A fundamental example is the case of a
window of size 1. In this case the window control mechanism does not allow that two packets go
through the tree at the same time. So that the Y, is just an independent sum of functions like S(a).

If we have comparison of two aggregations a and a’, the lemma shown in the first part of the proof
tells us that we have stochastic comparison of S(a) and S(a’). As independent sums preserve stochastic
order, we can compare Y,, for a and for a’, and show that the Lyapounov exponents verify v, < 7,.

Let us now show the main ideas of the general case. Consider two trees T and T’ with the same
aggregation but on pair ,j where a(i,7) = a'(i,j) — 1. So, in tree T, for some [, the service times
S,J;L(l’i) and sfn(l’j ) are independent for all m, whereas they are pathwise the same in tree 7", all other
service times being the same in both trees. If we can prove that 7, > -, then some induction allows
one to conclude the proof of the general case.

By expanding the products of random matrices, we can represent ||y,(a)|| as the maximum of the
sum of service times on certain paths; the set of paths can be split into three disjoint subsets: the set
of those paths containing sfb(l’j ); the set of paths containing si(l’i), and the set containing none of them.
Using the association calculus, and some conditioning, we prove that the maximum over these sets of
paths is larger for the < order than the maximum over the same sets but when replacing these two
independent r.v.’s by the same realization. An induction step in n similar to that of the case W =1

allows one to conclude the proof.
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