Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

archives-ouvertes

HMSCs en tant que spécifications partielles et leurs
complétions dans les réseaux de Petri
Benoit Caillaud, Philippe Darondeau, Loic Hélouét, Gilles Lesventes

» To cite this version:

Benoit Caillaud, Philippe Darondeau, Loic Hélouét, Gilles Lesventes. HMSCs en tant que spécifi-
cations partielles et leurs complétions dans les réseaux de Petri. [Rapport de recherche] RR-3970,
INRIA. 2000. inria-00072678

HAL Id: inria-00072678
https://hal.inria.fr /inria-00072678
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50452109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072678
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--3970--FR

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

HMSCs en tant que speécifications partielles
et leurs complétions dans les réseaux de Petri

Benoit Caillaud, Philippe Darondeau, Loic Hélouét et Gilles Lesventes

N° 3970
juillet 2000

THEME 1

apport
derecherche

%I INRIA

RENNES

HMSCs en tant que spécifications partielles
et leurs complétions dans les réseaux de Petri

Benoit Caillaud, Philippe Darondeau, Loic Hélouét et Gilles
Lesventes

Théme 1 — Réseaux et systémes
Projets Pampa et Paragraphe

Rapport de recherche n° 3970 — juillet 2000 —B3 pages

Résumé : Nous présentons les premiers résultats d’une étude visant & com-
prendre la nature des spécifications données par des HMSCs (High Level Mes-
sage Sequence Charts) et les modalités de leur utilisation pratique. Contraire-
ment a d’autres auteurs, nous n’imposons aux HMSCs aucune restriction de
type fini, afin d’adhérer au mieux au style des systémes distribués qui voient
le jour dans le domaine des télécommunications. Nous donnons d’abord une
série de résultats d’indécidabilité sur les HMSCs, établis par réduction de résul-
tats d’indécidabilité sur les sous-ensembles rationnels de monoides produits.
Ces résultats négatifs ne sont pas surprenants mais ils n’apparaissent pas a
notre connaissance dans la littérature sur les HMSCs. Ces résultats indiquent
clairement que le seul angle sous lequel on peut raisonnablement considérer
et utiliser les HMSCs comme des spécifications de comportements est d’inter-
préter leurs extensions linéaires comme des langages minimaux & approximer
supérieurement dans toute réalisation. Le probléme est alors de rechercher un
cadre dans lequel on puisse donner une signification précise a ces spécifica-
tions incomplétes au moyen d’une opération de fermeture. La seconde partie
du rapport étudie la fermeture des langages de HMSCs dans les langages de

Work presented in an invited talk at MOVEP’2k

Unité de recherche INRIA Rennes

IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)
Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

2 Caillaud € Darondeau & Hélouét € Lesventes

réseaux de Petri. Cette opération de fermeture correspond a une procédure
effective, reposant sur la semi-linéarité des images commutatives des langages
de HMSCs. Nous présentons pour finir quelques résultats effectifs afférents a
la répartition et a la vérification automatisées des réalisations de HMSCs par
des réseaux de Petri.

Mots-clés : HMSC, langages, spécifications incomplétes, indécidabilité, semi-
linéarité, complétion, réseau de Petri, réalisation, répartition, vérification

INRIA

HMSCs as Partial Specifications ... with PNs as
Completions

Abstract: The report presents ongoing work aiming at understanding the na-
ture of specifications given by High Level Message Sequence Charts and the
ways in which they can be put into effective use. Contrarily to some authors,
we do not set finite state restrictions on HMSCs as we feel such restrictions
do not fit in with the type of distributed systems encountered today in the
field of telecommunications. The talk presents first a series of undecidability
results about general HMSCs following from corresponding undecidability re-
sults on rational sets in product monoids. These negative results which as far
as we know do not appear yet in the literature on HMSCs do indicate that
the sole way in which general HMSCs may be usefully handed as behavioural
specifications is to interpret their linear extensions as minimal languages, to
be approximated from above in any realization. The problem is then to in-
vestigate frameworks in which these incomplete specifications may be given
a meaning by a closure operation. The second part of the report presents a
closure operation relative to Petri net languages. This closure operation is an
effective procedure that relies on semilinear properties of HMSCs languages.
We finally present some decidability results for the distribution and verification
of HMSCs transformed into Petri nets.

Key-words: HMSC, languages, incomplete specifications, undecidability,
semi-linearity, completion, Petri net, realization, distribution, verification

4 Caillaud € Darondeau & Hélouét € Lesventes

1 Introduction

Message Sequence Charts (MSC) are a modern form of the old timing
diagrams, adapted so as to describe scenarios in which the agents of a distri-
buted system communicate by end-to-end message passing. High Level MSCs
(HMSC) are not MSCs but finite generators of MSCs used to describe in a
compact way a whole family of scenarios in quite the same way as a finite
automaton generates a set of words, but using a different concatenation since
MSCs are partial words rather than words. Indeed a MSC is drawn in graphical
form as the Hasse diagram of a partially ordered multiset (pomset, or partial
word) whose linear extensions form a language (set of words). The concate-
nation of MSCs is therefore the concatenation of pomsets, and it induces a
somewhat complex operation of composition on the associated languages. As
a result, the language formed of all linear extensions of all MSCs produced
from a finite generator (HMSC) is generally not finitely recognizable. Before
discussing consequences, let us introduce first precise definitions. The following
is not a literal reproduction of the definitions for MSCs and HMSCs produced
by the normalizing committee of the ITU [[TU96|] but we choosed to keep com-
patibility of our simplified definitions with this standard. The reader should be
warned that we disregard the branching semantics of HMSCs (for more on this,
see Mauw and Reniers’s paper [MR97|, where HMSCs are given a process al-
gebra semantics): we are concerned here exclusively with the linear behaviours
of HMSCs. Owing to this option, we feel free to ignore co-regions as they may
always be expanded by interleaving without affecting linear behaviours.

1.1 Notations

A MSC describes the joint behaviour of a fixed family of agents each of
which executes a process defined by a fixed finite sequence of events. Events
may be autonomous (e.g., message emissions or private events) or non au-
tonomous (e.g., message receptions). We assume a finite family of agents
[n] ={1,...,n}, a finite set of private events P owned by agents, and a finite
set M of messages each of which determines its sender and its receiver. This
yields an alphabet of events E that decomposes into a partition P U S U R as

follows:
— P (for private) is the set of private events,

INRIA

HMSCs and PNs 5

- S (for sending) is the set of message emissions (S = {!m|m € M}),

for receiving) is the set of message receptions (R = {?m|m € M}).
Let ¢ — [n] be the map such that:
— for e € P, ¢(e) is the owner of the private event e,

— for e =!m, ¢(e) is the emitter of the message m,

— for e =7m, ¢(e) is the receiver of the message m.
The alphabet of events E may be partitioned accordingly into F4 U ---U E,,

where F; = {e € E'| ¢(e) = i}. Now for any word w € E*, let m;(w) denote the
projection of w on E; thus 7;(w) € E}, and let §(w) denote the distribution of w
on Ef x---x E¥ thus 6(w) = (m(w), ..., m(w)). The operation of distribution
will play an important role in the sequel. To end up with generalities, let us
recall that a word w is a prefix of w (u € pref(w)) if w = uv for some v, and
that |w|, is the number of occurrences of the symbol e in w. We come now to
the main definitions.

1.2 Basic Message Sequence Charts

Definition 1 A word w € E* is said to be admissible if |w|y, > |u|2m, for every
uw € pref(w) and for every message m € M. A vector W = (wq,...,w,) €
Ef x -+ x E} is said to be admissible if W = §(w) for some admissible word
w € E*. A scenario is an admissible vector W € Ef x --- x EX, and it is a
closed scenario if moreover W = 6(w) entails |w|y, = |w|?, for every m € M.
A basic Message Sequence Chart (or bMSC) is a closed scenario.

Remark 1 When M is the empty set of messages, every word w € E* and
every vector of words (wy,...,w,) € E} x --- x E* are admissible.

Definition 1 calls for a few comments. In a scenario W = (wy, ..., w,), each
word w; € E; defines the process of the corresponding agent ¢ € [n]. The
admissibility condition guarantees there is at least one way to interleave these
processes in a joint process such that all receptions of messages are preceded
by matching emissions. The additional condition on bMSCs guarantees that
all messages sent are received later on in this joint process. However, this
prevents us from representing communication via gates (e.g., environmental

RR n’° 3970

6 Caillaud € Darondeau & Hélouét € Lesventes

communications) in bMSCs and HMSCs. Before defining the latter, let us
introduce a concatenation operation on scenarios.

Definition 2 Given scenarios U = (uy,...,u,) and V = (v1,...,v,) let their
concatenation be defined as U -V = (uq.v1, . .., Uy).

It is easily seen that U -V = é(uv) if U = 6(u) and V = 6(v); it follows
from this observation that the concatenation of two scenarios (resp. bMSCs)
is a scenario (resp. a bMSC). Basic Message Sequence Charts form therefore a
monoid, with the distribution of the empty word as the neutral element. This
allows to define families of bMSCs using finite automata interpreted in this
monoid.

1.3 High Level Message Sequence Charts

Definition 3 A High-Level Message Sequence Chart (or HMSC) is a pair
(H,Z) where H is a finite automaton on a set of symbols B, with one initial
state and all states final, and I is a map from B to the set of Basic Message
Sequence Charts. This map extends to a unique morphism of monoids from B*
to the monoid of bMSCs, such that Z(e) = (¢, ..., €) and T(uwv) = Z(u) - Z(v)
for u,v € B*. The language L(H) of the automaton H in the free monoid
B* is called the meta-language of the HMSC. The image of L(H) under Z, let
f(H) ={Z(w) |w € L(H)}, is called the vector language of the HMSC (it is a
subset of B x---x E*). The admissible words w € E* such that 6(w) € ?(H)
are called terminated sequences of the HMSC. The set of prefizes of the ter-
minated sequences is called the language of the HMSC and it is denoted L(H)
(it is a subset of E*).

This definition calls for several comments. By considering all states of H as
final states and all prefixes of terminated sequences as elements of L(H), we
adopt an operational view on HMSCs as on line computing devices. One could
alternatively specify an explicit subset of final states for H and restrict the
definition of £(H) to terminated sequences. Results given in this paper do
carry unchanged to this more general setting. A second simplification which is
achieved here is to present bMSCs as vectors of words (wy,...,w,) € E} X
-+ x B rather than pomsets labelled on £ = E;U---UE,,. If one assumes that
multiple copies of the same message are always received in the order they are

INRIA

HMSCs and PNs 7

sent, this makes no real difference since the partial order on the occurrences of
events in the vector (wy, ..., w,) can actually be reconstructed as soon as this
vector is admissible: as all occurrences of events are already ordered in each
process, it suffices to make explicit for each message m with respective emitter
i and receiver j the ordering (w;, k) < (wj,!l) for all occurences (w;, k) and
(wj, 1) of the respective events !m and ?m such that |w;|m, = |wj|m. Now it
is easily seen that a word w € E* represents a linear extension of the partial
order thus obtained if and only if w is admissible and (wy,...,w,) € 6(w).
Our presentation is therefore consistent with other presentations of HMSCs
that may be found in the literature.

1.4 Using HMSCs as behavioural specifications?

The topic of this paper is to try understanding how HMSCs can be used as
behavioural specifications of distributed systems to be realized. Let us briefly
review a few studies where this question is addressed directly or indirectly. The
matching problem for MSCs and HMSCs was solved in [MPS98| by Muscholl,
Peled and Su. This membership problem is as follows: given a bMSC and a
HMSC, does the former belong to the set of bMSCs defined by the latter? It
was shown by these authors that the matching problem is NP-complete, while
the intersection problem for HMSCs (given two HMSCs, does there exist some
bMSC generated by both?) is undecidable. Incidentally, there are significant
differences between our HMSCs and those dealt with in [MPS98|, where no
specific order can be imposed on the reception of two messages unless the
emission of one depends on the reception of the other. The negative answer to
the intersection problem may be reworded as follows: given a system model-
led by a HMSC, one cannot decide whether this system is compatible with the
specifications given by another HMSC. One may take this negative result as an
indication that most problems for HMSCs are undecidable. We shall see that
this intuition is right. A different approach was proposed by Damm and Harel
in [DH98|. One of the ideas developed in that work is to interpret concatena-
tion of bMSCs as an operation that may synchronize agents and that explicitly
prevents multiple instances of a bMSC to be entered concurrently. With this
interpretation, languages of HMSCs stay within rational languages; this en-
ables the model checking of HMSCs, which is EXP-SPACE complete according

RR n° 3970

8 Caillaud € Darondeau & Hélouét € Lesventes

to Alur and Yannakakis [AY99]. HMSCs with this strong form of concatena-
tion may be realized by communicating automata with synchronous control
[HK99]. Although we have chosen here a purely asynchronous framework, we
could have set constraints on HMSCs so that HMSC languages would always
be rational. We did not take this option for we feel it does not suit well the
field of telecommunications in which HMSCs are used for partial specifications
at early design stages. We nevertheless adopt the objective of synthesizing dis-
tributed realizations of HMSCs by communicating automata.

To end this introduction we give a flavour of the contents of the remaining
sections. Section 2 establishes a series of undecidability results for HMSC lan-
guages, following from similar results on rational sets in product monoids. We
show the undecidability of inclusion and rationality of HMSC languages. More
precisely, we show that both inclusion and reverse inclusion between HMSC
languages and rational languages are undecidable. This leaves no hope to deal
with HMSCs as complete specifications of distributed systems amenable to
automated verification, without cutting down HMSCs by strong restrictions.
The alternative is to consider general HMSCs as incomplete specifications of
behaviours. The language of an HMSC should thus be seen as the minimal
behaviour required from systems realizing these specifications. The meaning
of specifications is now relative to a fixed class of potential realizations, and a
main question is to identify classes of realizations in which each HMSC has an
optimal realization, determined in a unique way. We give a selective answer to
this question in section 3, where we prove that Petri Nets form such a class.
We show for this purpose that HMSC languages are semilinear, and it fol-
lows from the theory of regions that they have closures in Petri net languages.
Hints at the issues of distribution and verification are finally given before a
short conclusion.

2 Undecidability results

It is shown in this section that inclusion and rationality are undecidable for
HMSC languages, and similarly for the inclusion and for the reverse inclusion
between HMSC languages on the one hand and rational languages on the other

INRIA

HMSCs and PNs 9

hand. In order to obtain these negative results, we shall focus on HMSCs
with an empty set of messages, depriving them of communication between
processes. We could alternatively eliminate private events and then concentrate
on HMSCs with an even number of processes n = 2k where every message is
sent from process i (< k) to process i + k, such that process i + k is a replica
of process 7 up to substituting ?m for !m for each m € M. The results given
in this section apply also to this case (as we shall see). Now, if we assume that
M is the empty set of messages, scenarios and bMSCs are arbitrary elements
of the product monoid E} X --- x E*. As the concatenation of scenarios (resp.
bMSCs) agrees by definition with the concatenation in this monoid, vector
languages of HMSCs are certainly rational subsets of E} x --- x E*, but they
cannot coincide with the latter since we did not equip HMSCs with specific
final states. Neither does the distribution map ¢ : E* — Ef x --- x E} yield
a bijective correspondence between languages and vector languages of HMSCs
since we imposed on languages of HMSCs to be closed under prefix. Both
disagreements derive from our operational view on HMSCs. Notwithstanding,
it is possible to reduce undecidable problems on rational subsets of £ x- - -x E
to decision problems on languages of HMSCs, thus proving their undecidability,
and this is what is achieved in this section. The organization is as follows. Basic
definitions and results about recognizable and rational sets and relations are
recalled in 2.1; auxiliary definitions and lemmas needed to compensate for
the discrepancies between rational sets and HMSC languages (regarding final
states and prefix closure) are stated in 2.2; a series of undecidable problems
on rational subsets of Ef x --- x E? are reduced in 2.3 to decision problems on
HMSC languages; the consequences of these reductions on the potential use of
HMSCs as system specifications are examined in 2.4.

2.1 Recognizable and rational sets and relations

Let us recall classical definitions and results that may be found in many
good books on language theory, e.g. in [Ber79].

Let Ei,...,E, be finite disjoint alphabets and let £ = (J; E;. The free
monoid (finitely) generated from E is denoted E*. The cartesian product
Ef x -+« x EY of the E} is a monoid with neutral element (e, ...,e) and with

RR n° 3970

10 Caillaud € Darondeau & Hélouét € Lesventes

composition as follows: (wy,---,w,)(w},...,w)) = (ww},..., wyw!). This

monoid is finitely generated (its generators are vectors of words (wy, - -+, wy,)
such that w; € E; for some i and w; = ¢ for all j #) but it is not a free monoid
(the composition of generators is commutative). The subsets of Ef x .- x E*
are also called relations.

Definition 4 Let M be a monoid and A a subset of M. A is recognizable
(A € Rec(M)) if there exists a finite monoid N, a morphism of monoids
«:M — N, and a subset P of N such that A= o~ (P).

Definition 5 Let M be a monoid with neutral element 1 € M. The family
Rat(M) of rational subsets of M is the least family of subsets X of M such

that :
a) the empty set O and every singleton set {m} are rational,

b) if A, B are rational then AU B and AB are rational,

c) if A is rational then A* is rational,
where AB ={af|a€ A N € B} and A* is the least subset of M such
that X = {1} U AX (hence 0* = {1}).

It follows from the definitions that monoid morphisms o : M — N preserve
rationality (if A is a rational subset of M then aA is a rational subset of N)
while they reflect recognizability (if @A is a recognizable subset of N then A
is a recognizable subset of M). Both notions are ideally linked as follows.
Theorem 1 (Kleene) Let M be a free monoid. Then Rec(M) = Rat(M).

Kleene’s theorem states that recognizable and rational subsets coincide in free
monoids but it does not apply to Ef x -+ x E’ since this monoid is not free.
However ET X --- x E’ is a finitely generated monoid and a weaker theorem
still applies.

Theorem 2 (McKnight) Let M be a finitely generated monoid.

Then Rec(M) C Rat(M).

Another crucial Kleene’s theorem connects rational sets with finite automata.

Theorem 3 (Kleene) The rational subsets of E* coincide with the languages
generated by finite automata with alphabet F.

It follows that rational subsets of any monoid M must coincide with subsets
of M generated by finite automata interpreted in M (the singleton sets {m}

INRIA

HMSCs and PNs 11

used to express a rational subset of M form the alphabet of the associated
automaton). In the specific case of the monoid Ef x --- x E¥ the set of ge-
nerators is the bijective image of £ = |J;., E; by the distribution map 6, and
this map is moreover a monoid morphism ¢ : £* — E} x---x E*. Seeing that
any m € M may be finitely expressed in terms of generators, it follows clearly
that the rational subsets of E} x --- x E coincide with the images under 6
of the rational subsets of E*. Let us add a few words about the inverse ! of
the distribution map.

Definition 6 Given A C Ef x---Xx E*, the mix of A is the language 6" (A) =
{w e E*| §(w) € A}.

Given a HMSC (H,Z) with an empty set of messages, the words in £(H) are
the prefixes of the words in the mix of B(H); if moreover each bMSC Z(b)
contains at most one occurrence of event, then L£(H) is equal to the mix of
2(H). Now the main source of problems with HMSC languages lays in that
L(H) may not be rational even though f(H) is rational. To get convinced of
this fact, it suffices to consider e.g. the vector language (eq, es)*.

2.2 Marked sets and Prefix sets

In order to compensate for the mismatch between rational subsets of £} x
- X E} and vector languages of HMSCs, one may envisage to represent a
rational subset A of this monoid as Pref (At) using the following definitions.

Definition 7 (Marked subset) Given A C Ef x ---x E¥ and a set of mar-
kers {T1,..., Tyn} disjoint from E, let Ax ={W - (T1,...,T,) | W € A}.

Definition 8 (Prefix set) Given a monoid M and a subset A C M let
Pref(A)={me M |3Im' € M :mm' € A}.

Lemmas below state that the above suggested representation is faithful, that
Pref (A1) isrational if A is rational, and that §~'(Pref (At1)) = Pref (67'(A7)).
Hence, one obtains altogether a representation of rational subsets of E} x - - - x
E* by HMSC languages.

Lemma 1 Let A,B C Ef X --- X E? then the following inclusions are equiva-
lent :

RR n° 3970

12 Caillaud € Darondeau & Hélouét € Lesventes

a) ACB
b) At C Bt
¢) Pref(Ar)C Pref(Br)

Lemma 2 A € Rat(E: X -+ x E*) = Pref (A) € Rat(E} x -+ x E?).

Proof. Let E = |J}, E;. As Aisrational, A = éR for R € Rat(E*) accepted by
some finite automaton A = (Q, E, T, ¢y, Qr). Let A= (Q', E, T, g5, Q) with
Q' = QxP([n]), ¢ = (q, [n]), Q% = Qr xP([n]), and with 7" (C Q@' X EX Q")
defined as the least set of transitions such that, for all i € [n], e; € E;, and
J C [n]:

if ¢ ﬂ>c]2 €T, then:

(1,) Z5(gp, J) €T' ifi€ J, and

(q1,J) <> (g2, J \ {i}) € T" in any case.
Clearly, Pref (A) = 6R' where R’ is the rational subset accepted by A’, hence
Pref (A) is rational. O

Lemma 3 Prefo¢ '(A) =610 Pref(A) for any AC Ef x --- x EZ.

Proof. Let W' € Pref(A) then by definition of Prefix sets, W = W' . W" for
some W € A and W” € Ef x --- x E. Since ¢ is a morphism of monoids,
STHW'} - YW} C 671{W}, showing that 6L o Pref(A) C Pref o 671(A).
Let w' € Prefo6™'(A) then by definition of Prefix sets, w = w'w"” for some w €
6 '(A) and w" € E*. Let W' = §(w') and W” = §(w"). Since 6 is a morphism
of monoids, §(w'w") = W'-W" € A, hence Pref o§ '(A) C 6o Pref(A).
O

The following fact is also used.
Lemma 4 Let M be a monoid. If A € Rec(M) then Pref(A) € Rec(M).

Proof. Let A € Rec(M), let « : M — N be a morphism from M into a
finite monoid N, and let P be a subset of N such that A = a~!'(P). Then
Pref(A) =a *(P') where P"={n € N |3Im € M : n.a(m) € P}. 0

INRIA

HMSCs and PNs 13

2.3 A reduction yielding negative decision results for HM-
SCs

We recall first a classical theorem claiming the undecidability of several
questions about rational relations (we refer the reader to [?] or to [Ber79)
p-90 for the proof of this theorem that relies on the undecidability of Post’s
Correspondence Problem). We establish next a reduction of these questions to
similar questions on HMSC languages, showing that the latter are undecidable.

Theorem 4 (Fischer-Rosenberg) Let X,Y be alphabets with at least two
letters. Given rational subsets A, B C X* x Y*, it is undecidable to determine
whether:

i) ANB=0;
ACB;
i) A= B,

)
)
)
v) A=X*xY"
)
)

11

~

v) (X*xY*)\ A is finite;

vi) A 1s recognizable.

Theorem 5 Let E = |-, E; be an alphabet of events partitioned into subal-
phabets E1, ..., E, such that n > 2 and each alphabet E; defines at least three
private events for process i. Given two HMSCs H, and Hs over the alphabet
E, and given a rational subset R C E*, it is undecidable to determine whether

i) L(Hy)= L(Hy);

i) L(H:) C L(H);
iii) R C L(Hy):

iv) L(H;) CR;

v) L(Hy)C 6716R;
vi) L(H;)=R;
vii) L(Hy) is rational .

In order to establish Theo. Bl we will show that each problem in the above
list amounts to a reduction of some undecidable problem among problems
(ii,iii,iv,vi) from Theo. @l So, let A, B € Rat(X* x Y*) where X and Y are
disjoint alphabets with size at least 2. We prepare the way to the reductions by
constructing first HMSCs H, and H, such that £L(H,) = 6! o Pref(At) and

RR n° 3970

14 Caillaud € Darondeau & Hélouét € Lesventes

L(Hy) = 67" o Pref(Bt) (where AT and Bt are marked sets). The alphabet
of these HMSCs is £ = F; U Fy with By = X U{T } and E;, =Y U {T.},
letting T; and T, be distinct markers (such that {T1, To}N(XUY) =0). All
events in E; are private events of process i (for ¢ € [2]). The construction of
H, is described hereafter.

As A € Rat(X* x Y*), the marked set At is a rational subset of F1* x Fy*,
hence At = 6R for some R € Rat(E*). Let A be a finite automaton on the
alphabet E such that R = L(A) (the language generated by automaton .A)
and the reachability set of each state of A includes a nonempty subset of final
states. Let H; be the automaton on F that derives from A by making all
states final so that L(H;) = Pref(R). The HMSC associated with A is the
pair (Hy,Z) where the interpretation map Z : E — E;* x Ey" is defined as the
restriction on £ (C E*) of the distribution map 6 : E* — E;* x Ey" (hence
Z(z) = (z,e) forz € X U{T1} and Z(y) = (e,y) for y € Y U{T,}). Lemmas
below show that the construction works as expected.

Lemma 5 PrefodL(H;) = Pref(Ar)

Proof. At =6R= RC § At = Pref(R) C Prefoé'(At) = Pref(R)
6o Pref(At) (lemmaB) = L(H;) C 6~'o Pref(At) = 6L(H,) C 66~
Pref(At) = 6L(H,) C Pref(At) (667" is the identity) = Prefod(L(H,))
Pref(At). Conversely, At =6R C 6L(H,) = Pref(Ar) C Pref o §(L(Hy)).

C
1O
C

Lemma 6 L(H,)= Pref o6 '6(L(H,)).

Proof. As the interpretation map of H; has been defined as the restriction of
5 on E, and seeing that every word in 6 *§(L(H,)) is admissible because H; has
an empty set of messages, this follows directly form the definition of HMSCs. O

Lemma 7 L(H;) =610 Pref(Ar)
Proof. L(H,) = Pref o 67'6(L(H})) (lemma)

=6"toPrefoé(L(H,)) (lemmaB) = 6! o Pref(A+) (lemma H). O

Lemma 8 § '6(L(H,)) = L(H,).

INRIA

HMSCs and PNs 15

Proof. ¢7'6(L(H,)) =660 Prefoé '6(L(H,)) (lemma D)
=666 o Pref o 6(L(H,)) (lemmal) = 6=' o Pref o §(L(H,)) (667" is the
identity) = Pref o 67 '6(L(H;)) (lemmaB) = L(H;) (lemma [) 0

Proof of theorem Bl Given A, B € Rat(X* xY*) let H;, H, be HMSCs
such that L(H,) = 6 ' o Pref(At) and L(Hz) = 6 o Pref(Bt). We show
that (i) to (vii) are reductions of undecidable problems on A or B or A and B.
x ad (1) A= B iff Pref(At) = Pref(Bt) (lemma[l) iff
L(H;) = L(H,) (lemma[d seeing that 66~ is the identity).

The undecidability of £L(H;) = L(H,) follows from (iii) in Theo. £l

% ad (i) this is an obvious consequence of (i).

* ad (i) A C B iff Pref(At) C Pref(Br) (lemmall) iff

L(H,) C L(H;) (lemmal[l seeing that §6 ' is the identity).

We claim that £(H,) C L(H,) iff L(H,) C L(H,).

The direct implication follows from

L(Hl) C 6716L(H1) C PTef o 6716L(H1) = ,C(Hl) (lemma H)

For the reverse implication, note that £L(Hs) = Pref o 6 '6(L(H,))

(as L(Hy) = Pref(L(H,)) and by lemma B L(H,) = §~'6L(H>))

and L(H;) = Pref o 6'6(L(H;)) (lemma),

hence L(H,) C L(H,) = L(H;) C L(H,).

The undecidability of R C L(H,) follows from (ii) in Theo. Bl with R = L(H,).
* ad (v) ANB#Qiff A+ N Bt #0iff Pref(Ar) N By # 0 iff

Pref o §(L(Hy)) N Bt # 0 (lemma [0 seeing that 567! is the identity).

Let S € Rat(E*) such that Bt = 6S.

We claim that Pref o 6(L(Hy)) N Bt # 0 iff L(H) NS # 0.

For the direct implication, we observe:

Prefod(L(H\))NBt#0 = SNé'oPrefod(L(H))#0 =

SN Prefod '6(L(Hy))#0 (lemmaBl) = SN Pref(L(H,)) # 0 (lemma)
= SNL(H,) # 0 (since L(H,) = Pref(L(H,)).

For the reverse implication, we note that L(H,) = Pref(L(H))

and that 6 o Pref(L(H;)) € Pref o 6(L(H;)) because 6 is a morphism of
monoids,

hence £(H:) NS # 0 = §(L(H,)) N Bt #0 = Pref o §(C(H,)) N Br % 0.
Altogether ANB =0 iff L(H,)NS =0 iff L(H;) C R where R = E*\ S.
The undecidability of £(H;) C R follows from (i) in Theo. @

RR n° 3970

16 Caillaud & Darondeau € Hélouét € Lesventes

x ad (v) AC Biff Pref(At) C Pref(Br) (lemma[I) iff

L(H,) C 6 ' oPref(Br) (lemma).

As Pref(Bt) € Rat(E* x Ey*), Pref(Bt) = 6R for some R € Rat(E™*).
Thus A C B iff L(H;) C 6 '6R and the undecidability of £L(H;) C 67'6R
follows from (ii) in Theo. A

x ad (vi) A=X*xY*iff Pref(At) = Pref(X*T, x Y*T,)

iff 671 o Pref(At) = R = L(H;) (lemma[l) where we let
R=Pref(XUY)* T (XUY)T U (XUY)*To(XUY)"Ty).

The undecidability of £(H;) = R follows from (iv) in Theo. @

x ad (vii) We show that A € Rec(X* x Y*) if and only if L(H;) € Rat(E*).
The direct implication may be established as follows:

A € Rec(X* xY*) = A € Rec(Ef x E}) = At € Rec(E} x E3)

(as the recognizable sets are closed under composition ([Ber79], p.61) and
seeing that (T, To) € Rec(E} x E3))

= Pref(At) € Rec(E} x E}) (lemmall) = § '(Pref(At) € Rec(E*)

(as the recognizable sets are closed under inverse morphisms ([Ber79|, p.53)
and

6 : E* — E} x E} is a monoid morphism)

= L(H1) € Rec(E*) (lemmall) = L(H,) € Rat(E*) (Theo B).

The reverse implication may be established as follows:

L(H,) € Rat(E*) = L(H,) € Rec(E*) (Theo M)

= Pref(L(H,)) € Rec(E*) (lemma Hl)

= Pref o6t o Pref(At) € Rec(E*) (lemma [)

= 6"t o Pref(At) € Rec(E*) (lemma B

= Pref(At) € Rec(E} x E})

(by direct application of a proposition stated in [Diek96] (p.33) and [DR95]
(p-172) for morphisms from a free monoid E* onto an arbitrary monoid, ap-
plied here to the surjective morphism ¢ : E* — E} x EJ)

= Pref(At)N (E; x E)-(T1,T2) € Rec(E} x E3)

(the recognizable sets are closed under intersection)

= At € Rec(E} x E3) (as At = Pref(AT)N(Ef X E3) - (T1,T)) .

Thus there exists a finite monoid N, a morphism « from (E} x EJ) into N,
and a subset P of N such that A+ = a™!(P). Let o be the restriction of a on
(X*xY*)and let P' = {s € N | s.a(Ty, Ty) € P} then clearly A = o/~'(P"),
and therefore A € Rec(X* x Y*).

INRIA

HMSCs and PNs 17

We have thus shown that A € Rec(X* x Y*) iff L(H;) € Rat(E*) and the
undecidability of £L(H;) € Rat(E*) follows from (vi) in Theo. @l 0

We will now show that the undecidability of relations (i) to (v) in Theo.
extends to purely communicating HMSCs (i.e. such that all events are emis-
sions or receptions). This may be done by reducing undecidable problems on
non communicating HMSCs to decision problems on purely communicating
HMSCs. Given (non communicating) HMSCs H; = (Hy,Z) and Hy = (Hj,T)
on the set of events £ = F; U E, with an interpretation map 7 : £ — Ef X Ej
such that Z(e) = é(e) for all e € E, define (communicating) HMSCs H] =
(H1,7") and H) = (H,Z") on the same automata H; and H; by choosing
a new interpretation map Z' such that Z'(e) = (le,e,7e,¢) for e € E; and
T'(e) = (e,le,e,?e) for e € Ey. Thus the Z'(e) are bMSCs on the set of events
E'=RUS where S ={le|e € E} and R = {7e|e € E}. It is easily seen that
for i € {1,2}, L(H]) = U{! ()W ?(v) |u € L(H;) & v € pref(u)} where
l': E* — S* and 7 : E* — R* are the respective morphisms such that !(e) =le
and 7(e) =7e, while LLI is the shuffle operator. As a consequence:

L(Hy) € £(Hy) if L(H]) C L))

A C L(H,) iff I(A) C L(H)) for A € Rat(E*),

L(Hy) C Aiff L(H]) Cl(A)LL R* for A € Rat(E*),

L(Hy) C6716Aiff L(H]) C 6716(1(A)LU R*) for A € Rat(E*),

and the undecidability of relations (i) to (v) for purely communicating HMSCs
follows from Theo. B (seeing that ALLI R* € Rat(E"™) for A € Rat(S*)).

2.4 Should HMSCs be considered as specifications?

There are several ways to consider HMSCs as specifications of distributed
systems. By interpreting HMSCs as abstract generators for languages L(H),
we admittedly restrict the scope of our investigations in this respect, but the
generated languages may be given at least three different meanings: £(H) may
be considered as a subset of the behaviour of the specified system (specifica-
tions of service), as an exact definition of the behaviour of the specified system
(complete specifications), or as a superset of the behaviour of the specified sys-
tem (specifications of safety). Needless to say, all interpretations may co-exist
in a logical framework for distributed system specification based on HMSCs.

RR n° 3970

18 Caillaud & Darondeau € Hélouét € Lesventes

Sharing the common opinion that any practical specification framework should
enable some decision of conformity of systems with specifications, let us exa-
mine these various interpretations under the light shed by Theo.

By (ii) in Theo. B one cannot check HMSCs considered as representations of
systems against HMSCs expressing safety conditions or service requirements.
By (iii) and (iv) in Theo. B one cannot check bounded systems against HM-
SCs expressing safety conditions or service requirements; and one cannot check
HMSCs considered as representations of systems against regular safety condi-
tions or regular service requirements. As Theo. Bl is not conclusive for star-free
regular languages, this leaves open the problem of checking HMSCs against
linear temporal logic formulas (but we bet the situation is not better). Finally,
by (vii) in Theo. Blone cannot decide whether a given HMSC generates a ratio-
nal language (in which case most difficulties vanish since we are brought back
to the realm of effective boolean algebras).

The above observations leave two ways out. One is to impose constraints on
HMSCs strong enough to guarantee that languages of HMSCs are kept within
rational languages. The price to pay is to give up with unbounded systems,
nicely modelled with HMSCs and largely present as partial specifications of
telecommunication systems. The alternative way, yet unexplored, is to consi-
der languages of HMSCs as specifications of minimal service for a given class
of (potentially) unbounded systems. The price to pay is to accept that the
realized behaviours may be strictly larger than the specified behaviours. The
difference between realized behaviours and specified behaviours is an inverse
measure for the quality of realizations.

An ideal class of unbounded systems for the realization of HMSC specifications
should come equipped with an effective procedure able to synthesize optimal
realizations of all HMSC specifications; it should also allow for model-checking
systems against safety assertions in order to verify that the added part of the
realized behaviours makes no problem. These criteria are demanding but they
are reasonable. Next section shows that they are met by Petri nets and more
importantly by distributable Petri nets, a variety of Petri nets that translate
easily to clusters of automata communicating by asynchronous message pas-

INRIA

HMSCs and PNs 19

sing. We do not claim that HMSC specifications are implemented at best via
Petri net synthesis. Petri nets are used only as an illustration aiming to show
that general HMSCs may really play a central role in the design of distributed
systems. The search for other (more) adequate classes of realizations for HMSC
specifications is an open direction for further work.

3 Petri net realization of HMSC languages

It is shown in this section that HMSC languages £(H) may be mapped to
closures £(H) in the class Gof of (free) Petri net languages [Pet76], such that
L(H) = L(N) for some net N effectively computed from H, thus providing an
optimal realization of H. In order to get distributed realizations of HMSCs,
we will specialize the construction of closures to distributable Petri nets, that
may be compiled to distributed implementations on an asynchronous network.
Petri nets may be model-checked against safety assertions, hence they are an
adequate class of realizations for HMSC specifications, according to the criteria
stated in section 2. Two results will complete the picture: on the negative side,
the problem whether a HMSC language may be realized exactly by some Petri
net is undecidable; on the positive side, Petri net realizations of HMSCs may
be model-checked against (possibly non regular) safety assertions represented
as Petri nets.

It is not the goal of the paper to give a presentation on the topic of Petri
net synthesis, hence we shall only present here the necessary results (for more
on the topic, the reader may consult [BCD00| [Cail99] [Dar98| [Dar00]). The
corner-stone of the methods developed so far for deriving Petri nets from formal
languages is the semilinearity of their commutative images. The main contri-
bution of the section is to show that commutative images of HMSC languages
are precisely semilinear.

The section is organized as follows. The semilinearity of commutative images
of HMSC languages is established in 3.1; using this fact, Petri net closures of
HMSC languages are constructed in 3.2; distributable Petri nets are conside-
red in 3.3; the undecidability of the Petri net synthesis problem for HMSC

RR n° 3970

20 Caillaud € Darondeau & Hélouét € Lesventes

languages is proved in 3.4; the issue of model-checking realizations of HMSCs
is finally addressed in 3.5.

3.1 Commutative images of HMSC languages are semi-
linear

First, let us recall the definitions of linear subsets and semilinear subsets
of a monoid.

Definition 9 Let M be a monoid. A subset of M is linear if it may be expres-
sed as m-P* where m € M and P is a finite subset of M. A semilinear subset
of M is a finite union of linear subsets of M.

Let k = |E| where E is the alphabet of events fixed for HMSCs. The monoid we
shall consider here is IN* (with the all zero k-vector as the neutral element and
the addition of k-vectors as the composition operation). Words w € E* may be
sent into IN* by counting the occurences of each letter e; € E, resulting in an
k-vector Y(w) = (|wle,,- .-, |w|e,) that represents the commutative image of
w; the mapping 1 : E* — IN*, known as Parikh mapping, is actually a monoid
morphism. We aim at showing that for any HMSC H with set of events E, the
Parikh image 9 £(H) of the language of H is a semilinear subset of IN*. To that
effect, we shall use the crucial fact that semilinear subsets and rational subsets
coincide in any commutative monoid [ES69] (hence in particular in IN*) and
a series of technical lemmas about scenarios. In the sequel, notations are like
those in section 1.1, except that © < w and U < W are used as abbreviations
for 3v w=w-vand 3V W = U -V respectively in the (unit divisor free)
monoids £* and E} x --- X E}.

Lemma 9 Let U < W where U and W are scenarios. For any admissible
word w such that U = 6(u) there exists an admissible word w such that u < w
and W = 6(w).

Proof. Let W = U -V (V is not necessarily admissible). By induction on
the size of V', with the trivial case W = U as a basis, it suffices to establish:
W # U = Je € E such that 6(e) <V and ue is admissible. We proceed with a
proof by contradiction. Suppose Ve € E 6(e) < V = we is not admissible. As
u is admissible 6(e) < V entails e =?m for some m such that ?m and !m occur
an equal number of times in u. Let W = (wq,...,w,), U = (uq,...,u,) and

INRIA

HMSCs and PNs 21

I ={i € [n]|w; #w;}. Thus I # () and for each i € I, w; = u; - ?m; - v'; where
?m; and !m; occur an equal number of times in u. Fix some admissible word w
such that W = §(w) (there must exist such words since W is admissible). Let
w' < w be the least prefix of w such that |u|sm,, < |[W'|2y,, for some i € 1. If we
set 6(w') = (w'y,...,w",) then necessarily w'; = w;-?m; for some ¢ € I, and
w'; < u; for all j # i. Now let m = m; (hence ¢(?m) =) and ¢(!m) = k. As
w' is admissible, |w' |7, < |w'|im. Seeing that |w' |, = |Wk|m < [uk|im = ||
and |w'|oym = [Wi|tm = 14 |wi]om = 1 4 |1t|2y, it follows that |w]y, > 14 |u|om,,
contradicting m = m; or the fact that !m; and ?m; occur an equal number of
times in u. O

Lemma 10 Let H = (H,Z) be a HMSC on E whose underlying automaton
has set of symbols B (hence T maps symbols b € B to bMSCs on E). A word
u € E* belongs to the language of the HMSC (v € L(H)) if and only if it
1s admissible and there exists some word 3 € B* accepted by the underlying
automaton (€ L(H)) such that 6(u) < Z(f).

Proof. Suppose u € L(H), then by definition, u < w for some admissible
word w such that 6(w) = Z(F) for some § € L(H), and prefixes of admissible
words are admissible. Conversely, let © be an admissible word and suppose
that 6(u) < Z(pB) for some § € L(H). It then follows directly from lemma
that v € L(H). O

Lemma 11 Let W = W;-...-W,,, where for each i € [m], W; = (w;,, ..., w;,)
is a bMSC (thus W is a bMSC). A vector U € Ef X --- x E* is an admissible
prefix of W if and only if it may decomposed as U = W' - ... - W', such that:
for alli e [m], W', = (w'y,,...,w';,) is an admissible prefiz of W; and

for all p € [n], W', # w;, = w';, =€ for all j > i.

Proof. The delicate part of the proof is the direct implication. The reverse
relation may be established as follows. Let U = W', - ... - W', as above, hence
U < W. For each i € [m] let w'; be an admissible word such that W’; = é(w';)
(such words must exist by definition) and let u = w'y - ... w'y,. Then U = 6(u)
and u is an admissible word, and U is therefore an admissible prefix of W.
Let us show now the direct implication. Every prefix U of W =W;- ... - W,,

RR n° 3970

22 Caillaud € Darondeau & Hélouét € Lesventes

has a unique decomposition U = W', - ... - W', satisfying all requirements
of the lemma but the admissibility of the W’;. We shall prove by induction on
the size of U, with the trivial case U = §(¢) as a basis, that this requirement
is met when U is an admissible prefix of W. Hence let u = ve (with e € E)
be an admissible word such that U = é(u), and assume by induction that
6(v) = W" - ... - W", and the W”"; satisfy all conditions expressed in the
lemma (for W’;). Since 6(u) = 6(v) - 6(e) and the considered decomposition
of 6(v) is unique, there must exist i € [m| such that W/; = W"; . §(e) and
W'; = W"; for j # i (hence W', is admissible for j # 7). It remains to show
that W'; is admissible. For the sake of contradiction, suppose the opposite.
Let W";, = (w";,...,w";,), and let w”; € E* be an admissible word such
that W"; = §(w";). From our supposition w”; e is not admissible. As w"; is
admissible, the only possibility is that e =?m for some m such that !m and
?m occur an equal number of times in w”;. Hence, assuming ¢(?m) = p and
¢(!m) = ¢, we have: |y |mm = 1+ [0, [om = 1+ |0 |m = 1+ |05, |1m.
Now W'y < W; = w's, < wy, = |Wi|mm < Wi, lom, and |wi,|om = |wi,|im
since W; is a bMSC (closed scenario). Altogether we obtain the inequality
1+ |w's,[im < |wi,|1m- Hence w’;, # w;, and therefore w'; = ¢ for j > i. Mo-
reover, w';, # ¢ = w';, = w;, for j < i. Recalling that |wj, |, = |wj, |m for
all j and summing up one obtains the inequality >, [w's, |lm < Xi<i [W'k,|7m-
It follows from this inequality that |u|w, < |u|s, for any word w such that
U = 6(u), hence U is not an admissible prefix of W, which contradicts the
assumption. O

One can now easily derive from any HMSC H on E a finite automaton H
on Ef x ---x B’ whose generated language of vectors is the set of admissible
prefixes of vectors in f(H). The construction is sketched below.

Let H = (A,Z) where the automaton A has set of symbols B and Z maps
symbols b € B to bMSCs on E. Let A = (S, B, T, sy) where S is the set of
states, sg € S is the initial state, and T'C S x B x S is the set of transitions.
Then H = (S, B,T,3;) where S = S x P[n] (the second component represents
a collection of dead agents), B C E} x - -- x E* is the set of admissible prefixes
of the bMSCs Z(b) for b ranging over B, 5y = (s, [n]), all states are final, and
T is the least set of transitions such that, for all J,J' C [n] and V € B:

INRIA

HMSCs and PNs 23

if s 25 s’ in A then (s',J) -5 (s,J") in H whenever

V is an admissible prefix of Z(b) and the following hold,

letting V' = (v1,...,v,) and Z(b) = (wy, ..., wy):

x vy =cforall j €J,

x JCJ,

* vj#wjijEJ’.

The correctness of the construction follows directly from lemma [T}

The automaton H can easily be transformed into an automaton (H) on IN*,
whose set of accepted vectors is the set of Parikh images of the words in £(H).
The transformation consists in replacing labels V € B by corresponding vec-
tors (V) € IN*, where the Parikh mapping 1 : E* — IN* is extended to
Ef x -« x E by setting ©¥(vq,...,v,) = ¥(v1) + ... 4+ 9¥(v,). The correctness
of the construction follows directly from lemmas [and

Recalling that rational subsets and semilinear subsets coincide in IN* (where
this correspondence is effective in both directions), we have obtained a com-
plete proof of the following theorem.

Theorem 6 Let H be a HMSC, then YL(H) is effectively semilinear.

A little more is needed if we want to compute closures of HMSC languages
with respect to general Petri nets. We need for each e € E a semilinear ex-
pression of the Parikh image of the e-terminating sublanguage £L(H) N E*e. A
semilinear expression of /(L(H) N E*e) may be obtained as shown for ¢ £(H)
by specializing the basic automaton H according to e. For e € E, let H, be the
automaton that derives from H by carrying the following list of modifications:
each state (s, J) is replaced with two states (s, .J,0) and (s, J, 1),

(80, [1],0) is the initial state,

the states (s, .J,1) are the final states,

(s,J) =5 (s',J") splits to (s, J,0) - (s',J',0) and (s, J,1) -2 (', J', 1),
(s,J,0) SN (s',J',1) is added for each transition (s, J) N (s',J') such that
V = 6(ue) for some admissible word ue with ¢(e) € J'.

Verifying that the set of vectors accepted by ¥(H,) is equal to the Parikh
image of L(H) N E*e is left to the reader (note: use the fact that bMSCs are
closed scenarios).

EOE

RR n° 3970

24 Caillaud € Darondeau & Hélouét € Lesventes

3.2 Petri net closures of HMSC languages

This part recalls the definition of Petri nets, brings in a general theorem

that connects Parikh semilinear languages with Petri nets, and applies this
theorem to HMSC languages in order to define and compute their Petri net
closures.
Definition 10 A Petri net (system) is a quadruple N = (P, E, F, My) where:
P and E are finite disjoint sets of places and events, F' : (PxE)JU(ExP) — IN,
and My : P — IN. Maps M : P — IN are called markings. M, s the initial
marking. The net is pure if for all e and p, F(p,e) =0V F(e,p) = 0. An event
e may be fired at M if (Vp € P) F(p,e) < M(p). The firing of e results in a
transition M [e > M’ such that (Vp € P) M'(P)= M(p) — F(p,e) + F(e,p).
A firing sequence of N is a (nonempty) sequence My[e1 > My ... [e, > M,.
The Gg language of the net is the set of labels eq ... e, of the firing sequences,
plus the empty word (¢). A marking M is reachable if M = My or M = M,, for
some firing sequence. N 1s bounded if the set of reachable markings is finite.

In the sequel, £L(N) denotes the Gg language of the net N. In the basic version
of nets defined above, events do not bear extra labels; for this reason, languages
L(N) are called free Petri net languages; thus £L(N) € Go' (where Go means
that all prefixes are included and f means that the labelling is free). In the
sequel, we say that a language £ C E* is Parikh semilinear if its Parikh image
YL is a semilinear set.

Theorem 7 If a language L C E* is Parikh semilinear, one can effectively
compute from YL a pure Petri net N such that L C L(N) and L C L(N') =
L(N) C L(N') for every pure Petri net N'. This assertion remains true if one
replaces pure Petri nets with pure and bounded Petr:i nets.

If all the e-terminating sublanguages of a language L C E* are Parikh semili-
near, one can effectively compute from the respective sets (L N E*e) a Petri
net N such that L C L(N) and L C L(N') = L(N) C L(N') for every Petri
net N'. This assertion remains true if one replaces Petri nets with bounded
Petri nets.

The reader may find a brief presentation of the construction of N in [Dar00],
with enough indications for a complete proof of the above theorem (that ex-
tends Prop. 3.9 of [Dar98]). If we now apply this theorem to HMSC languages,
we get immediately the following.

INRIA

HMSCs and PNs 25

Theorem 8 Let H be a HMSC on E. One can effectively compute from H a
general (resp. pure resp. bounded resp. pure and bounded) Petri net Ny with set
of events E such that L(Ny) is the least language of a general (resp. bounded
resp. pure resp. pure and bounded) Petri net N satisfying L(H) C L(N).

Proof. By lemma [the conditions of application of Theo. [are valid. O

The net Ny is not totally determined by the theory (several nets may have
an identical language even though they have no redundant places), but also
by the algorithm chosen for the construction. On the contrary, the language
of the net Ny does not depend on the chosen algorithm. In the sequel, the
language L£(Ng) is denoted £(H) and is called the Petri net closure of the
HMSC language £(H). Every net N such that £L(N) = L(H) is called a Petri
net realization of the HMSC H or more properly of the HMSC language L(H).
It is important to observe that all the words in £(H) are admissible (this
property may be enforced on the behaviours of a net by supplying for each
message m one place p,, such that F(Im, p,,) and F(p,,, 7m)). On the contrary,
semilinearity is generally not preserved by the closure operation.

3.3 An undecidability result

At this stage, a question naturally arises: if one sticks to the strict requi-

rement of equality of the specified and realized languages, does the subset of
HMSCs which may be realized in the strict sense using Petri nets form a re-
cursive subset? The answer is negative, and we produce hereafter evidence for
this. In the meantime, let us recall an important result of Petri net theory due
to Elisabeth Pelz [Pelz87].
Definition 11 A labeled Petri net is a Petri net N equipped with a labeling
map £ : E — (AU {e}), where € is the empty word. The labeled net is deter-
ministic if at each reachable marking at most one event can be fired for each
label. The labeled net is e-free if {(e) # ¢ for all e € E. The language of the
labeled net (N, () is the set of all images under ¢ of firing sequences from the
initial marking. A Petri net generator is a labeled Petri net equipped with a
finite subset of final markings (or partial markings) F. The language of the
generator is the set of all images under ¢ of firing sequences from the initial
marking to final markings (or partial markings).

RR n’° 3970

26 Caillaud & Darondeau € Hélouét € Lesventes

Theorem 9 (Pelz) The complement of the language of a deterministic e-free
labeled net N s the language of a Petri net generator CN constructible from
N.

Corollary 1 Let N and N' be Petri net generators. If N' is deterministic and
e-free, one can decide on the inclusion L(N) C L(N').

Proof. L(N) C L(N') if and only if the language of N” is empty, where N”
is the Petri net generator defined as the synchronized product of N and CNN’,
with events defined as pairs of events with common label, and with final (par-
tial) markings defined as inverse projections of the final (partial) markings of
CN'. Deciding on the emptyness of L(N') reduces to the (partial) reachability
problem for Petri nets, which is decidable [May84]. O

The basic Petri nets introduced in Def. [[{] are a particular case of determi-
nistic e-free Petri net generators: their labelling map ¢ : E — (E U {¢}) acts
as the identity on F, and their set of final partial markings F has the totally
undefined marking as its unique element. We proceed with the proof of the
announced result.

Theorem 10 Relation L(H) = L(H) is undecidable (from H).

Proof. By lemma [from any rational subset A € Rat(X* x Y*), one can
construct a HMSC H on E = E; U Ey (with By = X U {T}, By = Y U
{Tg}, Ty 7é Tz, and (X U Y) N {Tl,Tg} = @) such that E(H) =¢6lo
Pref(At) (with ¢(e) = i for e € E;). It should be clear from this relation
that L(H) C Pref(X*Ty)W Pref(Y*Ty), where LLI is the shuffle operator,
and that equality is met if and only if A = X* x Y*. Since Pref(X*T;) and
Pref(Y*T,) are languages of (one-place) nets N; and N, with disjoint sets
of events, their shuffle is the language of the net N obtained by putting N;
and N side by side. Hence L(H) C L(N), and L(H) = L(N) if and only if
A=X*xY*

By Theo. B one can construct from H another Petri net Ny such that
L(Ny) = L(H). As L(H) C L(N), L(Nyg) = L(H) C L(N) by definition of
Petri net closures of HMSC languages.

Suppose for contradiction that one can decide on the relation L(H) =
L(H). We derive a decision procedure for the relation A = X* x Y*, thus

INRIA

HMSCs and PNs 27

contradicting (iv) in Theo. Bl The procedure is as follows. If L(H) = L(H) has
a negative answer (thus £(H) C L(H)) then L(H) C L(N) (since L(H) C
L(N)) and therefore A # X* x Y* (as L(H) = L(N) iff A = X* x Y*). If
L(H) = L(H) has a positive answer (thus L(H) = £(Ny)) then A = X* x Y'*
if and only if L(N) C L(Ny) (as A= X*x Y*iff L(H) = L(N) ifft L(Ny) =
L(N), and L(Ny) = L(H) € L(N)). By Theo. @ and corollary [the last
relation can be decided. Hence we have obtained a decision of the relation
A=X*"xY". O

3.4 Distributed net realizations of HMSCs

Of special interest for the realization of HMSCs are the distributable Petri
nets introduced in [Cail99|. Let us recall the definition.

Definition 12 A distributable Petri net system with set of locations [n] is a
quintuple N' = (P, E, F, My, ¢) where (P, E, F, M) is a Petri net system and
¢ : (PUE) — [n] is a placement map such that F(p,e) # 0 = ¢(p) = ¢(e)
for every place p € P and for every event e € E.

The range [n] of the placement map represents the collection of sites on an
asynchronous communication network where no message is ever lost or dupli-
cated. Places and events located at different sites may be connected by the
flow (multi) relation F. Hence an event e € E may produce tokens for a dis-
tant place p € P. As the flow of tokens must be implemented on the network
by asynchronous message passing, tokens produced will be available only after
some delay, but this remains compatible with the asynchronous nature of Petri
nets. On the contrary, if events e € E were allowed to consume tokens from
distant places, one would immediately be faced with the problem of distributed
conflict that cannot be solved without building first a synchronous layer on top
of the asynchronous network. The condition F(p,e) # 0 = ¢(p) = ¢(e) gua-
rantees that conflicts cannot occur between events at different sites. A straight-
forward procedure for the implementation of distributable nets on asynchro-
nous networks then follows. Let us postpone the description of this procedure
and come back to HMSCs.

By definition, the set of events of a HMSC comes equipped with a placement

RR n° 3970

28 Caillaud & Darondeau € Hélouét € Lesventes

map ¢ : E — [n] (we recall that ¢(e) = i if e is a private event owned by
process 2, or ¢ =!m and 7 is the emitter of m, or e =7m and ¢ is the receiver
of m). Thus, it makes sense to try realizing HMSCs with distributable Petri
nets such that processes ¢ € [n| are mapped identically to sites. Next theorem
shows that this special form of the realization problem may be solved with
little effort.

Theorem 11 Theorem [extends to distributable Petri nets with fized place-
ment map ¢ : E — [n]. Theorem[8 extends similarly to distributable Petri nets
with the placement map ¢ : E — [n] inherited from H.

So, given a HMSC H on E with placement map ¢ : E — [n], one can compute
a distributable Petri net Ny = (P, E, F, My, ¢) whose generated language is
the closure of L(H) with respect to distributable Petri nets. In order to ob-
tain a distributed realization of H, it remains to implement the distributable
net Ny on the asynchronous network. To this effect, we propose a two stage
procedure.

In a first stage, we expand Ny = (P, E, F, My, ¢) into a distributable net
N'yg = (P',E',F', M, ¢') where both new places and new events are added in
order to model the buffered mode of transmission of tokens on the asynchro-
nous network. The idea is to let F'(e,p) =0 for all e € E and p € P such that
o(e) # ¢(p) (as an instantaneous transmission of tokens between different sites
is not possible) and to compensate for the distorsion by introducing auxiliary
message emissions and receptions (new events) which implement the asynchro-
nous transmission of the tokens produced by e and passed to p from ¢(e) to
¢(p). The set of auxiliary messages M is the set of nonempty multisets ;1 on
P such that u = pu(i, e, j) for some i,j € [n] and e € E, letting:

pli,e,5)(p) = Fle,p) if i=¢(e) # ¢(p) =7 and 0 otherwise.

The sets E, (resp. E-) of auxiliary message emissions (resp. receptions) are:

Ev={p\]3e3j p=np(iej)#0} and E;={p-|FiIe3j p=pnliej) #0}.

Auxiliary places are introduced in order to condition the emissions resp. re-
ceptions of auxiliary messages, giving the respective sets:

P, ={pm dedj p=pli,e,j) #0} and P, ={p,|JiIedj p=pli,e,j)#0}.

INRIA

HMSCs and PNs 29

The sets of places and events of N’ are P’ = PUP\UP; and E' = EUE \UE>.
The initial marking M, is extended to Mg by setting My(p') = 0 for all p’ ¢ P.
The localisation map ¢ is extended to ¢’ by setting ¢'(p,) = ¢'(u}) = ¢ and
¢ (pu) = ¢'(i2) = j where j is the (unique) location such that p = p(i, e, j) for
some i and e. The definition of N’y is completed by setting the flow relations
as follows (e € E and p € P):

F'(p,e) = F(p,e),

F'(e,p) = F(e,p) if ¢(e) = ¢(p) and 0 otherwise,

F’(e,pi) =1if u = p(i, e, j) for some j and 0 otherwise,

F/(ph 18) = F(4iy) = F'(pys) = 1,

F'(u2,p) = u(p),

F" =0 in all cases left unspecified.

It is proved in [BCDO0| that when all auxiliary events in P'\ P are considered
unobservable, the reachable state graph of N’y is divergence free, which means
that no infinite sequence of unobservable transitions can occur, and branching
bisimilar to the reachable state graph of Ny (see [uGWR&9]), which entails that
the observable behaviours of the two nets are identical.

In a second stage, we remove from N’y the auxiliary places p, which were
used to represent tokens in transit on the network. The effect of the removal
is to disconnect N’y and to produce n component nets N;. For each i € [n],
the net A is the restriction of N’y on the (remaining) places and events with
location 7. One is left with implementing each N; on the corresponding site i
such that auxiliary events are interpreted as follows:

* each auxiliary event pf is interpreted as sending message u to the (unique)
destination j on the network such that pu = u(i, e, j),

* each auxiliary event p» in N is interpreted as receiving message j from the
network.

We obtain in this way a distributed (and provably correct) realization of the
(distributable) Petri net closure £(H) of the language £(H) of the HMSC H.

In case when Ny is a bounded Petri net, one can go a step further by trans-
lating the component nets N to finite automata A;. As the component nets
are generally unbounded, even though Ny is bounded, the translation is not

RR n° 3970

30 Caillaud € Darondeau & Hélouét € Lesventes

immediate. The trick is to introduce for each place p of N; with bound 7 in Ny
(thus p € P) a new place representing 7 — p. The effect of the complementary
places is to transform each N; to a bounded net by pruning away behaviours of
the autonomous net A/; that could not occur anyway in the context of N'g. In-
deed, Ny is bounded if Ny is bounded, and bounds agree on common places.
The finite automata A; are finally obtained by computing the reachable state
graphs of the bounded versions of the components nets N;. We obtain in this
way distributed realizations of HMSCs by finite automata communicating with
asynchronous message passing.

3.5 Model-checking Petri net realizations of HMSCs

As L(H) is by definition the closure of L£(H), realized behaviours L(H)
may be larger than specified behaviours £(H). One may want to verify that
extra behaviours cause no problems, which amounts to model-check Petri net
realizations Ny of HMSCs against safety assertions. In view of the results
recalled hereafter, this is certainly possible. Model-checking Petri nets w.r.t.
the linear time p-calculus is decidable [Esp94]. More generally, one can decide
on the inclusion £(N) C A for a net N labelled on E and A € Rat(E*) [JM95].
Last but not least, by Theo. @ one can decide on the inclusion £L(N) C L(N')
for two nets NV and N’ labelled on E provided that N’ is deterministic.

The decision techniques supplied in the above references apply to arbitrary
Petri nets N. In the particular case where N = Ny is the net realization of
a HMSC, one may try to exploit this specific fact. For instance, let H and N
have the same set of events, then L(Ny) C L(N) if and only if every place p of
N coincides with a region of L(H) (see [Dar(()]). This may be checked directly
and efficiently from the automaton 1 (H) which was constructed in section 3.1.
One may decide in a similar way on the equivalent inclusions £(H;) C L(H,)
or L(H,) C L(H,) for two different HMSCs. It is not clear that the use of
regions may help to decide more efficiently on the inclusion L(H) C A for
A € Rat(E*).

INRIA

HMSCs and PNs 31

4 Conclusion

The results which have been presented in this paper call for several com-
ments.

First of all, the undecidability results shown in section 2 indicate that one has
an alternative between two antagonistic views upon HMSCs:

1) One may regard HMSCs as complete specifications. In that case, one is led
to only consider HMSCs with regular behaviour, as otherwise verification and
realization would become unfeasible. The loss of expressiveness is in our opi-
nion a serious drawback at an early stage in the design of telecommunication
systems.

2) One may regard HMSCs as incomplete specifications. One must in that
case define the meanings of HMSCs as closures of their normal behaviours
with respect to such or such class of realizations, e.g. distributable Petri nets
or communicating automata. Verification on general HMSCs’ behaviours is un-
feasible, but verification on their closures is effective for well chosen classes of
realizations — Petri nets for instance. We feel that this pragmatic view is far
more suitable.

High level message sequence charts express positive facts on system behaviour.
Results shown in section 3 about verification on Petri net realizations of HM-
SCs suggest that it would be desirable to extend HMSCs so that both positive
and negative facts could be expressed in a single formalism. This should not
be confused with Harel’s distinction between compulsory and optional events
in HMSCs.

Finally, this paper only considered closures of HMSCs’ behaviours with respect
to Petri nets. Considering other classes and comparing their advantages is an
open field for research. Incidentally, the Petri net closure of a HMSC shows an
interesting property: the flow of tokens in the synthesized net seems to induce
a minimal covering of the order on events in the HMSC. This could provide a
way of minimizing communications while preserving behaviour.

RR n° 3970

32 Caillaud € Darondeau & Hélouét € Lesventes

Références

[AY99] Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. Proc.
Concur, LNCS 1664 (1999) 114-129

[BCDO0] Badouel, E., Caillaud, B., Darondeau, Ph.: Distributing Finite Automata through
Petri Net Synthesis. (draft available from the authors)

[Ber79] Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbiicher,
Stuttgart (1979)

[Cail99] Caillaud, B.: Bounded Petri Net Synthesis Techniques and their Applications to
the Distribution of Reactive Automata. JESA 9-10 no.33 (1999) 925-942

[DH98] Damm, W., Harel, D.: LCSs: Breathing Life into Message Sequence Charts. Report
(CS98/09, Weizmann Institute of Technology (1998)

[Dar98] Darondeau, Ph.: Deriving Unbounded Petri Nets from Formal Languages. Proc.
Concur, LNCS 1466 (1998) 533-548

[Dar00] Darondeau, Ph.: Region Based Synthesis of P/T-Nets and its Potential Applica-
tions. Proc. ICATPN, LNCS 1825 (2000) 16-23

[Diek96] Diekert, V., Métivier, Y.: Partial Commutation and Traces. Research report
1996/02, Universitét Stuttgart Fakultdt Informatik (1996)

[DR95] Diekert, V., Rozenberg, G. (editors): The Book of Traces. World Scientific, Singa-
pore (1995)

[ES69] Eilenberg, S., Schiitzenberger, M.: Rational Sets in Commutative Monoids. Journal
of Algebra 13 (1969) 173-191

[Esp94] Esparza, J.: On the Decidability of Model-checking for several mu-calculi and Petri
Nets. Proc. Caap, LNCS 787 (1994) 115-129

[FR68] Fischer, P.C., Rosenberg, A.L.: Multitape One-Way Nonwriting Automata. JCSS 2
(1968) 88-101

[HK99| Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Specifi-
cations. Report MCS99/20, Weizmann Institute of Technology (1999)

[ITU96] TU-TS Recommendation Z.120: Message Sequence Chart 1996 (MSC96). Technical
Report, ITU-TS, Geneva (1996)

[JM95] Jancar, P., Moeller, F.: Checking Regular Properties of Petri Nets, Proc. Concur,
LNCS 962 (1995) 348-362

[MR97] Mauw, S., Reniers, M.A., High-Level Message Sequence Charts. Proc. Eighth SDL
Forum, Elsevier Science Publishers B.V. (1997) 291-306

[May84] Mayr, E.: An Algorithm for the General Petri Net Reachability Problem. SIAM
Journal on Computing 13 (1984) 441-460

[MPS98] Muscholl, A., Peled, D., Su, Z.: Deciding Properties for Message Sequence Charts.
Proc. Fossacs, LNCS 1378 (1998) 226242

[Pelz87] Pelz, E.: Closure Properties of Deterministic Petri Nets. Proc. Stacs, LNCS 247
(1987) 373-382

INRIA

HMSCs and PNs 33

[Pet76] Peterson, J.L.: Computation Sequence Sets. JCSS 13 (1976) 1-24

[vGW89] van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Proc. IFIP Congress, North Holland / IFIP (1989) 613-618

Table des matiéres

[1_Introduction 4
L1 Notafiond . . . oo ovv o 4
|| 2__Basic Message Sequence Chartd 5

h_}_High_lﬂd_M_essage Sequence Chartd 6
L4 Using HMSCs as behavioural specifications? 7

2__Undecidability resultd 8
.1 Recagnizable and rational sets and relationd 9

11

13

17

19

20

S d 24

B.3__An undecidability resultl 25
B.4_Distributed net realizations of HMSCd 27
B5_ Model-checking Petri nef realizations of HMSCH 30
4__Conclusion 31

RR n° 3970

/<

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

	1 Introduction
	1.1 Notations
	1.2 Basic Message Sequence Charts
	1.3 High Level Message Sequence Charts
	1.4 Using HMSCs as behavioural specifications
elax ?

	2 Undecidability results
	2.1 Recognizable and rational sets and relations
	2.2 Marked sets and Prefix sets
	2.3 A reduction yielding negative decision results for HMSCs
	2.4 Should HMSCs be considered as specifications
elax ?

	3 Petri net realization of HMSC languages
	3.1 Commutative images of HMSC languages are semilinear
	3.2 Petri net closures of HMSC languages
	3.3 An undecidability result
	3.4 Distributed net realizations of HMSCs
	3.5 Model-checking Petri net realizations of HMSCs

	4 Conclusion

