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Abstract: We present a new methodology to calculate a filter that permits fail-
ure detection and isolation in a dynamic system. Assuming that the normal and
the failed behaviors of a process can be modeled by two linear systems subject to
inequality bounded perturbations, a method for on line implementation of a detec-
tion signal, guaranteeing detection of failure, is presented. To make the failures
detectable, the injection of the test signal that improves the detectability property
of failure in the dynamic process is proposed which achieves detectability on line.
All the operations needed for our method are implemented by using large linear
optimization problems. Examples are shown.
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Conception de signal de détection et d’isolation de
panne pour les systèmes dynamiques linéaires

Résumé : Nous présentons une nouvelle méthodologie pour calculer un filtre qui
permet la détection et l’isolation de pannes dans un système dynamique. En sup-
posant que le comportement du système normal et du système en panne d’un proces-
sus peut être modélisé par deux systèmes linéaires avec des contraintes bornées, une
méthode pour trouver le signal de detection est presentée. Cette méthode, sous une
condition de détectabilité, peut garantir la détection et l’isolation des pannes. Pour
rendre les pannes discernables, on propose l’injection d’un signal de test qui réalise
la détectabilité en ligne. Toutes les opérations nécessaires pour notre méthode sont
résolues en utilisant la programmation linéaire creuse à grande dimension. Plusieurs
exemples sont traités.

Mots-clé : détection de pannes, programmation grande échelle, isolement de
pannes, perturbations bornées, détection
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4 H.E. Rubio Scola

1 Introduction

The conception of failure detection systems entails the consideration of several
points. Conceiving a system that will react rapidly when a failure occurs is what
usually matters most interesting; yet, in systems with a high performance, one can-
not generally tolerate important degradation in performance during normal system
operation. That is why these two considerations are often conflicting. In other
words, a system which is conceived to react quickly to sudden changes needs to
be sensitive to some high frequency effects, which in turn will tend to increase the
system’s sensitivity to noise, through the occurrence of false alarms signals by the
failure detection system. The difference between these conception issues is best
studied if we take a precise example in which we can evaluate the costs of the
various differences. For instance, false alarms will be better tolerated in a highly
redundant system configuration than in a system deprived of significant backup ca-
pacities.

There are two ways of tackling the problem of failure detection and isolation. In
first place, a passive approach: the detector monitors the inputs and the outputs of a
system to know whether a failure has occurred and, if possible, what kind of failure.
To achieve this, the measured input-output is compared with the normal behavior
of the system. The passive approach is used to continuously monitor the system,
particularly when the detector cannot act upon the system for material or security
reasons. In the field of failure detection, most of the work is devoted to this type of
approach.

This approach of detecting changes in dynamical systems has been carefully
studied (Willsky, 1976; Mironovrski, 1980; Isermann, 1984; Basseville and Ben-
veniste, 1986; Clark 1986) in many field applications, to achieve failure detection in
controlled systems or signal segmentation for recognition. Most of the time domain
model-based methods use all the known or estimated model parameters to solve the
two fundamental steps of change detection, that is to say residual generation and
choice of the statistical decision function (Willsky, 1976).

For instance, both filter innovations and parity checks involve all the model
parameters, with possible inclusion of parameter uncertainties, and classical coeffi-
cients of probability or bayesian test proceed similarly (Basseville et all, 1987)

The active approach to failure detection consists in acting upon the system
on a periodic basis or at critical times using a test signal so as to show abnor-
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Detection signal design for failure detection and isolation 5

mal behaviors which would otherwise remain undetected during normal operation
(Nikoukhah,1998). The detector can act either by taking over the usual inputs of
the system or through a special input channel, perhaps modifying the structure of
the system. The structure of the failure detection method considered in this paper is
depicted in Figure 1.

System

Dection 

Filter Failure 

decision

 noise

v: test signal

u: input

y: output

Figure 1: Active failure detection.

At some given time during normal operation of the system, a test signal is in-
jected into the system for a finite period of time. This signal exposes the failure
modes of the system which are detected by the detection filter.

The conception of test signals has been an important question in system identi-
fication, but their use to detect failures has been introduced in (Zhang, 1989, Ker-
estecioǧlu, 1993, Uosaki et al., 1984). The test signals (called auxiliary inputs) in
these works are regarded as linear inputs of stochastic models, and their objective
is to optimize some statistical properties of the detector.

This work is oriented to the detection and isolation of faults in an active ap-
proach. We present a methodology to calculate a detector (filter) that allow us to
make the detection and isolation of faults.

The selection of the test signal, as well as the calculation of the filter is com-
puted off-line. The complexity of filter computation and design of the test signal is
important when dealing with medium systems and long test signals. All the opera-
tions needed for our method are implemented by solving large linear optimization
problems.

The mathematical operations that must make the filter to decide the good or
bad operation of the system reduce to a multiplication and a sum of each input and
each output, which is very easy to implement in real time. Examples are given in
Section 4.

RR n˚3935



6 H.E. Rubio Scola

Structure of the failure detection and isolation

A structure of the failure detection and isolation method is proposed in this work
at some given time during normal operation of the system, a test signal is injected
into the system for a finite period of time. This signal is supposed to expose the
failure modes of the system which are then detected by the detection filter.

The problem considered here has two parts:
Part 1: Find a signal � such that the possible input-output set of the normal

system be disjoint to the possible input-output set of the failed system.
Part 2: For a found test signal � , given an input-output, recognize if this input-

output is in the set of the normal system or in the set of the failed system.

The outline of the paper is as follows. In Section 2, basic assumptions are
presented and the model is introduced. The solution to Part 2 is characterized in
Section 3. This solution is computed off-line over a finite horizon, see for example
Nikoukhah (1999). The complexity of the off-line computation can be important
when dealing with very large systems and long test signals and this solution cannot
be used for real problems.

In this paper, we propose computationally implementable solutions, using algo-
rithms for sparse matrices. We obtain a reduced time of computation for very large
systems and long test signals, and we can use the proposed method to real problems.

The examples, one proposed by Nikoukhah (1998) and other proposed by Clark
(1980) are given in Section 4.

The solution to Part 1 is only given in the case where the test signal enters
the system linearly, the solution is considered in Section 5 and in Section 6 two
examples are presented.

INRIA



Detection signal design for failure detection and isolation 7

2 System model

We consider systems which can be modeled as follows:

���������
	��� ������������������������������������������������������ !�������#"$�������
%&�����  '(��������������������)*���������������&��+,����������-.�������/"0������� (1)

for �13254�67686849-;:<	 , where �= �>������49�@?BAC2549-D:<	�E is a test signal , � and % are
inputs and outputs which are measured on-line. ��� , ��� , '(� , )F� ,  !� , -.� , ��� and +,�
are matrices and vectors of appropriate dimensions which depend on � and we use
the notation �G�������HI����� �>�����#� , etc.
The (known) inputs ������� and the (unknown) perturbations "KJ������ are both supposed
to satisfy LNM �������#"$�������PO Q M �������LSR ��������������� O Q R ������� (2)

where �>��������?IT(U0VXW9Y , �������Z?�T\[]V^W_Y , %`������?�TSabV^W_Y , "0�������Z?�T\c�V^W9Y , Q M �������Z?�TSd�V^W9Y ,Q R �������e?�Tgf9V^W_Y , and
LhM ������� , LNR ������� are given matrices of appropriate dimensions.

The vectors Q M ������� , Q R ������� and the matrices
L�M ������� , LNR ������� also depend on � , i.e.LhM �������S LhM ��� �>�����/� , etc. No assumption is made on

LGM � , and
LNR � except that (2)

are consistent.
In the same way, for the failed system, we choose a similar model in the vari-

ables ��i , � , % , "0i , and considered the system with failure as follows:

��i5�����<	��j �hi,�����k��i5���������hi5�������������&����il�������I !il�����#"0i,�����
%&�����  '(i,�����k��i,�����m��)Fi,����������������+,i,��������-.i,�����#"$il����� (3)

for �n<2�4�68676849-o:p	 ,
Perturbation "0i and input � satisfy the inequality constraints:LNM il�����/"$q]�����PO Q M il�����LSR il������������� O Q R i,����� (4)

where ��il�����r?sT(Uut�VXW9Y , �������1?vT\[]V^W9Y , %&�����1?vTSabV^W_Y , "0i,�����w?vT\cxtxVXW9Y , Q M i,�����r?TSd�txVXW9Y , Q R i,�����e?pTyfztxVXW9Y and
LhM il����� , LNR il����� , are given matrices of appropriate di-

mensions. The vectors Q M il����� , Q R i,����� and the matrices
L�M i,����� , LNR i,����� also de-

pend on � . No assumption is made on
LGM i , LNR i except that (4) are consistent, for�n<2�4�68676849-o:p	 .

RR n˚3935



8 H.E. Rubio Scola

The matrices and the vectors have not necessarily the same dimensions in both
systems. The systems have in common only the input ������� and the output %`����� .

The basic assumption is that the normal mode, and the failed mode of the sys-
tem can be modeled as in (1), (2), (3) and (4). But the system matrices can (and
hopefully are) different for different modes.
Note that unlike most other approaches to uncertainty modeling in dynamical sys-

tems for the purpose of failure detection, " is not a stochastic white noise sequence,
but rather an arbitrary inequality bounded discrete sequence.

A fundamental, and reasonable, assumption here is that, during the test period,
the system is either in normal mode or failed mode; no transition occurs during the
test period.

We assume that the test signal ���� �`�����x49� ? AC2�4_- :I	�E�� is given. The test
signal � is a sequence of vectors, as short as possible, such that the constraints on
the operating system (1),(2) and the constraints on the failed system (3), (4) are
inconsistent. In Section 5, we show how to construct a signal � .

We introduce the vectors � 4�Q�4�� , defined by

� �����  � � ���������
	 4#��il�����
	 4_%`�����
	m4_�������
	m49"0��������	 4�"0i,�����
	� 	 if � ? A 2�49-o:p	�E� ������-1�
	 4#��il� -r�
	� 	 if �n<-

Q �����  ���� �x�������+l�������
��i,�����
+,i,�����

����� 4 �������  ���� Q
M �������
Q R �������
Q M i,�����
Q R i,�����

�����
for �n<2�4�68676849-o:p	 , and the following matrix � defined by the following scheme:

� 
��������

� � 2 � � ��	��
0 � ��� � 0

. . . � � -o:p	��

��������� (5)

INRIA



Detection signal design for failure detection and isolation 9

In the matrix � , the submatrices � ����� and � ��� � 	�� share the columns corre-
sponding to the variables �`�����Z�<	u� and �>il���Z�
	�� , and

� �����  ���� :N�h������� 2 2 :N��������� :h !������� 2 � 2
:N'(������� 2 � :N)F������� :h-e������� 2 2 2
2 :S��il����� 2 :N��il����� 2 :h !il�����j2 �
2 :N'(i,������� :h)*il����� 2 :h-ei5����� 2 2

� ���
for �n<2�4�	 4�6�6�6�4u��-o:p	�� .

Analogously we define � with a similar scheme:

� 
��������

� � 2 � � ��	��
0 � ��� � 0

. . .
� � -o:p	��

��������� (6)

where

� �����] ���� 2 2 2 2 LhM ������� 2 2 2
2 2 2 LNR ������� 2 2 2 2
2 2 2 2 2 LhM il������2 2
2 2 2 LNR i,����� 2 2 2 2

�����
for �n<2�4�	 4�6�6�6�4u��-o:p	�� .
(1), (2), (3) and (4) can be rewritten as:� �  Q

� � O � (7)

We write in matrix form the equations and inequations for the operating system
(1), (2) and the failed system (3), (4) separately:

RR n˚3935



10 H.E. Rubio Scola

� For the operating system : � � �  Q �
� � � O ��� (8)

We define � � and � � with a scheme similar to � and � , where

� �������  � :S���#��� 2 2 :h��������� :� !�������j2 � 2
:h'(�������j2 � :N)*������� :N-.������� 2 2 2��

� ������� 
� 2 2 2 2 LhM �������j2 2 2
2 2 2 LNR ������� 2 2 2 2��

Q �x�����] � ���������
+l�x������� 4 ���������] � Q M �������

Q R ��������� 6
� For the failed system : � i �  Q i

� i � O ��i (9)

We define analogously � i and � i , where

� i,�����] � 2 :N�hil�����j2 :N��i,����� :� i5������2 � 2
2 :N'(il����� � :N)*i5����� :N-.il����� 2 2 2��

� i,�����]
� 2 2 2 2 LhM il������2 2 2
2 2 2 LNR i,����� 2 2 2 2��

Q i,�����y � ��il�����
+,i,������� 4 ��il�����] � Q M i,�����

Q R i,������� 6
We define the following polyhedrons� �] � ��� � verifies �
	 � �y4 � i� � ��� � verifies �
� � �y6

INRIA



Detection signal design for failure detection and isolation 11

3 Detection filter implementation

Let �  �`�����94��r?
AC2549-D:
	�E be a test signal such that the solution sets of systems
(8) and (9) have no intersection and let �  � �����x49�1?pA 2�49-=E be an observation of
the state of the system. The detection problem consists now to decide whether this
vector � is compatible with (8) or with (9).

Since inequalities (8) and (9) define two disjoint convex polyhedrons, our prob-
lem is reduced to know in which polyhedron the vector � stays. If a hyperplane can
be found that separates the polyhedrons, it is sufficient to find at which side of the
hyperplane the vector � lies. Our work is limited to find such an hyperplane. Its
existence is guaranteed by the classical convexity theory.

The following theorem shows that we can obtain directly constraints involving
only inputs � and outputs % for testing failure. Therefore we do not need to know
the states variables �>� and �>i of the systems (1) and (3).

Theorem 1 Let
�

and
���

be two non empty disjoint convex cylindrical polyhedrons
defined by �  �5� �m4#� � 4_%�4_�m4�"549" � � � �����*� ���_%�������� ���	��" OB� ��
�  �5� �m4#� � 4_%�4_�m4�"549" � � � � � � � � � � � � � �_%G��� � � �9� � � � �  " � O
� � �

If we note
� �k�=� � � � � � � �9% � � ��� � � �x"F� �  " � D+ an hyperplane which

separates
�

and
���

, then
� �  � �  � �( �   2 , i.e. the hyperplane equation is

� �9%G� � ���  + (10)

Proof:
Let us suppose that the hyperplane is defined by

� �k� � � � � � � � �9%G� � ��� � � ��"Z� �  " � <+
where

� �x4 � � 4 � ��4 �  are not all zero. Let � �
� 4#� �� 4_% � 4_� � 4�" � 49" �� � ? �
� then � � �m4�"��

the point � �m4/�
�� 4_% � 4_� � 4�"549" �� � ? �
� .

It follows that:

� �z�*� � � �
�� � � �9% � � � ��� � � � �x"�� �  "

���� + (11)

RR n˚3935



12 H.E. Rubio Scola

Since
� � �

�� � � �_% � � � �9� � � �  "
��

is fixed, and
� ���g� � �x" can take any value, because�m4�" are arbitrary, the expression (11) can take values � + , which contradicts the

assumption that the hyperplane separates the two convex polyhedrons
�

and
� �

.
Thus

� �] 2 and
� � B2 . Analogously

� � and
�  must be zero.

�

Construction of separating hyperplane

The following lemma and its corollary show that it is possible to convert the
problem separating two polyhedrons into an equivalent, problem separating of a
polyhedron from the origin of coordinates.

Lemma 1 Let
�

and
���

be two non-empty convex polyhedrons. There exists an
hyperplane separating

�
and

� �
, if and only if the convex polyhedron

� : � � does
not contain 2 , i.e.,if and only if there exists an hyperplane separating 2 and the
convex polyhedron

� : � � .
Proof:

See Rockafellar [18] p.98 (Theorem 11.4)

Corollary 1 Let
�

and
���

be two non-empty convex polyhedrons. Then, the hyper-
plane

���  + separates
�

and
���

if and only if the hyperplane
�����  + � separates2 and the convex polyhedron

� : � � . i.e. a hyperplane separating
�

and
� �

can be
chosen parallel to a hyperplane separating 2 and

� : � � .
Thanks to corollary 1, the problem that we are going to solve is to find an hyper-

plane that separates a polyhedron from the origin of coordinates. We will solve it by
linear programming and taking into account the geometric property of the convex
polyhedrons given in theorem 1.

The solution sets of systems (8) and (9) have no intersection then
� ��� � i�	� .

Let � � and � i such that � � ? � � and � ie? � i , where

INRIA



Detection signal design for failure detection and isolation 13

� �������] � � ��������� 	 4#��i,����� 	 4_%K�x����� 	 4_��������� 	 49"0������� 	 4�"0i,����� 	 � 	 if � ? A 2�49-o:p	�E� ������-1� 	 4#��i,� -r� 	 � 	 if �n<-
and� i,�����] � � ���������
	 4#��i,�����
	 4#% i,�����
	 4_��i �����
	 4�"$�������
	 49"0i,�����
	� 	 if � ? A 2�49- : 	�E� ����� -r��	 4#��il��-r��	 � 	 if �* -
We note � % �94_���/� as operating system output-input pair, i.e. in the equation (1)

(of the operating system) we change the pair � %�4_�>� by � %,��4#�>��� obtaining :

���������<	��j �h�������������������������������>�x�������������������I �������#"$�������
%K�������  '(�x�����k�����������I)*�x�������>����������+,�x��������-.�������/"0������� (12)

for �n<2�4�68676849-o:p	 .
Analogously � % i 4_��iu� as failed system output-input pair, i.e. in the equation (3)

(of the failed system) we change the pair � %>4_�>� by � %,i 4_��i�� obtaining :

��i,���Z�<	��� �hil�����k��i,�������I�hi,�������>i,����������il�������I !il�����#"0i,�����
% i,�����  '(i,��������il��������)*i,�������>i,��������+,i,��������-ei5�����#"$i,����� (13)

for �n<2�4�68676849-o:p	 .
We also introduce the deviation between input-output pairs for normal and failed

systems as follows :

�,�����] �
��� �����
�
R �������  � % �x�����

�>�x������� : � %Ki,�����
��i,������� (14)

We introduce the vector
�� defined by

��  � �
� �

and the following matrices
�� and

�
� defined by

��  A � 4 ��� E 4 �
� 3A � 4 ��� E

where���  diag � ��� � 2 �x4 ��� ��	���4�6768684 ��� ��-o:p	�� �y4 and
���  diag � ��� ��2 ��4 ��� ��	��x4�6768674 ��� ��-o:p	�� �

RR n˚3935



14 H.E. Rubio Scola

� ���

� ���

�	��
���

���

� 

Figure 2:
� � and

� i properties
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Detection signal design for failure detection and isolation 15

��� �����] ���� 2 2
2 2
2 �hi,�����
: � 2

� ��� 4 ��� �����y ���� 2 LhM �������
2 2
2 2

: LNR il����� 2

� ���
Using now (12), (2), (13), (4) and (14) we obtain :

�� ��  Q
�
� �� O � (15)

We define

�  � �� � �� verifies ��	�� � �
We assume that the solution sets of systems (8) and (9) have no intersection, i.e.

system (7) has no solution. Then (15) has no solution of the form

� � 2 � because

(15) becomes (7) if
��  � � 2 � .

We introduce a relaxation parameter

� 3A � ����2 ��4 � � ��2 ��4 � ��� 2 �x4�6�6�6x4 � ��� - :p	��x4 � � ��-o:p	u�x4 � ����-o:p	��kE 	 (16)

in the equations (15), we obtain :

� � � ��� � O Q.� � �
: � � : ��� � O :]Q � � � (17)

� � � ��� � O �\� � �

We define the following polyhedrons :

���  � � � �� verifies ��	�� � �
with following properties :�I2��? �	� for

� B2 .
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� If
� � � � � then

� ����� � ���
.� The projection of

� �H: � i on the � coordinate is
�	�

for
� <2 .

Chosing an adequate
�

we can enlarge the polyhedron
� �

until ��<2 belongs to
it. See figure 3.

hiperplane of contact

���

���

	�
��	 t

� �

� �

���

Figure 3: linear programming problem
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Taking into account the polyhedron (17) we solve the following linear program-
ming problem:

�����
� � �

�
�

f�� �
	 � �
�

W
���
� f ����� (18)

subject to � � � ��� � O Q.� � � (19): � � : ��� � O :]Q � � � (20)

� � � ��� � O �\� � � (21)
�  2 (22)� � 2 (23)

Let
� �  � � � 	� 4 � � 	� 4 � � 	� � 	 and � � a solution to (18). Then permuting the rows

of (19), (20) and (21) (evaluated at � � � 492 � ), in such a way that equality constraints
appear first. We introduce the permutation matrix  �x4  � 4  � such that

 �&A � 4 ��� E  � � d � � ��� � d � �� J � � ��� � J � � � 4  � Q 
� Q d � �Q�J � � � 4  � �

��  � � �d � �� �J � � � (24)

We rewrite the equation (19) using ��B2 as follows :� d � � � � � ��� � d � ��2  Q d � �j� � �d � �� J � � � � � ��� � J � ��2 � Q�J � � � � �J � � (25)

Analogously, we define  � and  � for the equations (20) and (21):

 � A � 4 ��� E� � � d � � ��� � d � �� J � � ��� � J � � � 4  ��A � 4 ��� E>
�
� d ��� � d
� J ��� � J � (26)

: � d � � � � : ��� � d � � 2  Q d � � � � �d � �: � J � � � � : ��� � J � � 2 � Q�J � � � � �J � � (27)

� d � � � ��� � d 2  � d � � �d � �
� J � � � ��� � J 2 � �xJ � � �J � � (28)
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18 H.E. Rubio Scola

We write the active constraints of (19), (20) and (21)� d � � � � � ��� � d � ��2  Q d � � � � �d � �: � d � � � � : ��� � d � � 2  :]Q d � � � � �d � �
� d � � � ��� � d 2  � d � � �d � �

(29)

The general equation for hyperplanes defined by these active constraints are :� d � � � � ��� � d � � �  Q d � � � � �d � �: � d � � � : ��� � d � � �  :]Q d � � � � �d � �
� d � � ��� � d �  � d � � �d � �

(30)

We rewrite (30) as: � � �����N � � � �d (31)

where�
 �� � d � �: � d � �

� d

�� 4 �r �� ��� � d � �: ��� � d � �
��� � d

�� 4 �( �� Q d � �:]Q d � �� d
�� 4 � �d  �� � �d � �� �d � �� �d � �

��
As we said before, the variables �m4#�`i 4�"54�"$i do not appear in the hyperplane

definition, because it is defined by � �m4_%�4_�m4�"�� and � �`i 4_%�4_�m4�"0iu� , so the variables
which participate in the two sets are � %�4_�>� (Theorem 1).

The following theorem will show how transforming (31) to obtain an expression
of the hyperplanes according to Theorem 1.

Lemma 2 Let � be a full rank matrix whose columns span ����� �
� 	`� . If � and �

satisfy the constraints ���&�
� � <� � � �d , then � satisfies 	 �hB2 , where 	  � 	
� .

Proof:
We have � ? ��@�

�
����� � ����� �

� 	 � 	 �  2 . Multiplying by � 	 both sides of
(31) we get � 	 ��� � � 	 � �  � 	 � � � � �d �

The equation (31) for e = 0 is

� �  �0� � �d , then � 	 ���0� � �d � B2 , i.e. 	 �l�F2eB2
�
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Multiplying by � 	 both members of equation (31) defines a set of hyperplanes	 � s2 (Lemma 2). Considering (14) and Corollary 1, 	 � %>4_�>�\s+ defines a set
of hyperplanes. It exists at least one that separates the two polyhedrons (8) and (9),
which we note 	 J�� %>4_�>�g + J . Simply we have left to determine +,J . To do that, we
calculate the tangent hyperplanes to the two convex polyhedrons

� � and
� i .

� �J  ����� 	 J�� %>4#�`�� �J  ����� 	 J�� %�4_�>�� 6���6 � � 6���6 �� �J  ����� 	 � %>4_�>�  �J  ����� 	 � %�4_�>�� 6���6 	 � 6���6 	 (32)

If  �J �  �J then + Jg �� �J � � �J � � � or If  �J	�  �J then + Jg �� �J � � �J � � �
with 
  	 4�6867684��� .

Then the hyperplane equation will be

	 J�� %>4#�`�H + J�6 (33)

Theorem 2 There exists 
 ? A 	K4����E such that 	 J�� %>4_�>�  + J separates the two
convex the polyhedrons

� � and
� i .

Proof:
We remark that

if

� �
� � ? � then 	 � � 2 (34)

Indeed, let us suppose that� �
� � ? � and 	 ��<2 (35)

If

� �
� � ? � then ���g�

� � O
�
Let � � such that ���g�

� � <� �(O
� (36)

Multiplying by � 	 both sides of (36), we get
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� 	 ��� � � 	 � �  � 	>� �	 �  � 	>� �
It follows that � 	n� �H 2 i.e. � �(? Im

�
. Then � � � such that� � � B� � O<� (37)

� �d is solution of the linear programming problem (18), i.e.
� �d � 2 is the minimal� � norm such that

� � O � � � �d has solution.
� �d � 2 since (7) has no solution. It

follows that the inequality

� � O<� has no solution, i.e. (37) does not hold, i.e. (35)
is false. We can conclude that (34) holds.

It follows that ��
 ? A 	 4 ���E such that	 Jk� %K�x:N% i 4_���x:N��i�� �<2 and 	 Jk� %K�x4_����� � 	 J�� % i 4_��iu� � � % ��4_����� ? � � , � % i 4_��i�� ? � i ,
i.e.

	 J�� � ��� � 	 J�� � i��] �

Since
� � and

� i are convex, 	 Jk� � �/� and 	 Jk� � i�� are convex, and we have	 Jk� % �94_����� � 	 J�� % iK4_��i�� or 	 J�� % �94_����� � 	 J�� %Ki 4_��i��
If 	 J�� % ��4_����� � 	 J�� %Ki 4_��iu� then	 J�� % �94_����� O ��� � 	 J�� % ��4_���/� � + J � � 
 � 	 J�� % i 4_��i��PO 	 J�� % i 4_��i��� %K�94_���/� ? � � � % i 4#�>i��(? � i
If 	 J�� % ��4_����� � 	 J�� %Ki 4_��iu� then	 J�� % �94_����� � � 
 � 	 J�� %>4_�>� � + J � ��� � 	 J�� % i 4_��i�� � 	 J�� % i 4_��i��� %K��4#�>�g? � � � % i 4_��i�� ? � i
It follows that the hyperplane defined by 	 J�� %>4_�>� B+ J , separates the two convex

polyhedrons
� � and

� i .
�

INRIA



Detection signal design for failure detection and isolation 21

4 Examples

4.1 Example 1

The model considered here represents a gas chamber [15]. We will indicate with� J the gas flow in , and with
� �

the gas flow out. The chamber is supposed to have
a uniform pressure  J . A sensor is placed inside the chamber for measuring this
pressure.

Based on this measurement, a central computer may decide to open the emer-
gency valve which releases gas into the atmosphere. This happens in emergency
situation, for example if  J goes above a critical threshold.

The problem here is that emergency situations are rare and the emergency valve
which stays closed over long periods of time may not be functioning when needed.
For this reason, on a periodic basis, the emergency valve should be tested. The cen-
tral computer does that by periodically sending a signal to open the emergency valve
and monitoring the pressure  J to decide whether or not the valve has effectively
been opened.

The following assumptions are made. Every � � seconds, the central computer
can either read the output of the pressure sensor, or send a signal to open (or keep
open if already open) to the valve mechanism. During the test period the valve
mechanism is either broken or functional; we exclude the case were the mechanism
can brake down or be repaired in middle of the test. The gas temperature is constant
during the test period and the gas can be modeled as an ideal gas. The flow

� J is
bounded above and below, i.e., 2 � � � � J � � , and the output flow is given by� � �� �  Jm: 

� � , where 
�

(the pressure outsize the chamber) is supposed to be
constant but unknown during the test period.

The state vector is

�������] � ���������
� � ������� 

�
 J���� � �/�

� ��� � �/��� 

�
pressure inside the chamber
pressure outside the chamber �

and the output vector is
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%`����� �� �
pressure in chamber � if �>�����  2

AxE 1 if �>����� � 2
�>����� denotes the test signal wich can take the values 2 and 	 . When �>�����\ 2 ,

the pressure is measured and the valve is closed. When �>�����( 	 , a signal to open
the emergency valve (or to keep open in case it is already open) is sent but pressure
is not measured.
The sample period is � �hv2567	 s. The resulting matrices and vectors of equations
(1) and (2) are given by

���������  ��� ����� � � � � � �H����	\: � �����/�2 	 � ���x�����]3AxE

 !�������  ����
���

� 	 2
2 2 � if �>����� <2� 	
2�� if �>����� �<2

�x�������  � 2
2��

'(�x�����]�� � 	 2 � if �>�����  2
AxE if �>����� � 2 )F�x�����] A�E

-.�������  � AC2�4�	�E if �>�����]B2
AxE if �>����� �B2 +l�x�����] � 2 if �`����� B2

A�E if �`����� �B2
LNR ������� 3A�E Q R �������] A�E

LNM �������]
��������
�������

���� 	 2
:e	 2
2 	
2 :e	

� ��� if �>����� B2
� 	
:Z	 � if �>����� �B2

1We note with 	�
 the empty matrix
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Q M ������� 
������������
�����������

���� �K2 � � � ��	(: � �����#�#�: � � � � ��	\: � �����/�#�
�

:��

� ��� if �>�����  2

���� �K2 � �/� � � �`����� ������	(: � �����#�/�
: � � �/� � � �>����� ������	(: � �����#�/�
	
:e	

����� if �>����� � 2

The function
� ����� is defined by:� �����  ��� Q ��:.� �>����� � � � � � �/�

and
�  	 �56 �54 � ������( 	 4 �r 	u2 .
The constraints on initial conditions are � � ��2 � � 2 (pressure cannot be nega-

tive) and � ��� 2 � �  J � [ (corresponds to the lowest steady state pressure  J with the
emergency valve closed). This clearly corresponds to the situation where

� J( � ,
and can be obtained by noting that in steady state

� J> � � , which implies that

� �  J � [ : 
� �  �

� ����� 2 �H: � � ��2 � � � � �� � � 2 � � 2
For the system with fault whose equations are (3)and (4), the matrices and vectors
are given by
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��ih ��� ��2 � ��	\: � ��2 �#�
2 	 � �hi,�����] A�E

 !i,�����] � 	 2
2 2 � ��il�����  � 2

2 �
'(i,�����  � � 	 2 � if �  2

AxE if � � 2 )*i,�����] A�E

-.i,�����]�� A 254�	�E if �>����� B2
A�E if �>����� �B2 +,i,�����]�� 2 if �>�����]B2

A�E if �>����� �B2
LNR i,�����y AxE Q R i,�����] AxE

LNM il����� 
��������
�������

���� 	 2
:e	 2
2 	
2 :Z	

����� if �>�����]B2
� 	 2
:e	 2 � if �>����� �B2

Q M i,�����]
������������
�����������

���� �K2 � � � ��	 : � �����#�/�: � � � � ��	S: � �����#�#�
�

:��

����� if �>�����y<2

���� �K2 � �/� � � �>����� �H����	(: � �����/�#�
: � � �/� � � �`����� ������	(: � �����/�#�
	
:e	

����� if �>����� �<2

The constraints on initial conditions if the valve has failed are :

� ��i ����2 �H: ��i � � 2 � � � � ���i � ��2 � � 2
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The simple test signal �!jA 2�4�	 4�	 4�	 492$E , is such that the above constraints are
mutually exclusive.

Solving the linear programming problem (18) and applying the theorem 2 we
obtain:

+  :N2�6 � � � � � ��� %`��2 �>� �56�� � ���K2 ��	�%`���,� (38)

The value of + can be determined by solving the linear programming problems:

+ [��	�  ����� �,:h256 � � � � � ���K%&� 2 �>� �56�� � ��� 2 ��	�%`���,� �
s.t.(9)

and + [ J U  ����� �,:h256 � � � � � ���K%&� 2 �>� �56�� � ��� 2 ��	�%`���,� �
s.t. (8)

We obtain + [
���  ��6 �K2 � � � � � and + [ J U  ��6 �5	 ��� � ��� . So any + satisfying+ [ J U O
+FO
+ [���� can be used.
Then the hyperplane equation is:

:N2�6 � � � � � ��� %`��2 �>� �56�� � ���K2 ��	�%`���,����6���	�� �5	 � 	 (39)

Solving (32), with the output % of a system that works correctly we obtain from
the equation (38) the values + between : � � ��6 �5	�� 	�	 and ��6 �5	 ��� � ��� . For the abnor-
mal system the values of + will be placed between ��6 �K2 � � � � � and 	 	�� �56 	�� � 	 .
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4.2 Example 2

In this example we report the automatic control system (autopilot) for a hydrofoil
boat. A sketch of the basic boat, which employs submerged hydrofoils, is given in
Figure 4. A detailed description of this boat and its autopilot appears in [4], [5] and
[6].

Rudder

Differential
Flaps

v: lateral velocity

�
: roll angle

�
:yaw angle

Figure 4: Boat with submerged hydrofoils

The model considered here is the hydrofoil boat in its nominal cruise condition
of 45 knots speed and 6 foot foil depth. The state vector is

�  ���� ���� �� �
� �

� ���  ���� 
�
L

�

� ���  ���� roll rate, + ��� � � � �
roll angle, + ���
yaw rate, + ��� � � � �
lateral velocity,

� � � � � �
� ��� (40)

where  � �/�  �

�
� �/� , L � �/�y �� � �/� and �>� �/� is the component of the velocity of the

center of mass (with respect to the Earth) along the lateral axis. The yaw, roll, and
sway motions of the boat are controlled by the forward rudder and the differentially
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operated flaps at the rear ones. We assume for simplicity that we have only single
flaps on each side with deflection

� l� �/� for the port flap and
� ��� �/� for the starboard

flap. We further assume that the actuators for these flaps are exactly coordinated so
that

� l� �/�y : � ��� �/� . The control vector is:

�  � ���
� � � 

� ���
��� �  �

horizontal flag deflection, + ���
rudder deflection, + ��� � (41)

There are four sensors providing feedback signals and they are monitored. The
four instrument signals constitute the instrument output vector

%* ���� % �% �% �
% �

�����  ���� �����
�
�L �
���	�

�����  ���� indicated port acceleration 4 � � � � �
indicated roll angle 49+ ���
indicated yaw rate 49+ ��� � � � �
indicated lateral acceleration 4 � � � � �

����� (42)

The difference equations for the system model are:

���������<	u�  �N�������������.���������� "0�������
%`�����  '�������������) �������&��-1"0������� (43)

LhM �#"$�������PO Q M � (44)

In (43) the terms  "K������� and -r"0������� represents the disturbance bounded by
(44).

The autopilot (control laws and actuators) generates the control input � from the
four feedback signals and the input command


 c (helm command) in a conventional
manner [5].

It is assumed that the autopilot and instrument failure detection will be realized
with digital computers, so a discrete time model of autopilot system is used here.
The difference equation for the autopilot model are:

�������  � ��������������<	��j � �������&��Z%`������� 	 
 c ����� (45)

where the matrices � , � , ' , ) ,  , - ,
L�M

and Q M are listed in the Appendix. The
sample period is � �]<2�6X2 � s.
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It is assumed that two sensors consisting of roll axis gyro and yaw rate gyro are
used to measure the state of the system, and the initial state of the system is taken
to be

� 	H� 2 �] � 2�6 2�6 2�6 2�6 �
4.2.1 Case 1

We shall consider failed systems with can be modeled as follows:

�������Z�
	��j �N�������������.���������I "$�������
%&�����  'G������������)n�H��������-1"0������� ��A fault vector E (46)

LhM �#"$�������PO Q M � (47)

The “fault vector” represents the effect of the instrument failures which are to
be detected and identified.

We choice a test signal the control vector � , therefore in (46) if �
 � then� � �>�����#�] � �>����� , +,��� �>�����/�  + �>����� and +li,� �>�����/�y ) �`�����&� A fault vector E . Now
“fault vector” was chosen to system with failure:

A fault vector E> � 2�6 2�6 2�6�� 2�6 � 	
The respective two candidate models are:
Failed system model

��il���Z�
	��j �N��il���������$� �>�����#���I "0il�����
%&�����  'G��i5��������+,i,� �`�����#�`��-r"$i������ (48)

LhM "$i5�����PO Q M (49)

Operating system model

���������<	��� �N��������� ���$� �>�����/���I "$�������
%`�����  'G������������+,�x� �>�����#����-r"0������� (50)

LhM "$�������PO Q M (51)
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The fault is detected in � � B2�6 2 � � 6 , the simple test signal would be

�  � 2�6
2�6 � (52)

So to decide whether or not a failure has occured, a possible test is

+  :N2�6 2 � � ��� � 	K% ��� 2 ����% ����2 ����2�6 � � � � �K2 �0% ����2 � (53)

The value of + can be determined by solving the linear programming problems
(32), it follows that:

If :h2�6 2 2�	K	 � � � O
+nO 256X2 2 � � � � � The system works normally
If 2�6 � � 	 	 2���	 O
+nO 256 � 2 � � � � � The system works with anomalies

Then the hyperplane equation will be

:h2�6 2 � � ��� � 	K% �x� 2 ����% ����2 ����2�6 � � � � �K2 �0% ����2 �  2�6 � 2 2 � � 	 � (54)

The autopilot generates the control input � (figure 5) from the four feedback
signals and the input command


 c . The figure 6 shows the dynamic response of
the boat (four output), curve A is the response to


 c  	�� deg. step input and the
disturbance null � ����� <2 and no instruments faults. The curve B is same as A, but
with disturbance � ����� �;2 , the curve C is for instruments faults and disturbance� ����� �B2 .

The random sequence � ����� was chosen to represent Gaussian white stationary
noise with zero mean value and of such a intensity as to cause noticeable random
fluctuations in the state variable responses to the standard


 c  	��K+ ��� command.
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Figure 5: Control variables � to a step of 17 deg.

4.2.2 Case 2

Failed system model

���������<	��j �N��������� ���$� �>�����/���I "$�������
%`�����  '(i�������������+�� �>�����#����-1"0������� (55)

LhM "$i5�����PO Q M (56)

where

'(ih ���� �l6 	 2�68	�� � 	 6 2�	 : �56 2 �
256 	 6 2�6 256
256 2�6 	 6 256
256 2�6 2�6 256

� ���
The null line of '\i represents the effect of disconnect of the lateral indicated

acceleration.
The fault is detected in � � �  2�6 2 	 � 6 , the simple test signal would be
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Figure 6: Dynamic responses of the boat to a step of 17 deg.
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�  � 2�6s6 � 6 � 2�6
2�6s	K6s	 6 2�6 � (57)

Then the hyperplane equation will be

2�6 2 2 2���� ��� % �u� 2 �H: 2�6 	 � � 	 � ��� % ����	u����2�6 � � 	 �5	 � �0% �u� � �  : ��67	 � � � ��	 � (58)

The autopilot generates the control input � (figure 7) from the four feedback
signals and the input command


 c  	 �K+ ���>6 . The figure 8 shows the dynamic
response of the boat � % ��4_% � 4_% ��4#% ��� . The curves A are response with disturbance� ����� B2 and no instruments faults. the curves B are same as A, but with � ����� �B2 ,
the curves C are the response with disturbance no null and instrument faults.

The random sequence � ����� was chosen to represent Gaussian white stationary
noise with zero mean value and of such an intensity as to cause noticeable random
fluctuations in the state variable responses to the standard


 c  	��K+ ��� command.
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Figure 7: Control variables � to a step of 17 deg.
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Figure 8: Dynamic responses of the boat to a step of 17 deg.
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5 Test signal design

In this section, we show how can we find a detection horizon N and construct a test
signal �  � �`�����x49� ? A 2�49-o:I	�E�� , as short as possible, such that (1), (2) and (3),
(4) are mutually exclusive, i.e.

� i � � �  � .
The solution to this problem is only given in the case where the test signal enters

the system linearly. This problem can be considered to be the counter-part of the
off-line auxiliary signal design problem of Zhang [27]. We show how a test signal
can be designed for a special class of Model (1), (2), (3) and (4). We assume that the
matrices �NJ������ , �NJ������ , ' J������ , ) J������ ,  @J������ and -�J������ , for 
  � 4 � do not depend
on � and that

����� �>�����/�  ��� � ������� �>�����&����� � � �����+,��� �>�����/�� +,� � ������� �>�����&��+,� � � ����� (59)

��i5� �>�����/�  ��i � ������� �>����������i � � �����+,i,� �>�����/�j +,i � ������� �>��������+,i � � ����� (60)

where �9J � �x����� and + J � �x����� are matrices of appropriate dimensions and �xJ � � ����� and+ J � � ����� are vectors, for 
  � 4 � . Then (1), (2), (3) and (4) can be rewritten as:� � � L
�  Q �

� � O � (61)

whereL  diag ����� 2 �x4�����	��x4�6868674�����- : 	�� �y4
�������  ���� :h��� � �������:h+,� � �������:N��i � �������:N+,i � �������

����� Q � �����] ���� �x� � � �����+l� � � �������i � � �����+,i � � �����

�����
for �n<2�4�68676849-o:p	 .

The problem is then to find � such that (61) is not satisfied. To solve it, we use
the classical convexity theory.

Consider the polyhedron:� c  � � � � � � � � 4 �5� verifies ����	�� �
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� c is a convex polyhedron and can be expressed by means of inequality con-
straints in � (this results from the fact that the projection of a convex polyhedron is
a convex polyhedron).

We rewrite (61) as � � � L
�  Q �

� � � �  �
� � 2 (62)

Lemma 3 Let � be a full rank matrix whose columns span ����� � � � 	 4 � 	 � � . If �

and
�

satisfy (62) then � and
�

satisfy :

�
� � � �  �

� � 2 (63)

where

�  � 	 � L 2�� 4 �  � 	 � � � � 4 �  � 	 � Q �� � 4
If ����� � � � 	 4 � 	���]B2 then � � (61) has solution.

The problem that we are going to solve is to find a � that does not satisfy (63).
Let

� J be the 
 -th row of matrix
�

, we introduce the following linear programming
problem :

� � �
� � �

� J � (64)

subject to

�
� � � �  �

� � 2 (65)

Let � �

� 4 � � � be a solution to (64) and we note
� �J  � J �

�
, then

� J �* � �J
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is a equation of the tangent hyperplane to the polyhedron
� c . Then we can chose �

such that

� J � � � �J

It is possible to consider many criteria for choosing a detection signal � , among
the � ’s for which (61) has no solution : for example, we can choose a minimal norm

� . We will consider here the following constraints :

� ����� �>����� O � � ����� (66)

for �n<2�4�68676849-o:p	 , which can be rewritten as :

�
� O � � (67)

where
�  diag � � ��2 ��4 � ��	���4�6768684 � � -o: 	�� � .

We define the polyhedron :� d  � � � � verifies � � �K� �y6
We note that there exists no � satisfying (67) and not satisfying (61) if and only

if � d�� � c 6 (68)

Using the convexity of
� d , we have :

Lemma 4 Let
� d be the set of vertices of

� d . There exists no � satisfying (67) and
not satisfying (61) if and only if

� d�� � c 6 (69)
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Figure 9: Test signal design
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It follows that the test signal that we are looking for should be such that � ? � d
and � �? � c . Our construction of the test signal � is equivalent to find � , a particular
vertex in

� d , which does not belong to
� c .

To test (69) is easier than to test (68) because
� d is a finite set and we can verify

element by element, if there exits some element � � such that � �S? � d and � � �? � c .
We can use this vertex like a test signal.

Even though � � verifies the conditions that we are searching for our test signal,
it is an extreme solution, therefore we will try to do better, choosing a point near
the boundary of

� c . Let � � ? � d � � c , (without loss of generality we can assume
that � � 32 ) and � the intersection point of the segment � � � � with the boundary of� c then � �� � � , where � is the solution of the following problem:

�����
� � �
� (70)

subject to � � � �
L

� �  Q �
� � O � (71)

To find � , over interval AC2�4_- :1	�E , as short as possible, we propose the following
algorithm:

Algorithm 1

Step 1 : Let N = 1

Step 2 : Find
� d

Step 3 : If exits � ��? � d such that � � �? � c go to step 4, else let N = N + 1 and go
to step 1

Step 4 : Calculate � according to (70), (71), �*�� � �
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Remark 1 To calculate the set of vertices
� d , we exploit the property of the block

diagonal matrix
�

. We will find the polyhedron vertices defined for each block, then
we do the corresponding permutations to find all the elements of

� d .

Let �
� ? � d , if 2F? � d , then �* �

� � ? � d , � �1? A 2�4�	�E

������ � � � (72)

subject to

�
�
� � � � �  �

� � 2
	 � � � 2 (73)

Let � �
� 4 � � � a solution to (72), (73), if � � �

�
and �1?�A 2�4�	�E , then �F �

� � does
not satisfy (63), i.e. � ? � d is such that � �? � c .

The algorithm 1 can be rewritten as follows :

Algorithm 2

Step 1 : Let N = 1

Step 2 : Find
� d

Step 3 : If �
� ? � d , such that exist � �

� 4 � � � solution of (72), (73), goto set 4, else let
N = N + 1 and go to step 1

Step 4 : �  � � � , with 	ZO � � �
�

Remark 2 The number of linear programming problem variables (72), (73), is
lower than the number of variables in the problem (70), (71) : in (72), (73) the
number of variables is equal to the number of inequality constraints in (71) plus
one.

There is some flexibility in the choice of the signal test and in some particular
cases, it can be interesting to select specific � ’s.
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Particular cases of the signal test

Case 1
If in (67)

� �����y ��� and � � �����y � � for � ? AC2�4_-!:.	�E , we define the polyhedron


�  � � � � � � O � � � (74)

and let
� �  � � �x4 � � 4�6�6�6�4 � U � be the set of vertices of polyhedron 

�
. Then the

vertices of
� d are permutations of elements of

� �
.

Among all the vertices of
� d we can restrict the selection of � in the following

subsets of
� d  � � � � vertices of

� d �� � � is the set of � such that

�>����� �� � J if � ? AC2�49� � E� f if � ? A7��� � �
	��x4u��-o:p	��kE (75)

with � �  254�67686849-o:p	 and � J�4 � f ? � �
.� � � is the set of � such that

�`�����  �� �
� J if � ? A 2�4�� � E� f if � ? A7��� � �<	���4�� �kE� a if � ? A8��� �&�<	u�x4�� -o:p	���E (76)

with � � 4�� � ? AC2�4_- :I	�E and � Jz4 � f 4 � a ? � �
.

Case 2
Another type of signal test of interest can defined by :

�>�����
	��] �>������� � ����� � ? AC2549-o:p	�E (77)
� ����� O �>����� O �@�����

with � ? A 2�49-o:p	�E and where
� ? � d .
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We can see this problem as a way of aggregating one state variable in our system.
Equations (1), (4) are transformed as :

� � J����e�
	��
�`�����<	�� �  � �SJ �9J

2 	 � � � J�������>����� � � � �SJ2 � �������0� � 2 	 � � �����K� �  @J2 � "uJ������
%`�����  � ' J + J � � � J������

�>����� � ��) J ����������-ZJ "�Jk�����
with 
  � 4 � .

Given
�
, a test signal constructed for the extended systems, the signal � for the

original systems is completely defined by (77) once �>� 2 � (or any �>����� ) is fixed.
Then to design the signal test, we can set initial conditions or linear program-

ming problem (70), (71) with additional bounds on some components of � .
It is possible to consider many criteria for choosing a detection signal

�
, for

instance that
� ? � d minimizes the following function :

�
	 � �
�

W
���
� ����� �

(78)

.
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6 Examples

6.1 Example 3

The following results are taken from a random system having five state variables and
two outputs. For choosing a detection signal � we will consider here the following
criteria :

:�� 2K2FO �nO � 2 2
The values of � � and � are determined by Algorithm 2 and typical signal tests

obtained by the method proposed in (75) which gives :
� � 3A : � 2 254 � 2 2�4�� 2 2�4 �K2 2�4 � 2K20E and �  2�6 �5	 � .

Then we choose for detection signal :

� B2�6 ��� � �] A : � 2�4 �K2�4 � 2�4 � 2�4 � 254 � 20E
Based on the algorithm described in the section 3, the failure detection test can

be based on the hyperplane:

+. 2�6 2 2�	 �0% �x� 2 �H: 2�6 2 2 � �0% � ��2 ����2�6X2 � �K% ����	��H: 256X2 � �0% � ��	��H: 256X2 	K2K% ����� ���256X2 � � % � ��� ����2�6X2���	�% ��� � ����2�6 2 � �0% � � � �H: 2�6 � �0% �x���,�&��2�68	�� % �x� � �H: 256X2 ���K% � � � �
The value of + is determined by solving the linear program (32) which gives +r	u2�6 ��� and we obtain here the following test:

For 	 	 6 2�� � � � ��O
+nO 	 �567	�2�� � ����� the system works normally
For ��67	 � ��� 2�	 �ZO
+ O ��6�� � 	 � � � 	�� the system works with anomalies

The following figures show typical signal tests obtained and dynamic responses
of system.The curve A are for the operating system and curve B for the failed sys-
tem.
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Figure 10: Signal test
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Figure 12: Output % �
6.2 Example 4

This example show typical signal tests obtained by the method proposed in (77).
The results are taken from a random system having four state variables and two
outputs.

Test signal:

�  AC2�4S	 68	 4 �56 �54\	 67	K4 �l6 �54\	 68	 4y2�4\	 68	 4y20E
The hyperplane equation found by the algorithm is:� �56 	 �K% ����	��H: ����6X2 �K% ����� ��� � �56 �K2K% � ��	��H: � 2�68	 �0% � ��� �H: 256 ��� 	K% � � � �� �56 � � �$% �x� � �H: ��6 �5	 �$% � � � �&� �l6 � ���K% ����� ��: �56 	�	 	0% � ��� ����256 ��� �0% ��� � �:N2�6 � � �0% � � � �] :e	 �56 �5	
The figures display the signal test � and the output vector � % ��4_% � � as a function

of time. The curve A are for the operating system and curve B for the failed system.
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Figure 13: Signal test
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7 Appendix

The matrices � , � , ' , ) ,  , - ,
L�M

and Q M from (43) and (44) define the
dynamics of both the plant in discrete time from.

�B ���� 2�6 � � �5	 :h256X2 2 	 � 	 � :N2�6X2 ��� 	 � 2�6 �02 � 	
2�6 2�	�� 	 � 2�6 � � � � :N2�6X2K2 2 � ��� � 2�6X2K2 � ��� �
:N2�6X25	�� 	�� 2�6 2 2�	 	u2�� 2�6 � �5	�� 2�6X2 � � ���
2�6 2�	 � ��� 2�6 2�	u2 � � :N2�6X25	���� 2 2�6 � � 	 �

�����
�  ���� 2�68	�� 	�� :h2�68	�� � �

2�6 2 2�	 	 � � :h2�6 2 2�	 ��� 2
:h256X2 � � � 	 2�6X2 � � � �
2�6 2 2�	�� 	 � 2�6X25	 � 	 �

�����
  ���� 2�6X25	 	�	 2�6 256 2�6 256 2�6 2�6 2�6

2�6 2�6 2 2 2�	 	 � 256 2�6 256 2�6 2�6 2�6
2�6 2�6 256X2 2 ����� 2�6 256 2�6 2�6 2�6
2�6 2�6 256 2�6 2 2 �K2 � 256 2�6 2�6 2�6

�����
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'  ���� �56 	 2�68	�� � 	 6 2�	 : �56 2 �
2�6 	 6 2�6 2�6
2�6 2�6 	 6 2�6
2�6 � 2 � 2�6 � 	 	 : �56�� � :Z	 68	 	��

� ���
)  ���� : �l6 � � �56X2 �

2 2�6
2 2�6
:h256X2���� � ��6 � � �

�����
-D ���� 2�6 2�6 2�6 2�6 2�6 2�6 2 2 2�	 2�6 256

2�6 2�6 2�6 2�6 2�6 2�6 2�6 2 2 25	 256
2�6 2�6 2�6 2�6 2�6 2�6 2�6 256X2 2K2�	
2�6 2�6 2�6 2�6 2�6 2 2 2�	 2�6 2�6 256

�����

LNM 

����������������������������

	 6 2�6 2�6 2�6 2�6 256 256 256
:Z	 6 2�6 2�6 2�6 2�6 256 256 256
2�6 2�6 	 2�6 2�6 2�6 256 256 256
2�6 :h256 	 2�6 2�6 2�6 256 256 256
2�6 2�6 2�6 � 2�6 2�6 256 256 256
2�6 2�6 :h256 � 2�6 2�6 256 256 256
2�6 2�6 2�6 2�6 � 2�6 256 256 256
2�6 2�6 2�6 :h256 � 2�6 256 256 256
2�6 2�6 2�6 2�6 	 6 256 256 256
2�6 2�6 2�6 2�6 :e	 6 256 256 256
2�6 2�6 2�6 2�6 2�6 256 	 256 256
2�6 2�6 2�6 2�6 2�6 :N2�6 	 256 256
2�6 2�6 2�6 2�6 2�6 256 256 � 256
2�6 2�6 2�6 2�6 2�6 256 :N2�6 � 256
2�6 2�6 2�6 2�6 2�6 256 256 256 �
2�6 2�6 2�6 2�6 2�6 256 256 :N2�6 �

�����������������������������
Q M  A 	 �54 ��4�	 �54 ��4�	 �54 ��4�	 �54 ��4�	 �54 ��4�	 �54 ��4�	��l4 �54�	 �54 �0E 	
The matrices � , � , � and 	 from (45) define the dynamics of autopilot in

discrete-time form.

�1 � 2�6 2�6 2�6 256 2�6 2�6s	 6
2�6 2�6 2�6 256 2�6s	 6 2�6 �
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	  � 2�6 2�6 2�6 256 2�6 2 � � 2�6X2K2�	 	 � 2�6 � 	
� 

����������
2�6 � 	 � � 2�6X2K2 	 ��	 � 256 2�6 2�6 2�6 2�6
:Z	��56 	 2�6X2 �5	 	 � 256 2�6 2�6 2�6 2�6
2�6 2�6 256 ��� � 2�6 2�6 2�6 2�6
2�6 2�6 256 2�6 ��� � 2�6 2�6 2�6
2�6 2�6 256 2�6 2�6 ����	 2�6 2�6
2�6 2�6 :N2�68	 ��	 2�6 2�6 2�6 	�� � 2�6
:N2�68	 � 	 2�6 256 2�68	���� 2�6 2 � � � 2�6 2�6 ��� �

� ���������
� 

����������
2�6 	 �56X2 � 2�6 2�6
2�6 :Z	�� 	��56 2�6 2�6
2�6 2�6 2�6 2�6�� �5	
2�6�� �5	 2�6 2�6 2�6
2�6 2�6 2�6 2�6
2�6 2�68	 � � :h2�68	 ��	 2�6
2�6 2�6 2�6 2�6

� ���������
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8 Conclusion

The problem of filtering approach for active detection in linear systems subject to
inequality bounded perturbations has been considered. Under certain conditions,
there exist test signals that can completely expose various failure modes of the sys-
tem. A method to design the filter for detecting and isolating failures in systems
excited by such test signals has been presented.

The complexity of filter computation and design of the test signal can be impor-
tant , all the operations needed for our method are implemented by solving large
linear optimization problems.

The method presented here can sometimes be applied to continuous-time linear
dynamical systems with discrete-time measurements.

This method does not have difficulties with very large systems because it works
with sparse matrices and solving large linear optimization problem taking advantage
of sparse matrix properties.

The efficiency of the proposed approach has been shown by two worked out
examples.
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