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Abstract: We give a representation of the packet-level dynamical behavior of the Reno
and Tahoe variants of TCP over a single end-to-end connection. This representation allows
one to consider the case when the connection involves a network made of several, possibly
heterogeneous, deterministic or random routers in series. It is shown that the key features
of the protocol and of the network can be expressed via a linear dynamical system in the so
called max-plus algebra. This opens new ways of both analytical evaluation and fast simulation
based on products of matrices in this algebra. This also leads to closed form formulas for the
throughput allowed by TCP under natural assumptions on the behavior of the routers and on
the detection of losses and timeouts; these new formulas are shown to refine those obtained from
earlier models which either assume that the network could be reduced to a single bottleneck
router and /or approximate the packets by a fluid.
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TCP est Max-Plus Linéaire

et ce qu’on peut en déduire sur son débit

Résumé : Nous donnons une représentation de la dynamique des variantes Reno et Tahoe
de TCP au niveau paquet, dans le cas d’une seule connexion. Cette représentation permet
de considérer le cas de connexions établies sur un réseau constitué d’'une série de plusieurs
routeurs déterministes ou aléatoires. Nous montrons que les principales caractéristiques du
protocole et du réseau controlé peuvent s’exprimer sous la forme d’une récurrence linéaire dans
Ialgébre max-plus. Ceci conduit a des résultats analytiques nouveaux ainsi qu’a de nouvelles
méthodes de simulation rapide de ce protocole, tous fondés sur la réduction & des produits de
matrices aléatoires dans cette algébre. En particulier, nous obtenons des expressions explicites
des débits sous divers types d’hypothéses naturelles concernant le comportement des routeurs
et la détection des pertes et des timeouts, et nous montrons dans quelle mesure ces expressions
prolongent celles connues dans le cas d’un seul routeur ou dans le cas de modéles fluides.

Mots-clés : Controle de congestion, controle de flux, TCP, Reno, Tahoe, réseau IP, débit,
algébre max-plus, systéme dynamique, simulation, produit de matrices aléatoires, exposant de
Lyapounov.



TCP is Max-Plus Linear 3

1 Introduction

Various approaches have been investigated to characterize the key properties of the adap-
tive, additive increase, multiplicative decrease (AIMD) window flow control of TCP, including
heuristics and simulations, fluid approximations or Markovian analysis [10, 11, 1, 13, 12, 8|. All
analytical models are based on the so called single bottleneck heuristic [9]. It was also recently
shown that window flow control on networks consisting of several routers in series admits a sim-
ple max-plus linear representation when window size is constant [2|. The present paper focuses
on a class of models which combine the AIMD adaptive window size mechanism of TCP and a
network model made of several routers in series. We show that their dynamics can be described
at packet level via matrix recurrences in the max-plus algebra. Both the deterministic packet
transmission time case and various stochastic models that have been used in the literature are
considered, including the case where there are random losses in addition to losses due to buffer
overflow, and the case when the packet transmission times are randomly perturbed by the rest
of the traffic. The key aspects of the protocol can be represented, including congestion losses,
timeouts, random losses, propagation and queueing delays as well as delays due to the flow
control mechanism, window adaptation etc. We show how this approach allows one to estab-
lish general links between spectral properties of max-plus matrices and the mean throughput of
TCP. This is used to derive closed form formulas for the maximal achievable throughput. These
formulas can be used to analyze the case with several bottleneck routers. They are shown to
be asymptotically compatible with the classical ones when the maximal window size tends to
oo. This framework allows one to analyze the instantaneous, possibly random fluctuations of
the throughput, which may be useful for estimating the QoS offered to the connection. This
approach is also shown to be particularly well suited for an efficient though detailed exact
simulation of the end-to-end dynamics of the TCP protocol over large networks. In particular,
it is proved that when using this approach, the simulation of n packets over K routers can be
made with a computational cost of at most 2n(Kw*)?, where w* denotes the maximal window
size.

In addition to these theoretical contributions, several phenomena of practical interest are
also pointed out: (a) As soon as there are random perturbations due to cross traffic in the
routers, the throughput cannot be expressed in terms of the mean bitrate of the bottleneck router
and the mean RTT only: for example, permuting two routers along the route may then lead to
a different throughput. (b) A given overall loss probability is in general not enough to predict
throughput; in particular losses due to random perturbations created by cross traffic have a
more severe effect on throughput than that of congestion losses stemming from a high send
rate. (c) Variance may have a significant effect on throughput: keeping all mean service times
fixed in the routers, an increase of variance may lead to a degradation of throughput.

The paper is structured as follows. In Section 2, we introduce the model and we give its
representation in terms of a linear max-plus recurrence equation. We then establish the main
theoretical results of the paper by showing the link between TCP throughput and max-plus
Lyapunov exponents. In Section 3, we consider the class of deterministic models and show
periodicity results together with links between throughput and max-plus matrix eigenvalues.
In Section 4, we consider two classes of stochastic models representing the random perturbations
created by cross traffic. In Section 5, we give a brief list of further questions and extensions
that can be treated along the same lines and for which analytical formulas extending those of
the basic cases (or at least new simulation methods based on products of random matrices) can
be expected.

RR n’ 3986



4 1. baccetir ¢ L. Hong

2 Max-plus representation

2.1 The max-plus algebra

Roughly speaking, the scalar max-plus “algebra” is the semi-ring structure over the real line
where one replaces the addition by max (denoted @) and the multiplication by plus (denoted
®). It is the fact that ® is distributive w.r.t. @ which allows one to extend classical concepts
of linear algebra to this framework, and in particular matrix theory. This scalar semi-ring is
denoted (Rpax, B, ®), where Ry.x = RU{—o00} is the real line completed by —oo, the neutral
element for @. In what follows, we will denote (R4Z @, ®) the set of square matrices of

dimension d in this algebra, where the two operations ¢ and ® have the following meaning
when applied to matrices:

(A® B); = @ Air, ® By = féll?sxd(Aik + By;).

1<k<d

For more details on this algebra, which is also used for QoS guarantees in networks [6], the
reader may refer to [3] or [6].

2.2 The network model

Our basic model consists of a single source sending packets to a single destination over a path
made of K routers in series. The transmission of the packets of this reference flow is assumed
to be TCP controlled. Each router is represented by a single server queue. Each queue serves
the packets of the reference flow as well as those of other flows, which will be referred to as
cross traffic flows in what follows. Each router is assumed to be a FIFO queue for the packets
of the reference flow. The nth packet of the reference flow arriving at queue ¢ requires there an
aggregated service time o;(n). In case of a FIFO router, this aggregated service time captures
both the processing time of this packet by the router and that of the backlog of cross traffic
packets interleaved between the arrival time of packet # n — 1 and that of packet # n in queue
1. The model also incorporates some propagation delays between routers. The propagation
delay from router 7 to j will be assumed to be deterministic and will be denoted d; ;.

The input rate is controlled by a dynamic window size. This window mechanism controls
the maximum number of packets sent by the source that have not been acknowledged by the
destination.

2.3 From feedback to window

Let ACK(n) denote the flow/congestion feedback signal giving information on the state of
the network seen by packet # n. For example, ACK(n) = 1 if neither loss nor timeout are
experienced by packet # n, otherwise ACK (n) = 0 which means either loss (LO) or timeout
(TO).

In the deterministic case, at the time of the reception of signal AC K (n) (either the reception
of the acknowledgment of packet # n, or the detection of its loss or timeout), the window size
is updated according to the following rule:

W(n)=FW(mn-1),ACK(n)), n >0, (1)

INRIA



TCP is Max-Plus Linear 5

with some initial condition W(0) = 1.

Once the sequence {ACK (n)} is known, the above recurrence relation gives the reference
window size process {W(n)}. Note that W(n) is the window size at the reception of the ac-
knowledgment of packet # n by the source. The associated effective window size is by definition

wy, = (int) W(n) = [W(n)]. (2)

We assume that the reference window size takes its values in a finite set with maximum element
W*. We will denote w* = |[W*].

We also assume that the evolution of the window size can be decomposed into two phases
with the following properties:

increasing phase (ACK =1) : 0 < F(W(n),1) — W(n) <1,
decreasing phase (ACK =0) : 1 < F(W(n),0) < W(n).
In the following, we allow F' to depend on a sequence {©(n)}, where O(n) gives the threshold

that separates the slow-start phase from the congestion-avoidance phase. In this case, the pair
(W(n),©(n)) is updated according to the refined rule:

W(n) = F(©(n—1),W(n—1), ACK(n)), (3)
©(n) = ¢(0(n — 1), W(n - 1), ACK(n)), (4)
Here are two ideal cases of particular interest, which represent simplified versions of Tahoe

and Reno:

1. TCP Tahoe :

#O©(n—-1),W(n-1),1) = 6(n—-1),
pOn—-1),W(n-1),0) = |aW(n-1)]
min(W(n —-1)+1,W*), if W(n—-1) <O(n—-1),
FOn-1),Wnh-1),1) = {W(n-1), if W(n —1)=W*, (slow start)
min(W(n — 1) + ,~—, W), otherwise (congestion avoid.)
1.

F(G(n - 1),W(TL - 1)50) =

2. TCP Reno : the same as above but with the following adaptation:
FO©n-1),W(n-1),LO) =max(1, |aW(n—1)]),
FOn-1),W(n-1),TO) =

Here, 0 < a < 1 and ©(0) are parameters and W (0) = 1. In the following examples, we will
mainly consider the case o = 1/2.

2.4 From window to dater

In what follows, we assume that the input queue is saturated (the non saturated case can be
considered along the same lines as explained in §5). Then the network behaves as a closed
network, the throughput of which gives the maximal rate at which the source can send packets
while keeping the source buffer stable [2].

RR n’ 3986



o} 1. baccetir ¢ L. Hong

Let x;(n) be the time at which packet # n starts its aggregated service on router i (this is
the time when this packet is head of the line within the set of packets of the reference flow).

SOURCE DESTINATION
INPUT Yo Y1 Yk
ROUTER 1 = .. —— |ROUTERK-1| ——= —
W(n)
WINDOW CONTROL
I ACK(n)

Let y;(n) = z;(n) 4+ 0;(n) be the time when packet # n leaves router ¢ and let oo(n) = 0.
Let v, be the window size experienced by packet # n + 1, when it is sent by the source. In
general, v,, and w, (defined above) do not coincide. If the sequence {v,} is known, then {y;(n)},
0 <1< K, n>1, satisfies the equations :

yo(n) = yx(n — vp_1) @ di o,
yi(n) = [Yic1(n) ®di1,; ®yi(n —1)] ® 0i(n), i=1,... , K.

In this model, the transmission of acks from the destination to the source is represented by a
simple delay dk,. One can represent this backward route as a sequence of routers similar to
that of the forward route with only slight modifications of the basic model.

We define Y (n) = (y1(n),y2(n), .., yx(n)) € RLE “and

Zn)= Y (n),Y(n-1),.,Y(n—w"+1))" e REw"1,

The last vector will be referred to as the dater vector in what follows.
Let M;, 1 € {1,..,w*}, be given matrices of REX Below, (M;|Ms]---|M,-) denotes the
block matrix of RE:%" K" where blocks are of size K x K; all blocks are equal to the matrix £ of

ax

K.K \with all its entries equal to —oo, but for the first line of blocks which is My, My, ... , My-.

Lemma 1 [Max-plus representation| If the system is initially empty, and if the sequence of
experienced window sizes is {v, }nen, then the dater vectors Z(n) satisfy the following maz-plus
matrix recurrence relation:

Z(n) = Ay, ,(n)® Z(n=1), n 21, ()

n) = (M(n)® M'(n)|€]..|) ® D,
n) = (M(n)|M'(n)&]..|E)® D, ...,
Ay(n) = (M(n)|&]..|E|M'(n)) & D.

(
In these formulas, M (n) and M'(n) are given by:

S on(n) + S digrr,  ifi >,
—Q, if 1 < g,
, S (g + o) + dio, i § =K,
(M'(n)),; =
—o0, ifj < K,
INRIA



TCP is Max-Plus Linear 7

and D is the square matriz of dimension Kw* with all its entries equal to —oo but for those of
the form Dk, i =1,..., K(w* — 1), which are all equal to 0.

Proof
The proof is immediate from the dynamics established for the y,(n) variables when expanding
the max-plus product (5) coordinate by coordinate. @

Remark 1 At the level of representation adopted here, no difference exists between packets and
retransmitted packets. In particular, we will make no difference between send rate, throughput
or goodput [12].

2.5 Example of evolution

Here is an explicit pathwise evolution of the dater vector and the window size: we take K = 5,
w* = 4 and (o1(n),---,05(n)) = (1,1,2,1,1) for all n. We consider a periodic window size
evolution (which is that of TCP Tahoe without slow start, cf. §3):

(vo, v1,09,...) =(1,1,2,2,2,3,3,3,3,4,1,1,2,2,2,...).

P = 1) 2(1), 3(2) 42) 52,63 73 8(3) 9(3),10(4) 11(1)

arrival time I

g | i
L] C [T |
RTT1 ; \ ! \ | i
LT T I
‘[T i
RTT 2 ‘ | ‘ B
| | [ TT]
RT3 T 1
-— = : v | !
- IE e
rTa 17
departure time : = i = ‘ i
packets ACKs (wr)  1(2) 22 3(3) 43) 53) 64 7 8 9 1001

For instance, packet # 6 experiences a window size of vs = 3, a fact that we denote 6(3)
on the figure: this means that the admission of packet # 6 takes place at the time when the
acknowledgment of packet 6 — 3 = 3 is received.

2.6 From dater and window to feedback
2.6.1 Deterministic feedback

The deterministic model for the detection of losses and timeouts is:

ACK (n) = G(v,_1, Z(n)). (6)

Here Z(n) is the equivalence class of the dater vector (defined in Lemma 1) for the equivalence
relation: Z ~ Y if for all 4, Z; = Y; + ¢ for some constant ¢, whereas v,_; is the window
experienced by packet # n. Here are a few basic examples:

RR n’ 3986



o} 1. baccetir ¢ L. Hong

e Rate based loss detection Assume one can deduce some estimate 1/0*(n) of the current
bottleneck service rate in the network, and some estimate S(n) of the current round trip

time, both from (v, 1, Z(n)); then it makes sense to state that one detects a (congestion)

loss when the average send rate 2“(;)1 reaches the bottleneck rate, namely

(G1) : ACK(n) =0 (Tahoe), LO (Reno),
VUn—1 1

S(n) ~ o*(n)’

if

e Buffer overflow detection If there is a maximal buffer capacity of 3; for the reference
flow on router i, then it makes sense to state that

(G2): ACK(n) =0 (Tahoe), LO (Reno),
if 91 f;i f;}(, yb_l(n)—+(h_4J <:yi01——[%).

Note that either §; < w* in which case the values of y;_1(n) — yi(n — ;) can be retrieved
from Z(n) indeed; or §; > w*, and then no loss can ever occur for the reference flow on
router 1.

e Timeout detection In this case, the function G also admits the value RT'O(n) of the
timer for packet # n as an additional argument; this variable is built from moving averages
of the preceding RTT’s by a recurrence relation (see [14] and [15]).

(G3) : ACK(n) =0 (Tahoe), TO (Reno),
if yx(n) —yo(n) +dko > RTO(n).

Since yo(n) = yx(n — vy—1) + dk o, this condition can also be retrieved from (v,—_1, Z(n))
at least in the case when v,_; < w* (in case v,—; = w*, one more step of the dater history
is in fact needed).

e Large service times or RTT Here is a model in the same spirit as (G2) or (G3) but
somewhat simpler. In case of random service times, it makes sense to assume that a packet
of the reference flow experiences loss and/or timeout in case of large enough aggregated
service time on one of the routers, or in case of large enough sum of its aggregated service
times:

(G4)-Tahoe : ACK(n) =0, if o(n) € B, 1 otherwise,

where o(n) = (o1(n),...,0x(n)) and where B is a certain subset of RX expressing one
of the above properties (e.g. ZZ 0; > X for timeout or o; > Y; for some ¢, for loss created
by a large cross traffic on some router etc.) and

LO, if o(n) €,
(G4)-Reno : ACK(n) = { TO, if o(n) €D,
1, otherwise,

where C and D are subsets of RE in the same vein as above.

Remark 2 In what follows, we will always assume that the detection of loss is instantaneous,
namely that the effect of the loss of packet # n in terms of window size is applied from packet
# n+1 on. This is of course an approximation in comparison to what happens effectively via
the triple duplicate mechanism.

INRIA



TCP is Max-Plus Linear 9

2.6.2 Stochastic feedback

In this second and more general case, the feedback signals { AC K (n)} are also function of some
random perturbations represented by an i.i.d. {0,1}-valued random sequence {£{(n)}. More
precisely, (6) is replaced by

ACK(n) = I'(vs-1,Z(n),&(n)), (7)
with T'(vn_1, Z(n),1) = G(v,_1, Z(n)) for both Tahoe and Reno and, for Tahoe I'(v,_1, Z(n),0) =
0, whereas for Reno

P, Z(n), 0) = LO, if G(vn_1,Z(n))is 1 or LO;
nh " TO, i G(ve, Z(n)) =TO.

We denote p the probability that £(1) = 0. The case with p = 0 leads back to the deterministic
scheme described above.

This stochastic model is to be compared to that of [13], where a global loss probability
is used to capture both random packet losses and losses due to congestion. In contrast, in
this refined stochastic model, these two mechanisms are separately described: random packet
losses constitute an i.i.d. process independent of all other elements of the network and are
captured by the sequence {£{(n)} (p is then the probability that a packet is lost due to random
perturbations), whereas congestion based losses are captured by the G function.

Models with random timeouts in place of (or in addition to) random losses can be considered
along the same lines.

2.7 Global dynamics and throughput
2.7.1 Simplified dynamics

For the sake of easy exposition, we will first describe the global dynamics when making the
approximation that w, = v, for all n. We will see later on how to correct this. Under this
simplification, the overall dynamics is constructive: if one knows W(n — 1) and Z(n), then
one can compute ACK (n) from either (6) or (7); this in turns allows one to define W(n) and
hence w,, using (1) and (2). Finally, the knowledge of v, = w,, and Z(n) allows one to compute
Z(n+ 1) thanks to (5). We summarize this in the following theorem which refers to the family
of max-plus matrices 4;(n), n > 0, 1 < i < w*, defined in Lemma 1 and to the functions F’
and I' defined above.

Theorem 1 Under the foregoing assumptions, the sequence of vectors {Z(n),W(n)} satisfies
the recurrence relation

Z(n) = Awm-1)(n) ® Z(n - 1), (8)
W(n)=F (W(n - 1),[(W(n - 1),Z(n),&(n))), (9)

n > 1, with initial condition Z(0) = (0,..,0)" and W(0) = 1. In these equations {{(n)} is an
i.i.d. {0, 1}-valued sequence representing random losses (£(n) = 1 in case there are no such
losses).

RR n’ 3986



1. baccetir ¢ L. Hong

Remark 3 FEquations (8) and (9) are given here in the simplest case where F' is not a function
of ©(n—1) and where T is not a function of RTO(n). In order to handle the general case, one
should of course add the evolution equations for the variables ©(n) and RTO(n) to these two
recurrence relations.

The equations in Theorem 1 are the basis for the algebraic simulation scheme alluded to in the
introduction. Since the matrices A, ,(n) are of dimension Kw*, and since only matrix-vector
products are required (in addition to the computation of the F' and G functions, the cost of
which is here neglected), one can simulate the controlled transmission of n packets through a
network of K routers in 2n(Kw*)? operations on a single processor. This can be significantly
reduced when using the fact that the matrices are in fact quite sparse.

2.7.2 Exact dynamics

In order to describe the exact dynamics (namely that where one does not make the simplifi-
cation v, = w, anymore), one should keep track of the history of the reference window size
defined in §2.3. Let W(n) = (W(n),... ,W(n —w* + 1)) be this history, with the convention
W (k) =1if k < 1. The experienced window size v, is then obtained by picking the integer part
of the appropriate coordinate of the W(n) vector. Here is the generic part of the procedure
allowing one to select the appropriate coordinate:

v=|W(n)l;
for (k=1;k < v; k++)
if ((Wh—-k+1)]==|Wh-k)]+1)

U

This procedure, which is that to be used during the increasing phase of the reference win-
dow size process, stems from the observation that v, is equal to |W(n)] if the window size does
not change during the transmission of packet # n, and that the discrepancy between |W(n)]
and v, increases of one unit each time |W(n — k)] jumps up. The procedure to be used within
periods where the window size decreases depends on the version of the protocol. For instance,
in the Tahoe case, one simply resets the W vector to (1,...,1) each time the window decreases.
Detailed examples are studied below.

Denote v, = a(W(n)) this mapping. Under the foregoing assumptions, the sequence of
vectors {Z(n), W(n)} satisfies a recurrence relation of the form

Z(n) = Aa(W(n—l)) (n) ® Z(TL - 1)? (10)

W(n) = F (W(n—1),GW(n —1),Z(n),&(n))) (11)
n > 1, with initial condition Z(0) = (0, .., 0)?, for mappings F and G which are mere extensions
of the F" and G mappings to the histories of the variables under consideration (e.g. [F(W(n —
1),... )i =Wh)] =W(h)=FW(Mmn-1),...)and for 1 < i < w*, [FOW(n—1),...)]; =
Wn)i=Wh-1); 1 =W(h-—i+1)).

In what follows, the default assumption will be that of simplified dynamics.

2.7.3 Throughput and Lyapunov exponents

The instantaneous throughput fluctuates forever due to the adaptation of the window and/or
changes in the cross traffic in the routers. By definition, the mean throughput X of the controlled

INRIA



TCP is Max-Plus Linear

connection is the long term averaging of the instantaneous throughput, namely the limit

n

A= lim — = (12)

lim ,
notoo ye(n)  motoo Y 0 (Y (p) — yx(p — 1))
when it exists. This is a natural definition given the fact that our model makes no difference
between send rate and goodput.
The max-plus Lyapunov exponent vy of the sequence of matrices is defined as:
max (Avn—l(n) @ A'Ilo(l))hk

1<l k<K.w*

v= lim
n—-+oo n

(13)

A sufficient condition for the the limit defining v to exist (in the almost sure sense) is that the
sequence {A,, _,(n)} converges (with so called shift coupling) to some stationary and ergodic
sequence. The existence then follows from Kingman’s subadditive ergodic theorem (cf. [3]).

Since with our definition of Z(0), maxi<jr<xw (Av,_,(n) @Ay, ,(n—1) @ - @ A,,O(l))l .
= yx(n), we see that under this coupling convergence property, the mean throughput is well
defined and that it coincides with the inverse of the Lyapunov exponent of the sequence of
matrices: A\ =y~ 1.

It is beyond the scope of the present paper to give the minimal conditions for these conver-
gences to hold, and we will rather analyze this question case by case.

3 Deterministic models

In this section we assume that o;(n) = oy, for all n, where o; is non-random (this is the
deterministic service time assumption) and that £(n) = 0 (deterministic feedback assumption).

We will use the following notations: ¢* = maxi<j<x 0; and S = Zfil 0;. For the sake of
simple presentation, we will first consider the case when all propagation delays d; ; are 0, and

then show how the formulas should be modified to cover the non-zero case.

Theorem 2 Assume that the service and the transmission times are rational numbers. Then
under any of the above assumptions concerning the protocol (e.g. Reno or Tahoe with or without
slow start), and the form of feedback (e.g. G2, or G2 and G3, or G1, etc.), the sequence of
reference windows {wy,} becomes ultimately periodic, with values in an integer interval of the
form [a*, b*], such that 1 < a* < b* < w*.

The proof is forwarded to §7.

In what follows, we will assume that the period is made of a single increasing phase. This is
always the case under (G1). The more complex periodic patterns which can take place under
(G2) or (G3) can be studied in similar terms.

Denote t; the number of occurrences of a* < 7 < b* during a period and 7' the period:
T =to +taeis+ -+ tpe.

Thanks to Theorem 2, under the foregoing deterministic assumptions, one can simplify the
dynamical system (8)-(9) by reducing it to the pure max-plus recurrence relation

Z(n) = Ay, (n) ® Z(n —1), (14)

where {w,} is the periodic window size in this theorem (see the examples below). Therefore,
there exists a square matrix A’ of dimension Kw* describing the transient phase of the window
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size, and an integer m describing the number of packets sent in this transient phase, such that
for all n > 0,

2T +m) = (4 @ Ar @0 A% ) @ A'® 2(0). (15)

We then have the following theorem which establishes the link between the mean through-
put of our deterministic TCP model and max-plus matrix eigenpairs (see [3| for more on the
computation of eigenvalues and eigenvectors):

tyx 1

Theorem 3 If the square matriz (of dimension K.w*) AZZ* QAT ®---® AZ‘? has a unique
maz-plus eigenvalue vy, then the mean throughput is A = %

3.1 Tahoe and Reno examples
3.1.1 TCP Tahoe

We first consider the TCP Tahoe model without the slow-start phase. Either v, = w* for n
large enough, or we have

V1, vg, .y =1{1,2,2,3,3,3,... 0" =1, 6" — 1, b*,...b",1,2,2, .. 16
{v1,v2,... } ={ b L } (16)

-~

b*—1 times -+ times

The value of b* and that of ¢, depend on the chosen feedback model (for instance, in the (G1)
case, tp« = 1 and b* = [ J +1; see the proof of Theorem 2). In other words, Vi € {1,..,b* — 1},

t; =4 and 1 < ¢y < b*. Therefore T = (b )| + tp-.
Corollary 1 [Periodic TCP Tahoe without slow start| Either the window is always equal to

w*, after a certain rank, in which case the mean throughput is

1 w*

s
or there is an infinite number of epochs when the window drops to 1 and the mean throughput
18:

(17)

A = min(—

1 B —1) + 2
230 " max(S, ko*) + ty:o*

(18)

A partial proof of Corollary 1 is given in §7 under (G1). The proof is based on the computation
of the eigenvalue 7y defined in Theorem 3, which is unique in this case. We also give a graphical
interpretation of this eigenvalue property below.

Remark 4 Note that for (G1),

A=

F@ﬂ—n+2 (19)

1
2 (b —1)S +o*’
so that A only depends on o* and S (since b* = |2 | 4+ 1). In this case, when b* — +oo, the
asymptotic throughput is such that A ~ s—. As for (G2) or (G38), there are no closed form
expressions for b*, which can nevertheless be computed numerically in 2K?(w*)® operations. For
these more complex models, A depends in general on 0 = (01,... ,0k) and on = (04, ..., Bk)
as well as on the way RTO(n) is updated.
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Pathwise interpretation In Figure 1 below (where we assume (G1) and b* = 6), we restrict
our attention to the pathwise evolution of the entrance time yy(n) and the departure time yx(n)
of packet # n, which turn out to have more regularity than the daters associated with internal
routers; the above eigenpair property receives the following interpretations: before congestion
detection, packets sent behave as if there were no interactions between them, except for the
pairs of packets sent at the same moment, i.e. when the window increases of one unit; for these
pairs, the second packet always leaves the network o* units time later than the first one. Using
this, one can read the eigenvalue property directly on the figure.

— ~ —~
o o - . e 2 g
-
ﬁ,N Q) Q NS — - B2
0 @ o @ = SR~ o~ 2 ~
w2 g e ] aT S L b o )
T & o ) a eI 5 SO I n & &
_\CEH [3Y < © ~NOo - L B B B | — —
g s

arrival l
time
departure
time
S S 0 S

2 3 4 5 654321

# of packets 1
in the system

Figure 1: Interpretation through pathwise evolution

The sequence for Tahoe with slow start is:

{1,2,..,0—1,0,..,0 ,--- ,b* —1,..,b"—1,b"}, (20)
N / N ~~ o/
0 times b*—1 times

with = |b*/2]. The limitations of the simplified dynamics appear clearly here since this in
fact leads to an “instantaneous” slow start phase where 6 packets are sent at the same time.

Corollary 2 [Periodic TCP Tahoe with instantaneous slow start| Under (G1), the throughput
of TCP Tahoe with slow-start is given by:

1 -y -[5(15)-3)
T2 +1- [EDS+([E] - 1o 2y

When b* — 400, the asymptotic throughput is such that \ ~ %i

Exact dynamics Under (G1) when moving from the simplified dynamics to the exact one,
the window size that should be used in place of (16) is:

{vr,02... 3 =11,1,2,2,2,3,3,3,3,...,b" = 1,.,b" = 1,b",1,2,2, .}. (22)

-~

b+ times
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Then, the throughput is given by:
1 b*(b* +1)
~2b0*S + (b* — 1)o*”

A (23)

For the same model with slow start, the following sequence should be used in place of (20):

{1,1,2,2,..,0-1,6-1, 60,...,0 ,...,b"-1,..,b"-1,b",1,1,2,2,..}. (24)
——— ————
6+1 times b= times

One can check that these modifications do not change the asymptotic value of the throughput
when letting b* — oc.

Example 1 Take TCP Tahoe without slow-start phase over 4 tandem queues with o1 = 3.2,
o9 = 4.61, 03 = 2.7, 04, = 4.61. b* =4, w, € {1,2,3,4}. The throughput is equal to 0.140084
(Corollary 1). This is to be compared to the throughput given by (23): 0.134571.

3.1.2 TCP Reno

The periodic and deterministic evolutions of TCP Reno have been considered in [11] to get a
heuristic value of the throughput. The above max-plus representation leads to a new formula
that refines that of [11].

Corollary 3 [Periodic TCP Reno| Under (G1) without slow start, the throughput of TCP Reno
18 grven by:

=-S5 (15 -1) +2

S R 3]

(25)

When b* — 400, the asymptotic throughput is such that A\ ~ %UL In case of Reno with slow

start, the formula is the same as that of Tahoe with slow start.

We conclude this section by showing on a (G2) example how periodic regimes can be char-
acterized for other cases than (G1) via more elaborate max-plus eigenpair problems.
For all integers a < b and 7 < b let

Aa,bi) =A@ Al 1@ @ AT ® AL
Let S denote the subset of RX*" associated with the (G2) condition:
S = {Z € RKw* s.it. d1 <1 < K, Zi1+ di—l,i < Zz—l—ﬁlK}

Assume there exists a periodic regime which is made of a single increasing phase followed
by a loss. There exists such a regime with minimal window size w and maximal window size
2w, iff there exists an integer ¢ < 2w s.t. the matrix A(w, 2w, ) has an eigenpair (p, X) with
the following two properties:

1. X e§;
2. For all (w<n<2wandj<n)or(n=2wandj<i) Aw,n,j)X ¢ S.

The corresponding throughput can then be derived from the eigenpair (p, X) following the same
lines as above.

The same principle can be used to characterize more complex periodic regimes and (G3) or
(G4) models.
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3.2 Interpretation and comparison to earlier results

The results of this section are all under (G1).

3.2.1 Graphical interpretation of throughputs

The asymptotic throughputs found in Corollary 1 (case 1), Corollary 3 (case 2) and Corollary
2 (case 3) under (G1) have a natural graphical interpretation from a fluid approximation of the
window size evolution: let dy = - be the throughput for static window size w, = b* (case 0).

CASEO CASE1 CASE 2

Graphical interpretation of throughputs

When w,, increases linearly from 1, the quantity of transmitted packets, which is proportional
to the integral of W (¢) on a period, is indeed equal to 3dy (case 1); when w, increases linearly
from %, the quantity of transmitted packets is scaled down by a factor % (case 2).

3.2.2 Loss probability

The well known formula of the throughput for a single TCP connection in terms of loss proba-
bility piess and round trip time RTT is of the form [11]:

Dp=—r2
e RTT\/ploss,

where ¢, is a real constant. For our deterministic model, we have: RTT = S and
2
br(b* — 1)+ 2’
2
b -1 - 15 (5] -1)+2

case 1 : Pross =

case 2 1 Dioss =

case 3 I Pross =

(b —1) - 5] (1% -3)

When b* — 00, we have \/Digss ~ Y2 (case 1) and \/Piggs ~ 8+ (cases 2 and 3). Therefore

b*
we have the following values for c,:

case 1: ¢, = LQ ~0.71; cases2and 3: ¢, = \/g ~ 1.22.

RR n’ 3986



1. baccetir ¢ L. Hong

Thus, for large values of b* (or small value of p;uss), the asymptotic formula of Corollary 3
reduces to the formula in [11].

3.2.3 Extension to non zero propagation delays

All the results concerning (G1) hold with constant propagation delays d; ; when replacing the
value of S by S = dgo + Zszl(Ok +dg_1 k).

3.2.4 Comparison with NS

The mean throughput obtained for these deterministic models can be compared to that given by
the NS simulator when choosing an arbitrary packet size and when taking a bitrate for router
¢ corresponding to ;. The send rates obtained from NS simulation and from our formulas
may only differ due to discrepancies on the loss/congestion detection mechanism (discrepancies
stem from the instantaneous loss detection assumption (see Remark 2) and also from the fact
that we take the integer part of W (n) rather than W (n) etc.). However, for all deterministic
models with the same periodic evolution of {v,}, the evolutions are exactly the same. Here is
an example: on NS we take a TCP connection with ftp source: K = 10, packet size is 1250 (40
for ack), buffer size is 2, all d; ; are equal to 0.1ms except for dk ¢ which is equal to lms; the
bitrates are: (10,5,4,2,5,4,5,5,4,5,5)Mb for the links 0 — 1,..,9 — 10,10 — 0. At ¢ = 100s,
NS gives 152.27 packets/s. For this example, S = 25.5ms and o* = bms; using (G1), we get
from (21): 134 packets/s. However, we note that b* is actually equal to 7 in the NS simulation
(since one RTT is needed to detect triple-acks) whereas it is equal to 6 in our model (this is
precisely the difference between instantaneous and non instantaneous loss detections); taking
(21) with b* = 7 gives 152.55 packets/s.

4 Stochastic models

4.1 Deterministic services, random feedbacks

We now consider the case with simplified dynamics, with all service times still deterministic
and rational, but with random feedback as defined in §2.6.
Under our assumptions, the sequence {(W(n), Z(n))} (resp. the sequence

{(©(n),W(n), RTO(n), Z(n))}

when applicable) forms a Markov chain with finite state space A. If this Markov chain is
irreducible, then the sequence of random matrices in (5) converges to a stationary and ergodic
sequence in a sense which guarantees the existence of the mean throughput. More directly, if
one denotes 7 the stationary probability of the Markov chain, then it follows from (12) that
the inverse of the mean throughput can be expressed as

AM=y= > a@r(w,3z), (26)
(w,z2)eA
where «(Z) = Zx — Zak (see also [4]). Here is a concrete application of this general idea:

Theorem 4 Under (G1), if p > 0, {W(n)} is an irreducible Markov chain on the integer
interval [1,b*], with b* = [%J + 1, and the throughput depends on service times only through S
and o*.
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Proof

The first property is immediate (the irreducibility stemming here from the fact that {WW(n)}
can reach the value 1 from any initial condition by sufficiently many random losses in series).
The last property follows from (26) and from the fact that the sequence {yx(n+1) —yx(n) tnen
takes its values in the set & = {S— (k — 1)o*,k = 1,..,0* — 1} U {0*} (see Lemma 2 and the
proof of Corollary 1 in the appendix). Q

4.1.1 Tahoe example

Corollary 4 [Markov TCP Tahoe without slow start]| Under (G1) the throughput of Tahoe
without slow start is given by:

k(k+1)
1 . p(l—p -1
A\ = - — - ,  with ¢(k) = ( ) GEDR (27)
0%+ =1 [S—ko*]q(k) 1-(1—-p) =2+
Proof
In this case, {W(n)} is an irreducible Markov chain on the set
1 1 2 b* — 2
X=11,2,2+ - = =4, . 0 —14+ —— b}
{122+ 5,33+ 3.3+ 5.4, 0" =14 —=. 0"}

Let us denote by (), z € X, the stationary probability of this Markov chain. Simple calcula-
tions give: forall k+72€ X (j=0,... k=1 k=2,...,b"),

' (k=1)k , ; )
plk+2) = (1 —p) 7 Hp(1), with p(1) = L (28)
k 1= (1—p)
So we have
b —1 b k-1 _
Y=Y (S=(k=1Do)ulk+52) + 0> ulk+ 7). (29)
k=1 k=2 j=1
For k=1,...,b* — 1, if we put ¢(k) = u(k + %), (29) immediately gives (27). Q

Remark 5 When b* — oo, the asymptotic throughput takes a simple form if p ~ ﬁ; in this

case,

1—et \ 1 1
2 [, etdt) o o*
4.1.2 The impact of random losses

These Markov models can be used to show that the effect of losses due to random perturbations
is preponderant compared to that of losses due to a too high send rate: indeed, the global loss
probability of this model is: u(b*)+p(1—pu(b*)) = p(1), where p(b*) is the loss due to congestion
and p(1—p(b*)) is the loss due to random perturbations. For p(1) fixed, Figure 2 shows how the
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throughput obtained by (27) decreases in p (this case is that when o* =1, so that S = b* — 1).

0.45
0.4

0.35

(o] 0.002 0.004 0.006 0O.o08 0.01
P

Figure 2: Throughput as a function of p for x(1) = 0.01
4.1.3 Reno examples

Similar results can be derived for TCP Reno type models. Due to the lack of space we will
limit ourselves to a few numerical examples.

Example 2 Toke K = 4 with 0y = 3.2, 0o = 4.61, 03 = 2.7, 04, = 4.61. b* = 4, w, €

{1,2,3,4}. Figure 8 shows the evolution of y;(’n) and wy, for Markov TCP Reno with p = 0.1.
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Figure 3: TCP Reno
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4.2 Random service times

We now consider the case with random (aggregated) services on all routers. This case is the
most difficult one, even for a constant window size. The difficulty stems in particular from
the fact that the computational cost of the formulas grows in non-polynomial way with the
maximum window size. We will assume here that the sequence {o;(n), i =1,..., K}, is i.i.d.
This is a simplified model w.r.t. our initial motivations where aggregated service times represent
the influence of cross traffic on the packets of the reference connection (see [2]). Under this
assumption, the sequence of matrices {A4;(n), i =1,...,w*}, is i.i.d. and for all loss detection
models described in §2.6, {(W(n),Z(n))} (resp. the sequence {(©(n),W(n),RTO(n),Z(n))}
when applicable) forms a Markov chain.

4.2.1 Examples
Tahoe (G1)-(G4) The assumptions concerning the feedbacks are (G1) and (G4);

e (G1) accounts for the losses due to an excessive send rate of the reference flow; we will
take here S(n) =S = ]E(Z:Z L0i(1)) and 0*(n) = 0* = maxX, E(0;(1)), so that b* is still
given by b* = [U—J +1;

e (G4) accounts for the losses and timeouts due to the variations of cross traffic.

For n < &= _1) +1, let B(n) be the vector
B(n) = A, (n+ 1) ® A, _,(n)®- ® 4, (2) ® Z(0),

where vy, vs, ..., is the Tahoe sequence (1,2,2,3,3,3,...,b"* — 1,b* — 1,b%). In this formula,
the matrices {A;(n), i = 1,...,K} (resp. {Ai(n), i = 1,...,K}) are i.i.d. and defined as
{4;, i = 1,...,K}, but when using the i.i.d. random variables o(n) (resp. (n)) in place
of o(n), where o(n) (resp. o(n)) is a random vector with the law of o(n) conditional on the
property that o(n) ¢ B (resp. that o(n) € B). For instance, if B is the set

B={0ccRE s.t. 0; > X for some i},

and if the random variables o;(n), i = 1,..., K are independent and uniformly distributed on
the interval [0, U], with X < U, then the random variables ¢;(n), i = 1,..., K are still i.i.d.
and uniform on the interval [0, X], whereas the random variables 7;(n), i = 1,..., K have a

joint distribution which can be computed explicitly using order statistics.

Corollary 5 [TCP Tahoe with random service times| Under (G1)-(G4), the throughput of
TCP Tahoe without slow start is:

Z* 1Zf;&pki ((k Lk +z+1>

TSR e[ (F (1)),

where
Dri = 7T(k Ukﬂ(l - 7T): (32)
with m = P(o(n) € B).
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Proof

Since the matrix M (n)@® M'(n) has the so called memory loss property on the set {(y1, .., yx) €
RE, 4, < .. <yk} (see [4]), the stochastic process {W(n), Z(n)} is a regenerative process where
the regeneration times are the epochs when the window size is equal to 1. The lengths 7;, [ > 1,
of the successive regeneration cycles are i.i.d. and such that

b*(b* + 1
Tle{l,...,%}.

Let pg; denote the probability that 77 is equal to @ +1+4+1,0 <7<k <b*. One obtains
the value given in (32) for py; when using the assumption that the service time vectors are i.i.d.
Formula (31) for 7 follows from the ergodic theorem for regenerative processes (see the formula

in Cor.1 [4]). Q@

Tahoe (G1)-(G3) The assumptions concerning the feedbacks are (G1) and (G3), with
RTO(n) = RTO; we also assume that the service times can take a finite number of ratio-
nal values. Under these assumptions, the variables {yx(n) — yx(n — w,—1),n € N} can only
take a finite number of values too, say in a set ¥, and this sequence has the same regenerative
structure as above. The joint law of regeneration cycle T} and the dater Z(n) can be explicitly
computed by the following recursion:

P(Ty>n,Z(n)=2%) = P(Mp_{yx(k) - yx(k-wy-1) < rro}, Z(n) = %)
= Z P(Mp_{yx (k) - yx (k-wg-1) < wro}, Z(n —1) =72, Z(n) = 2)

= Z P(Z(n) =Z,yx(n) - yx(Wp-1) < rro | 7(77, -1)= E’)

P(Ty>n—-1,Z(n—-1)=7).

This is valid for n < b*. From this, one can derive a formula for the throughput using the
ergodic theorem for regenerative processes in the same way as above:

\ i—o P(Ty > k)

= -t = — (33)
ko 2zew P(T1 >k, Z(k) = Z)a(Z)

where (%) is the function defined in §4.1.

4.2.2 FExtensions

A similar formula can be obtained for TCP Tahoe with slow start or for TCP Reno, and also
for various extensions of the above model including independent packet losses as in §4.1.

Example 3 Here we consider TCP Tahoe with K = 3 routers, under (G2) with 3, = 53 = 0o
and B = 3, w* = 50. The random variables o;(n) are i.i.d. multinomial with the following
values: o1(n) is equal to {1,10,20} with probability 0.1,0.2,0.7; oo(n) is equal to {13,15,17}
with probability 0.25,0.5,0.25; o3(n) is equal to {1,10,20} with probability 0.7,0.2,0.1.

One of the curves of Figure 4 shows the evolution of W(n) for TCP Tahoe model with
slow start under these assumptions, whereas the other curve gives the evolution of W (n) when
exchanging the statistics of o1(n) and o3(n).
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Figure 4: Evolution of W (n) Figure 5: Comparison of Throughput

Figure 5 shows the comparison of the throughput of these two TCP Tahoe models. The first
model gives a throughput of 0.058679 (simulation of 107 packets), whereas that of the second
one is 0.053357. So, the permutation of the characteristics of two routers may influence the
value of the throughput: we cannot reduce the network to a single bottleneck router since the
throughput may depend on the position of the bottleneck along the path.

In the same way, mean values are not sufficient to predict the throughput: for instance,
for the first model, when moving to deterministic service times equal to the mean values of
the corresponding multinomial distributions, we find a throughput of 0.062112, whereas when
increasing variance of service times in routers 1 and 2 (o1(n) equal to {0,32.2} with probability
0.5,0.5 and o2(n) equal to {0,30} with probability 0.5,0.5), the throughput collapses to 0.043819
(—30%).

5 Further exploitation of the approach

In the previous sections, we limited ourselves to the mean value of the saturated throughput.
In fact, one can derive further results from our analysis, either analytically, or via our fast
algebraic simulation algorithm; this concerns for instance:

1. The law of the instantaneous throughput

lim P((yx(n+1) —yx(n)) * <),

n—o0

which, under the setting of §4.1, is equal to

> Va@symm(w,2);
(w,z)eA

this is an important quantity which defines a natural indicator of QoS in complement to
the average value;
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2. The law of the end-to-end delay:

N
. 1
]\}l—r)noo N ;P(yK(n) —yr(n — wp_1) < 2);

3. The law of the time D needed to transmit a file of size F'; in first approximation, this law
is given by the relation: P(D > t) = P(yx(F) > t), although more precise formulas can
be derived when taking retransmissions of lost packets into account.

Within this framework, we could also possibly handle

4 Open model (i.e. non saturated source models like http sources), where the arrival process
is described by its statistical characteristics; in this case, the basic equations read:

Yo(n) = [yx(n — vn_1) ® di o] © u(n),
yi(n) = [Yi1(n) ®di—1; ® yi(n — 1)] ® 0;(n),

i=1,...,K, where u(n) denotes the time when packet n becomes available at the source
node. This leads to a max-plus affine dynamical system where (5) has to be replaced by:

Z(n) = Ay, ,(n) @ Z(n—1) & V(n), (34)
where V' (n) is a vector built from {u(k)} (see [3]).
5 Multiple connections cases allowing one to study interactions between several customers;

6 Multicast connections over a network involving a tree rather than a linear sequence of
routers in series (see [5] for the constant window case).

7 Equation based control as considered in [7].

These last questions will be the object of future research.

6 Conclusion

We have shown that both in the saturated and the non saturated case, the adaptive feedback
mechanism of TCP is a linear feedback in the max-plus algebra. This leads to a simple repre-
sentation of the effect of this protocol on any network which admits a max-plus representation
without the control, like tandem queues or the fork-join queue networks that one finds in mul-
ticast trees. We have deduced from this simple formulas for various deterministic service time
models that refine well known results of the literature. These formulas confirm that in this case,
the throughput only depends on the RTT and the bottleneck router rate, at least in the (G1)
case. New formulas are also obtained for the random service time case, where the randomness
is a natural way of representing the effect of the rest of traffic on the controlled connection. It
is shown that in this case, one cannot obtain the throughput from mean values only, and that
the order and the fine statistical behavior of the routers cannot be ignored. The set of all pos-
sible models within this setting is quite rich. One can indeed select a deterministic or random
service time model, a congestion or loss based flow control; losses may stem from congestion, or
timeouts, or be random, or any combination of the three; Reno or Tahoe can be selected, with
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or without slow start etc. We have shown how our approach could be used to analyze some of
these combinations; we find it useful to stress that all such combinations can in principle be
analyzed within this setting, which will be the object of our future research. More generally,
this approach provides a generic framework for the simulation of TCP and related protocols
over possibly large networks, based on simple algorithms with a low computational cost.

7 Appendix

7.1 Proof of Theorem 2

For all integers 1 < u,s < w*, and all vectors z € RE®" let {W(n), Z(n)} be the sequence
defined by

Z(n) = ALW(n,l)J(TL)@Z(n—l),
W(n) = F(s,W(n—-1),1),

with initial conditions W (0) = u, Z(0) = z and ©(0) = s (this is the sequence where we enforce
O(n) = s and ACK(n) = 1). Let 7 be the first integer n such that either loss or timeout
are detected for packet n in the {W(n), Z(n)} sequence, when making use of rule (6). In case
no such event occurs, this means that the reference window size eventually stays constant and
equal to W*. If not, let B* = W (7). Here are a few examples:

e Under (G1), b* = | B*| is given by

b* =min{n : no* > S} = \‘SJ—FI.

ot
Note that in this case, b* < K + 1 and only depends on ¢* and S.

e Under (G2),
n=inf{n: Az _, @ - ® Az, ® z € S},

where S, = {Z € REY" st forsome 4, 1 < i < K, Z;_1 +di_1; < Zirp,x}- Note
that in this case, b* depends in general on the whole vectors ¢ = (0y,...,0k) and

ﬁ:(ﬁla"' 7ﬁK)

e Under (G3), the condition defining 7 is as for (G2) but with, in place of S, the set
ng = {Z € REv" gt J — ZK+ﬁn_1K > RTO(TL)}

Departing from v = up = 1, s = so = |aW*|, and z = z = (0,...,0)", we either have a
reference window size which eventually stays constant and equal to W*; in this case, the result
is proved with a* = b* = w*. If not, after the value B = B* is reached, the window drops
down, and it starts a new cycle similar to the first one, but this time with u; = [aBg], s1 = so
or |aBg]|, and z; = Z(f). Here again, either W (n) = W* eventually, or we start a new cycle
when the window size reaches the value B} etc. In case the constant sequence with only W*
is never reached, there is an infinite sequence of such cycles that only differ in their initial
conditions. Since the structure of the ith cycle is completely determined by the triple (u;, s;, Z;)
where Z; is the class of z; (see §2.6), and since there is only a finite set of possible values for
such triples under our conditions, the periodicity follows. In case RTO(n) is used in the initial
condition, the proof can easily be adapted along the same lines. Q
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7.2 Proof of Corollary 1

We will only give the proof for the (G1) case. In view of Theorem 3, we have to check that the
matrix Ay & Agij ® ---® A; has a unique eigenvalue and to compute this eigenvalue. The
first property is immediate. The second one is proved via the following lemmas.

Lemma 2 For alli € {1,..,b* — 1},

/MieaM' MM - oo MM 5\
MZ*I M/ - ] .. ) Mi72MI
: £ oo :
] M2 M MM :
he M e M ;| ith
L | block
Iy & Do E :
€ I, & :
\ 1 i
Foralli>1,n€{l,..,i—1}, 1 4th bloc
/M" g g MI Mn—lM/ S\
: : E : :
M E S M’ : < nth
A = L, & s . £ ) block
d ct : : :
E LiE---€& : :
Proof "4 ith block
By finite induction. o

Lemma 3 For alln < b*—1, the matric M @ (M"® M) ®---® (M & M') is irreducible and
its eigenvalue 1s equal to nS + o*.

Proof

M & M’ is irreducible and this property is stable by left max-plus product by M, which implies
the announced irreducibility property. Let C™ = (M™);<;<k j=1, C = C). We have for all
n>1, forallie{l,.,K},

(c™). = (C);+(n—1) max oy.

¢ k=1,...,i

goon

and
M&C™ =0 M oC™ =S+ (Mn-1)0"+C,

so that
MaeM)oC = g (Sx0).
Since, for n € {1,..,0* — 1}, no* < S, if 1 <[ < b* — 1, we have
(M'eM)Y®C=S+C, MaM)C?» =S+0*+C.
Therefore M@ (M" &M ®---@(MOM')@C® =nS+0*+C®. Hence C? is an eigenvector
of M@ (M"®d M) ®---® (M & M') for the eigenvalue nS + o*. Y%
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7.2.1 Proof of Corollary 1

We have
A @ ((CO) - ) < (S+ 0"+ (C), 0" + (C)f, )

and
A% X (S +o* 4+ (C)t,o_* + (C)t’ .. _)t < (QS + ot + (C)t, 28 + (C)t, S+ 0%+ (C)t, . _)t’

where ((C®)t,---) or (S+o* + (C),0* + (C)t,---) are line vectors of dimension K.w* and
where - - - are entries of these vectors that have no influence on the computation (for instance
put —o0).

Using Lemma 2 and the fact that for all n < b*, no* < S, we get by induction that for all
i€{2,.,b" -1},

A® ((i—1)S+ 0"+ (), (i —1)S+ (C),..., (i = 1)S = (i = 3)a* + (C)!, (i = 2)S + o* + (CO)',---)'

< (iIS+ 0"+ (0),iS+ (C)... ,iS— (i — 2)0" + (O), (i — 1)S + 0" + (O)',--+) .

Therefore

*_

(Apr ALl @4, @ (CP),- -

)t)1§i§K
(0*—1)S+0)(MxC)D ((b*—1)S+ (b* —2)0") @ (M'® C)

<
< (0" =1)S+o0"+CO.

For n < b, let B(n) denote the matrix (A1 ® Ay ® -+ ®A41),; ;< - For all n < b*, we have
B)>M®(M'e&M)®- @ (Mo M), so that o

(Ap @ AL 1@ @ A1 @ (CN ) i
Mo(M"eoM)®- @ (MaeM)eC?

(b* =1)S+ 0" +C3,

v

where the last equality follows from Lemma 3. Hence

(Ap @ A1 ®- @4 & ((CO),-- ) b* —1)S+o*+C?,

1<i<K (

The relation B(n) > M@ (M"®M')®---® (M & M') also implies that B(b* —1) is irreducible.
Therefore the eigenvalue of B(b* — 1), that is 7, is equal to (b* — 1)S + o*.
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