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Abstract: The pre-stack depth migration of reflection seismic data can be expressed,
with the framework of waveform inversion, as a linear least squares problem. While defining
this operator precisely, additional main characteristics of the forward model, like its huge
size, its sparsity and the composition with convolution are detailed. It ends up with a so-
called discrete ill-posed problem, whose acceptable solutions have to undergo a regularization
procedure. Direct and iterative methods have been implemented with specific attention to
the convolution, and then applied on the same data set: a synthetic bidimensional profile
of sensible dimensions with some added noise. The efficiency with regard to computational
effort, storage requirements and regularizing effect is assessed. From the standpoint of the
global inverse problem, the extra feature of providing a solution that can be differentiated
with respect to a parameter such as background velocity is also discussed.
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Migration géophysique par des méthodes d’algébre
linéaire creuse

Résumé : En se placant dans le cadre de l'inversion par formes d’ondes, la migration
avant sommation et en profondeur de données de sismique réflexion peut s’exprimer sous la
forme d’un probléme aux moindres carrés linéaire. Certaines caractéristiques de ’opérateur
associé au modéle direct, telles que sa trés grande taille, son aspect creux et la composition
avec une convolution doivent étre prises en compte pour concevoir un algorithme de résolu-
tion. Par ailleurs, le trés mauvais conditionnement du probléme discrétisé nécessite I’emploi
d’une procédure de régularisation. Des méthodes directes de factorisation et itératives de
type gradient conjugué sont mises en ceuvre, en consacrant une attention particuliére &
I’insertion de la convolution. Un méme jeu de données, synthétique, de taille petite mais
déja significative a été sélectionné pour mener ces expériences numériques: il est issu d’un
profil bidimensionnel synthétique auquel a été ajouté du bruit. L’efficacité des diverses
méthodes est mesurée sous ’angle du cott de calcul, du volume de mémoire nécessaire, et
de Dleffet régularisant. Du point de vue du probléme inverse global que ’on veut résoudre
par une méthode d’optimisation locale, I’analyse des méthodes proposées a aussi porté sur la
différentiablité des solutions vis-a-vis d’autres paramétres du modéle direct, telle la célérité
du milieu.

Mots-clé : moindres carrés linéaires, grands systémes creux, migration avant sommation,
déconvolution, régularisation, probléme inverse, différentiation, factorisation QR, gradient
conjugué.



Sparse linear algebra and geophysical migration 3

1 Introduction

This work aims at enhancing one of the CPU intensive steps of the computations, albeit
linear, that arise in geophysical processing of reflection seismic data, namely the pre-stack
depth migration [24]. In the first section of this paper, we describe a particular framework
for building such an operator, but many other formulations can lead to express this form
of inversion by the means of the exact -or approximate- solution of a linear least squares
problem [8].

We have therefore paid much attention to the way of solving this very large but sparse
and also ill-conditioned linear least-square problem. In geophysical applications, where data
and unknown sets are notoriously huge, the issue of sparsity of the migration operator is of-
ten not considered, and matrix-free algorithms are chosen without investigating alternative
solutions [24], [23], [9]. Nevertheless, the actual computation of the matrix and, if needed,
its out-of-core storage extend the range of available algorithms. Namely, on a set of such
precomputed matrices, the wide range of numerical experiments conducted in this paper has
been made feasible, both by direct and iterative methods. In all cases, a very large rect-
angular (overdetermined) linear system is to be solved by least squares, but the underlying
physics implies characteristic features that any efficient algorithm should take into account.

First, the aforementioned matrices embody the simulation operator or so-called direct
model, solution of the wave-equation: hence, it results from the product of the convolution
operator built with the source signal by the response of the soil to a Dirac impulse. There-
fore, in terms of storage, this multiplication should not be performed: while this remark
stands quite obviously for iterative solvers, it also holds for some direct algorithms. The
very poor conditioning of the convolution operator carries other harmful impacts: the result-
ing operator is subsequently more ill-conditioned than the propagation of a Dirac impulse;
furthermore, when performing a deconvolution directly on the data, the solution of the least
squares problem might differ a lot from what was expected.

Moreover, a foreseeable rank-deficiency appears, due to the fact that the set of points
that can be enlightened by the acquisition device, for a given propagation model, is usu-
ally smaller than the discretizing grid. In addition, at the boundaries of the enlightened
domain, the scarcity of information generates an ill-posed problem. Consequently, the least
squares formulation holds all characteristics of a so-called discrete ill-posed problem [2]. We
show how this rank-deficiency can be overcome by truncation of direct methods and by
the Tikhonov regularization [6], [14]. These techniques have been widely used for another
popular geophysical application, namely the tomography [4]. As regards pre-stack depth
migration, we report how the techniques allow consistent results to be obtained even at the
borders of the illuminated region.

With these characteristics in mind, the pros and cons of direct and iterative methods are
discussed. All examples are shown for synthetic data, on a restricted set that mimics marine
reflection seismics of high resolution. First on unconvolved and noise-free recordings, then
on the more demanding simulation of raw recordings.

On the one hand, today’s progress in the efficient implementation of QR factorization
[1] suggests that a direct solution will soon be at hand for problems of much bigger size
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4 Y.-H. De Roeck

than our test set. We will stress the ways to overcome storage bulimia: indeed, orthogonal
transformations can be performed on the fly, or applied implicitly thanks to the semi-normal
equations. Regarding regularization, the best quality results are obtained by truncation [20].
Pivoted algorithms are then required, that inhibit much of the expected efficiency: either
huge storage or redundant computations become compulsory. The alternative solution,
namely the Tikhonov regularization, does not damage the computational performance of
the algorithms designed for sparse full-rank systems, but it is difficult to tune and our
displayed results are of lesser quality. Its only advantage, but not the least, consists in
providing a solution that can be differentiated with respect to an underlying parameter of
the forward model, for instance the background velocity.

On the other hand, the conjugate gradient type algorithms, especially tailored for least
squares, provides a reasonable solution [19]. As already experienced in other applications,
a well-balanced criterion stops the solution in a filtered state, where the sensitivity due
to the smallest singular values has still not occurred. Iterating further would only lead
to the need for a regularization tool, of the Tikhonov type for instance. With iterative
algorithms, the tuning of the convenient regularization parameters is much faster than with
direct factorizations. However, there is not much inference either on the quality of the result
nor on the convergence rate. Solutions to speed up the convergence rate, like the search for
adequate preconditioners has not been fruitful, but by adapting the ORTHO-CR conjugate
gradient algorithms to least squares [5], a remarkable improvement of the convergence rate of
the residual has been obtained. However, thanks to the use of synthetic data sets, this study
disposes of the actual error with respect to the true solution. In actual practice, a heuristic
error estimate, found in the literature [12], slightly tailored to our application, and based
upon the residual and some recurrence terms, is shown to be informative for the optimal
iteration count. With this new criterion, CGLS happens to be the best algorithm among
iterative methods. Moreover, by using the features of a dual method [7], it is possible to
employ a slightly modified version of this algorithm in the context of the global non-linear
inverse problem.

2 Migration as a linear least squares problem

2.1 A forward model of propagation with diffracting points

Reflection seismic data records the echoes of an acoustic source bouncing back from the
soil. When waves encounter discontinuities of elastic moduli (also of density, in some me-
dia) between layers, they are scattered and propagated back to the surface. This indirect
prospecting technique works especially well in sedimentary areas where most of these surveys
take place, mainly for oil exploration. Records that are multi-trace (i.e. on several receiver-
s) and multi-shot (obtained by translating the whole acquisition device), display purposely
redundant information. This helps recovering both the reflectors (loci of the aforementioned
discontinuities) and the propagation parameters (mainly the velocity of the propagating
waves). Figure 1 describes the acquisition principle of a marine 2D survey (with a line of re-
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Sparse linear algebra and geophysical migration 5

ceivers -a streamer- translating along its axis), while 3D surveys (with an array of receivers)
are nowadays routinely performed.

Recei vers

v
Sour ce

Wave front

Geol ogi cal
/i Interfaces

Figure 1: Acquisition principle of a marine 2D survey

Modelling this phenomenon can be expressed in terms of the propagation of elastic waves
in a heterogeneous medium, or in a coarser approximation by the propagation of acoustic
waves. In this case, the pressure field v which is the observed quantity at the receivers
(hydrophones in marine seismics), obeys to the following wave equation due to a pinpoint
pressure source term f located at position x4, therefore the use of the space Dirac function

0 :

5 0%u(z,t)

v(z) at?

— Vu(z,t) = f(t)o(x — z5) - (1)
v is the so called slowness of the wave, inverse of the velocity ¢, which in turn is proportional
to the bulk modulus of the medium. This differential equation holds in this simplified form
in a medium of constant density, on assumption made throughout the sequel.

The heterogeneities of the medium, which are expressed by strong variations of v(x),
tend to scatter the waves. The first order Born approzimation models this phenomenon by
linearizing the wave equation, as stated in [3]. Indeed, the slowness might be decomposed
into two terms:

v(w) = vo () + ov(x),

where vy is the reference slowness and Jv the oscillating and small amplitude local variations
of v. If the pressure field is also split into:

u(z,t) = uo(z,t) + du(z,t),

RR n~° 3876



6 Y.-H. De Roeck

retaining the principal quantities and the first order ones in the initial wave equation leads
to:

2
V3 66;30 —Vup = f(t)d(x — z5),

2 2
3 aafzu —Vu = —QUS% 6615%0 .

Commonly, the expression of the solution of any of these partial differential equations is
simplified by making use of the Green functions. Indeed, a Green function G is the response
to an impulse in space and time as right-hand side of the wave equation:

20°G(,t;25)

v(z) 52 - VG(z,t;zs) = 5(t)d(z — z5) .

If the source term f(y,t) is an actual distribution in time and in space over the medium M,
the solution of the wave equation is given by:

+oo
u(z, 1) = /M /_ G2, 0:)f(y,t — 0)do dy

or with the x; notation for the convolution in time:

u(z, 1) = /M Gz, 5y) e £(y,2) dy. (2)

In turn, the high frequency approzimation greatly simplifies the construction of the solutions:
if the variations of the reference slowness vy can be considered as smooth with respect to
the wavelength Ay of the propagated signal, i.e.

12
A€ ——
=TVl

then the asymptotic form of the Green functions can be used. Hence this approximation is

consistent with the previous linearization. In 3D, the asymptotic Green functions can be
written as:

Gz, t;y) = A(z;9)o(t — 7(z39)),

where 7(x;y) is the travel-time of the propagation between z and y, which obeys to the
eikonal equation:

VT3 =g,
while A(z;y) is an amplitude factor deduced from the transport equation:

AAT+2(VA)T . Vr=0.
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Sparse linear algebra and geophysical migration 7

Again, there are many approximated ways to solve the eikonal and the transport equations.
In our developments [16], we solve the eikonal equation in 2D by ray-tracing, integrating an
ordinary differential equation along the characteristic lines, with a Runge-Kutta algorithm.
Although the resulting travel-time can be a multi-valued function, we have chosen to use a
shooting algorithm between each pair of points of a coarse grid, by minimizing the distance
of the ray to the targeted point by a Newton algorithm. Then, a linear interpolation on the
complete reflectivity grid is made. All together, a single-valued function is computed, which
is the proper result in moderately perturbed media.
The amplitude is approximated by the spherical divergence, which makes it equal to:

1
Az,y) = .
N s PIEETIT

In the 2D case also, the asymptotic Green function becomes a distribution, that changes
formula (2) into a convolution with a fractional derivative of the source:

u(z, 1) = /M A(z;9)8( — (@) % FD(y, ) dy.

Hence, for a pinpoint source, the reference pressure field uy and the scattered pressure field
du that constitutes the observed data, can be computed by:

uo(z,t) = A(w; 25)8(. — (z;25)) % fF (),

ula,t) = [ () B A yis)d~ @ as) 5 fOdy, @)

with A(z,y;zs) = A(y; 1) A(z;y) and 7(z,y;z5) = 7(y; T85) + 7(T; 9).

The actual processing of the reflection seismic data then consists in solving the inverse
problem provided by equation (3), usually in terms of the following set of variables:

e the seismograms, the simulated data, d(R;, Sj,tx), that are a very partial observation
of the scattered pressure field du for a collection of locations of receivers zp, during
an interval of discrete recording time, t; € [Tp,T}], while the source is located at
locations zs;;

e the reflectivity, r(y) = iygg , a first unknown field, with respect to which equation (3)
0

is linear. From now on, we will write: d = B.r, where B is the linear operator mapping
the reflectivity r to the observed data d;

e the background velocity, co(y) = VL(Z/)’ a second unknown field, with respect to which
0

equation (3) is highly non-linear. Hence, there exists a non linear dependency of the
modelling operator with respect to the background velocity:

d = B(co).r. (4)

RR n~° 3876



8 Y.-H. De Roeck

We recalled these successive approximations in order first to be precise about the frame-
work in which the solution is sought, and second to highlight the intricate computational
steps that constitute this problem.

2.2 Waveform linear inversion

In this paper, we will mostly focus on the linear inversion. That is to say, once a background
velocity has been estimated or its field value has been assumed, how the reflectivity field
can be recovered. This process called depth migration by geophysicists, namely consists in
the search for the location and the amplitude of the reflecting layers. As it results in an
interpretive map of the surveyed subsoil, it is considered as an imaging algorithm, among
which the most famous is the Kirchhoff algorithm, following the Claerbout imaging principle
of diffracting points [9].

However, several authors [23], [7], have shown the link between an approach based on
a least-square identification of the reflection seismic data by a wave propagation model
(waveform inversion) and this Kirchhoff migration operator. Indeed, the latter amounts to
estimate the reflectivity unknown after the first iteration of a conjugate gradient using a
proper preconditioner.

Hence, a waveform inversion consists in minimizing by some cost function the norm of
the difference between experimental and simulated data. Straightforwardly, the euclidian
norm can be chosen,

J(r;e) =1l Ble)r —d|I3 ()

=3 Y 3 (B -drw)?,

seshots hereceivers te[Tp,T1]

where d now stands for the observed data (moreover, as the background is supposed to be
known, the dependency over ¢ will be dropped in the following). The use of other norms,
the weighted versions of the L2-norm among others, will be discussed later.

The acquisition parameters (receivers, shots, time discretization: the product of the three
cardinals of these sets gives the dimension of the data space) and the field model parameters
(mesh size and extent of the reflectivity grid) have been sized with respect to the mean
frequency of the seismic source. It also leads purposely to an overdetermined problem.

The solution could consist in building the least squares solution, expressed by factoriza-
tion algorithms (SVD or QR), e.g. by forming the Moore-Penrose pseudo-inverse:

r=DBd. (6)

Up to now, such a direct solution has never been performed in this way for this problem,
mainly because the dimensions of the linear operator surge to several millions of rows times
several hundreds of thousands of columns. The alternative solution has commonly been first
to cast the normal equations (supposing B has full rank):

r=(B™B)"'BTd = Bld,

INRIA



Sparse linear algebra and geophysical migration 9

then to approximate the solution by:
r=KB"d,

where K is a coarse approximation of the inverse of BT B. In the many weighted forms that
this matrix can take, one can find the Kirchhoff migration [7]. For instance, in our previous
work on waveform inversion [17], we have taken K = diag(BTB)~! to build such a pre-stack
depth migration operator.

Such a choice amounts to multiplying, by a diagonal matrix K, the opposite of the
gradient of J in 7 = 0. Thus, it corresponds to the first iteration of a preconditioned
gradient method.

Conversely, the so-called iterative migration consists in running several iterations of the
preconditioned conjugate gradient on the normal equation system. Although quoted by [23],
this algorithm has seldom been used.

It is also applied in an alternate form on the time reflectivity s in the Migration Based
Travel Time method of inversion [8]. Once a diagonal matrix K has been chosen, a "change
of variable" is proceeded by:

r=KBYw,

and the cost function of definition (5) is then replaced by:

J(w;e) = || B(e) K B(e)"w — df3 (7)
= J(r;c).

A square symmetric system has then to be solved, by a conjugate gradient method. As
it happens to be a positive, but semi-definite operator, the orthogonal conjugate residual,
ORTHO-CR, has been selected for its robustness to this case. We will return later to this
algorithm quoted by [5], in Section 5 devoted to iterative methods.

Indeed, in this paper, our goal consists in finding the best approximation of B'd, using
the most appropriate tools of linear algebra. This could lead to another alternate cost
function for the global inverse problem expressed with respect to r and c¢ in the conventional
equation (5) or wrt w and ¢ in the MBTT formulation (7):

I(e) = | B() B(e)'d— a3, (8)

which is a reduced least squares formulation of the non-linear inversion. The issues of
computational efficiency and of accuracy of the estimate of Bfd must then be studied very
carefully.

3 Sparse storage versus matrix-free

Even if geophysical forward models and migrations generally stand for linear operators, they
are usually processed in a matrix-free mode. Indeed, each in their own opposite way, these

RR n~ 3876



10 Y.-H. De Roeck

operators map variable spaces of huge dimensions, and most often they are applied only
once, on only one vector.

Iterative migration makes use of one forward model and one migration (transposed or
weighted transposed forward operator) per iteration. Nevertheless, the few implementations
of this algorithm remain matrix-free.

However we propose to compute and store the actual matrix of the forward model,
because its sparsity remains very high. In Table 1 we show the figures for different problem
sizes. The larger the size of the problem, the lower the density of the simulation matrix.

Problem # # # time #grid_ #grid_ ) %
; comments | receivers |sources |samples |steps in x [steps in z| # nonzeros in B| .
id. sparsity
#rows of B # columns of B

1 Dirac 24 | 50 | 100 95] 101

synthetics 120 000 9 595 3953 780 0,34%
1 Idem, no 24 | 50 | 100 95] 101

null column 76 817 8 286 3953 780 0,62%
e Idem, 24 | 50 | 100 95] 101

convolved 76 817 8 286 18 312 987 2,88%
2 Dirac 24 ] 200 | 400 245] 381

synthetics 1920 000 93 345 117 513 352 0,07%
9 | 1dem, no 24 | 200 | 400 245] 381

null column 1920 000 93 219 117 513 352 0,07%
o Idem, 24 | 200 | 400 245] 381

convolved 1920 000 93 219 705 079 780 0,39%
3 Real high 24 | 401 | 401 842] 201

res., Dirac 3 859 224 169 242 123 536 804 0,02%
3 Idem, 24 | 401 | 401 842] 201

convolved 3 859 224 169 242 988 294 432 0,15%

Table 1: Sparsity of the B matrices for some test models.

3.1 Compressed column format

The columns of the simulation matrix B correspond to the vertices of the 2D-reflectivity
grid, hence the total number of columns is the product between the number of grid steps
horizontally (in z) and vertically (in z).

INRIA



Sparse linear algebra and geophysical migration 11

Rows of B stand for the seismic data of a multi-trace and multi-shot profile, hence their
number amounts to the product of the number of time samples times the number of traces
(receivers) times the number of shots (sources). In actual surveys these figures rocket to
several millions or billions, but usually, the inversion is performed on restricted domains of
interest, therefore it is already meaningful to develop methods entitled to handle subsets of
data of a few millions entries.

In practice, the compressed column format has been chosen for this sparse matrix B of
nl rows by nc columns, with nnz non-zeros. It consists of [10], [19]:

e one real (double precision) vector Bsp of length nnz containing all the non-zero entries,
scanned by columns,

e one integer vector Jline of length nnz containing the row index of all the non-zero
entries, in the same order as before,

e one integer vector Jpntr of nc+1 entries, the so-called column pointer, that provides
the index in Bsp and Jline of the first entry of each column, the last component being:
Jpntr(nc+1)=nnz+1 .

Even neglecting the column pointer, 12 nnz bytes are still necessary. Although the
reasons of the inflation of Problem 3’ of Table 1 will be explained, this case would require
11.7 Gigabytes to store matrix B ...

Yet on more modest configurations, the matrix barely fits in regular core memories of
current computers. It is thus preferable to access records containing columnwise pieces of
Bsp and Jline in sequential mode.

We have experienced that the computation and the storage of matrix Bsp is just twice as
expensive as one matrix-free matrix vector product, because of its storage on disk. However,
the time needed for a matrix-vector product is half as expensive, even when reading the
matrix on disk, as compared to the matrix-free version. Hence, whenever more than 4
matrix vector products are involved, without any consideration about storage requirements,
the actual computation of the matrix should be preferred, and it would asymptotically divide
the evaluation time by 2. Moreover, this strategy allows to apply a much wider scope of
linear algorithms for solving our least squares problem.

Problem 1 (see Table 1) is taken as the main support for this study. Indeed it involves a
"small" 2D set of data to be mapped onto a small reflectivity grid. Factorization and other
operations on this B matrix with circa 4 million non-zero entries will fit into the memory of
a workstation, and it can be handled for numerical experiments with MATLAB.

Figure 2 displays the pattern of the sparse matrix B at different scales. Although some-
how repetitive due to the ordering, this pattern is very irregular, and depends on the back-
ground velocity field. This dependency implies that, in the process of solving the global
inverse problem, efficient sparse algorithms which utilize a symbolic factorization, will have
to rerun this initial step with a new background velocity value.

RR n~ 3876



12 Y.-H. De Roeck
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Figure 2: Pattern of the simulation matrix B of Problem 1 (synthetics without convolution),
at different levels of detail.

3.2 Dealing with empty columns

Although this is not an issue for sparse computation, the difference between Problems 1
and 1’ lies in the actual number of non null columns and rows. An empty column of
B means that the corresponding vertex of the reflectivity grid does not contribute to the
simulation of the recorded data. Indeed, the number of time samples being limited, the
reflection on some vertices might propagate too slowly for being actually recorded. Such
'lost’ vertices lie on the boundaries of the reflectivity grid. However, they cannot be a priori
identified before the travel times have been computed. As previously mentioned, the travel-
time computation depends on a highly non-linear way from the velocity field. Hence, in the
process of the global inverse problem where the velocity field is searched for, the locations,
hence the indices, of these null columns steadily vary.

While building the simulation matrix B, our algorithm proceeds by scanning all the
vertices of the reflectivity grid (for instance, in the matrix-free implementation, the main

INRIA



Sparse linear algebra and geophysical migration 13

loop is built around the summation over the domain M of Equation (3)). It is thus easy
to detect the empty columns of B, and to provide a reordering of the columns where these
latter are flushed to the end. Figure (3) shows a reflectivity field for Problem 1. On the left
side, it is displayed as originally set up for synthetic simulation. On the right side, one sees
the same reflectivity field, however projected on the domain where the columns of B are not
empty. The surrounding domain that has been whipped out will thus never be recovered in
our inversion process, but one must remember that the shape of this null space depends on
the background velocity field. This amounts to a projection of the reflectivity vector r. The
number of these null columns equals 9595-8286=1309 for Problem 1.

Thus, the number of columns to be discarded might vary a lot, depending not only on
the background velocity field but also on the parameters defining the acquisition (number of
receivers, of shots, of time samples) and the geometry (size and location of reflectivity grid
with respect to the sources and receivers). Hence, on the much larger synthetic Example 2,
only 126 columns can be discarded instead of 1309 on the small Example 1. Even, with a
well optimized background velocity field, Example 3 on real high resolution data does not
lead to any empty column in matrix B.

Initial reflecttivity Initial reflectivity projected on the orthonal of Ker(B)

201 1 201

401

50

@
3
T
L

60

Vertical extent of the grid (m)
Vertical extent of the grid (m)

-
S
T
n

705

n,

100 1 1 1 1 L L L
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=
)
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. .
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 S
Horizontal extent of the grid (m) Horizontal extent of the grid (m)

Figure 3: From synthetic example I: on the left side, the reflectivity initially set up; on
the right side, the reflectivity at the vertices corresponding to null columns of B has been
wiped out. This amounts to a projection of the reflectivity vector r onto a subspace where
the least square solution of minimum norm from || B -7 — d||2 can be found. On this grid,
1309 out of 9595 vertices have been set aside.

Empty rows in B correspond to pieces of seismograms that are always muted. For
instance, if the time samples begin with no delay and if the top of the reflectivity grid
does not contain the line of receivers, there will never be any information in the first time
samples. Because our computational scheme for building B remains columnwise, it is not
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easy to detect these empty rows. However, it is not as crucial as for columns, since it does
not impact on the rank of the matrix and it does not affect the storage capacity.

3.3 Impact of convolution with the source signal

Yet another issue of sparsity is related to the convolution of the impulse response with the
actual source signal propagated in the medium. Indeed, from the wave equation (1) or from
formula (3), the linearity with respect to the source signal leads to rewrite! the operator
defined in (4) by introducing the convolution matrix C'(f):

d = B(c; f).r 4"
= fxB(¢0) - r,
=C(f)-B(¢;0) - r,
fi 0 .-
fo fi O
with: c(f) =pPo|fh ®Py,  (9)
—— .
(n¢ ns np,ngng-n,) matrix 0 fp
fi
(ne,me )vma.trix
the source signal being discretized over p samples: f = [fi, f2, -+, fp] - Permutation

matrices, P and P, are introduced in order to make clear that the convolution is limited to
the range of n; time samples, while this phenomenon happens for each record, i.e. among
n, receivers during ny shots, whatever the numbering (the data gathering for geophysicists)
might be.

Within a matrix-free algorithm, the convolution is performed after the computation of
B(c;0).r, which amounts to convolving with the source signal the impulse response of the
medium. Table 1 shows how much fill-in should be expected in matrix B(c; f), for a source
signal discretized into s = 9 non-zero samples in problems 1" and 2", and s = 13 for real
data 3’. Figure 4 shows the fill-in appearing on problem 1", at the highest level of detail
on the pattern of matrix Bsp.

With few assumptions, this fill-in can be predicted. This evaluation is helpful for checking
the storage capacities, and for an estimation of the cost of a matrix-vector product.

e the simulation matrix for the impulse response, Bs = B(c;d), is an n X m matrix, with
Ns non-zeros;

1% is the convolution operator, ® is the tensorial product
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Figure 4: Pattern of the simulation matrix B of problem 1’ (synthetics without convolution),
and 1" (synthetics with convolution) at the highest level of detail.

e the average fill-in per line, g5, is defined by: g5 = N5/n ;

e the non-zero entries of any line of Bs correspond, for a given pair comprising source, S,
and receiver, R, to the set of vertices of the reflectivity grid that lie on an isochrone line
for the acoustic propagation (this line is a portion of ellipse of foci S and R, in the case
of constant background velocity): see Figure 5. Due to the time discretization scheme,
the width (height) of this line, as, is given by the following relation: (as—1)Az = At
where Az is the vertical grid step, At the time step, ¢ the average background velocity.
Usually, Az and At are chosen so that Az = ¢At, thus a5 = 2;

e an average number of vertices per isochronic can be estimated: 8 = gs5/as;

o for the simulation matrix of a regular signal, By = B(c; f), with Ny non-zeros, an
average fill-in per line g; = Ny/n can also be defined;

e however, if the propagated source signal has a duration of s time samples, then the
width, ay, of the set of vertices that belong to the isochrones that will interfere during
the propagation of the whole signal is linked to the discretization steps by the relation:
(af —1)Az =¢sAt;

o the number of non-zeros of By thus becomes:

cA
Nfznaf5=n<1+sCA—zt)6

while: N5 =~ nasB=n (1 + ﬂ) I}
Az

RR n~ 3876



16 Y.-H. De Roeck

receiver source

reflectivity grid

>
x

)
1

D e e AZ
discrete oo o oo o

isochrone line ® continuous

isochrone line

e o o o
e 6 ¢ 06 o >0 oo

e o 0 o
“r
. r
e p
P
°
°

e © o b \é o

e 0 0 o

e o 0 o

discrete isochrone line length 0Of

Figure 5: Discretization of isochrone lines: this sketch shows the discrete isochrone line, for
which the average width as and length § can be defined. Here, it is assumed that Az = ¢At.

Therefore, in the usual case where Az = ¢At, this estimation becomes:
1
Nf ~ S—; N5

which is confirmed by the figures of Table 1.

e the number of floating point operations (flop) needed to apply this linear propagation
operator to a reflectivity vector is impacted by this fill-in:

d = By - r costs 7 = 2Ny flop
=2nf(s+1) flop

o whereas Cy = C(f), the convolution matrix is also sparse, with an average of s entries
per column. Hence:

d=Cy-(Bs-r) costs 75 = 2N;5 + 2ns flop
=2n(28+s) flop

75 is then usually much smaller than 7¢, because in general 8 > s > 2. Moreover, the
cost of building By is saved.

Thus, whenever possible, only B(c;d) must be stored, and then convolved with the
discrete source vector when needed. At first glance, the QR factorization or the building
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Sparse linear algebra and geophysical migration 17

of a preconditioning matrix by an incomplete factorization seem not to comply with this
requirement. Nevertheless, it is possible to design algorithms where the columns of B(c; d)
are convolved on the fly. Moreover, when the transposed matrix B(c; f)* is needed, then
the transposed operator C(f)T only requires the knowledge of vector f.

This digression about the implication of convolution in sparse storage also recalls that
this multiplication by C(f) renders the problem much more ill-conditioned. The condition
number of C(f) depends on the shape of the source signal and exponentially with n;, the
number of time samples in the recording sequence. As the actual matrix C(f) is the result
of the aforementioned tensorial products, the number of traces n, and the number of shots
ns do not impact on the condition number.

Since many deconvolution algorithms exist, one might wonder why keep this expensive
and unstable operator in the migration step. Indeed, section 4.7 will show evidence that
the data should not be deconvolved before migration, and give insight into the theoretical
background for this strategy. In signal processing however, namely of geophysical data [23],
it has already been advocated that cross correlation of signals is a more stable operation
than deconvolution.

4 Direct methods investigating rank-deficiency and ill-
conditioning

As quoted in Section 3.2, a collection of null columns with unpredictable indices (depending
on the geometry of the acquisition device and on the velocity field) are easy to detect, and
the significative submatrix can be extracted through a reordering.

Still, for the same physical reason, even the latter submatrix has not full rank. Indeed,
near locations that are not illuminated and that lead to null columns, some vertices on
the reflectivity provide too poor information to the receivers. This rank deficiency can be
observed, for instance, while trying to proceed on Problem 1’ to a Cholesky factorization
of the normal equation matrix G = BT B (positive semi-definite matrix): a null or slightly
negative pivot is encountered. Moreover, in perfect arithmetic, the rank of the normal
equation matrix G is the same as the one of B, but it can be expected to be lower numerically,
due to the finite representation of floating point numbers while dealing with an average of
squared coefficients.

Nevertheless, the true rank of B is not the issue. Indeed, the error analysis of the solution
of a perturbed least squares problem says more about the concept of numerical rank which
needs to be taken into consideration, and which leads to building a low-rank approximation
to B.
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4.1 Theoretical insight through the SVD decomposition

B, as any general matrix, can be factorized by a singular value decomposition (SVD), for
m > n, [11]:

B = v - D .VT",
~~ ~~ ~~

(n,n)

(m.m) (m,m) (m.n)

= In
dia’g(017027"'7Uq707"'70)7 (10)
—_——

012022 204>0

T.77 —
with orthogonal matrices: { UU = In
vt.v
D =

and diagonal rectangular matrix:

with ¢ = rank(B) <n.

With this decomposition, the 2-norm of B lies in o7, the largest of all singular values
{0i}ic)1:q- When B has a rank ¢ lower than n, the least squares problem induces a whole
variety of solutions (of direction N'(B), the kernel of B): usually, the solution of minimum
norm is chosen. It is obtained as in (6) by multiplying the right hand side (data d) by the
Moore-Penrose pseudo inverse, Bf, which is defined by

.BT = V . DT ‘ UT )
~~—~ S~~~ ~~ ~N
(n,m) (n,n) (n,m)
(m,m)
1 1 1
where D' = diag(—, —,---,—,0,---,0).
g1 09 O'q

Consequently, Ul becomes the 2-norm of Bf. A generalized definition of the 2-norm condi-

tion number is inferred:
o1
Ko (B) = —.
Oq
Let us now consider a perturbed system: for instance, perturbations are due to some
inescapable noise dd on the data and to the approximations made on our model for the linear

operator, B. Then, (if || 6B ||2 < 04), according to [2], the first order error analysis gives:

let 7 be the minimum norm solution to:  min|| B-r —d ||z,
7 + or the minimum norm solution to:  min|| (B+0B) -r — (d+ 4&d) ||2,
then
1 1
[orllz < — (Il ddrp) 2+ 0B Izl 7 ll2) + [ 6B [|2]| B -7 = d |2,
q q
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where ddg(p) is the projection of the perturbation of the data on the image (range) of B.
Obviously, the smaller o4, the larger the error. Thereby, a truncated SVD (TSVD)
solution is provided to such problems, [2]: among the singular values, a numerical threshold
is set under which they are all considered to be null. This is equivalent to looking for the
pseudo inverse of an approximate matrix B which has a prescribed lower rank than B:

B=UDVT,
where D = diag(oy, 09, - - - ,0p,0,---),

with p < q.

B is proved to be the best approximation to B among matrices of rank p, and moreover, on
the matrix norm again, a bound is given:

IB=B:<0,.

It must be stressed that truncation or other means of regularization happens to be compul-
sory to obtain acceptable results out of any ill-conditioned least squares problem. Otherwise,
the action of the inverse of the smallest singular values inflates the effects on the perturba-
tions of the system.

4.2 Sparse QR with no pivoting

In spite of these nice properties, TSVD requires huge storage capacities due to fill-in in the
orthogonal factor, and undergoes a prohibitive computational cost, as it can be connected
to an eigenvalue problem (that of the normal equation matrix). The QR factorization can
be adapted to solve rank deficient least squares problems efficiently, at the cost of another
layer of approximations.

Two types of QR algorithms are acknowledged. In the case of an underlying Gram-
Schmidt (GS) or Modified Gram-Schmidt (MGS) orthogonalization algorithm, @ is an (m,n)
orthogonal matrix and R is (n,n) square upper triangular. In case of a factorization through
Householder transforms (HT), i.e. by successive orthogonal symmetries, or Givens trans-
forms (RT), i.e. by rotations, @ is then (m,m) square and orthogonal while R is (m,n)
rectangular, but still upper triangular. Indeed, these algorithms are often quoted as:

the thin [M]GS algorithms B =@ - R,
N N N
tmm)l - (mam)| ()

and the fat [H,R]T algorithms B = Q - R

(m,n) (m,m) (m,n)
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The fat case can however be squeezed into the thin one, after computation:

~~

B-@ @[] -er
~—_———
~———

) N omm)| (mys)

However, in the factorization process of the fat algorithm, either Q? is stored (although
some economical forms exist), or the right-most columns of R are filled in, up to the very
last step. This becomes a very crucial point when m is very large, as in our case.

Let us then consider the fat formulation, as it leads to the simplest notations. The key
point of the solution of the least squares problem by QR arises from the isometric property
of the orthogonal matrices:

IB-r—dl3em=1Q R-r—d|}zm,
= Ri-r=QF -dl3rn + 1193 - d |3 g -

A straightforward solution can then be extracted if and only if R; is non singular (it has no
zeros on its diagonal). Then :

solve R, -7 = Qd.

Some very efficient implementations of this QR factorization have been developed for
sparse matrices, however in this simple form without column pivoting. The numerical inter-
est of the pivoting process being discussed further, the key point here consists in obtaining
a manageable and efficient factorization of the matrix.

For the purpose of solving least squares problems, these implementations deliver on
the fly the product QTy of a provided right-hand side y, hence no storage is required for
@. Anyhow, these methods are often quoted as Q-less QR, solely providing the R factor.
Indeed, in the case R is of full rank, () is considered to be equal to:

Ql =B- Rl_l )
then the semi-normal equations can be used to form the solution of the least squares problem:
min||B-r—d|2 =
T

r=R-Qf -d (practically, solve Ry - r = Q1 - d)
— R{"-R;T-BT-d (solve first R -y = BT -d
then solve Ry -1 =vy).

Such a sparse version exists in MATLAB, and this is the only way to handle the seismic
simulation matrix B, even with the dimensions of problem 1 of Table 1. For a practical
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use on our problems of standard size (e.g., problem 2 or 3), there are some very efficient
parallel FORTRAN codes based on a multi-frontal approach [1]. There are still two difficulties
to overcome when using these powerful techniques: on the one hand, no pivoting is available,
since it is easy to understand why column interchange stands as an impediment with respect
to storage and computational efficiency; on the other hand, a specific implementation would
be necessary in order to proceed to the convolution on the fly, column by column, thus
avoiding the full storage of the initial matrix.

On the resulting R factor, the return time and the sparsity pattern depend on the initial
column ordering of B. We have tried a column minimum degree (COLMMD), which is
supposed to lead to small fill-in, and a simple column and row reverse permutation (CLREV),
which symmetrically transforms the pattern of B from lower to upper "triangular" (wrt. the
diagonal of the rectangle, not the usual principal diagonal, as it can be observed on Figure 2
at the coarser level of detail, the upper left subplot).

R matrix with column minimum degree ordering
| v T

2000

3000 -

4000 -

5000 -

8000 -

7000 -

8000 -

L L L L L L L L L L L L
0 1000 2000 3000 4000 5000 BOCO 7000 8000 0 100 200 360 400 500 600 700
nz = 15454643 nz = 25873

Figure 6: R factor pattern. Matrix B had no null column, and its columns have been
permuted by the minimum degree algorithm. The zoom on the upper diagonal block shows
that null pivots are encountered. Thus there is a rank deficiency.

However, as expected in our case, the R factor displays a pattern with zeros on the main
diagonal, as shown on Figure 6. R is thus singular, and cannot be used for solving the least
squares problem. Moreover, even if it is possible to get a hint of the rank of the system from
the distance between the diagonal and the non-zero coefficients, see Figure 7, this statement
holds in perfect arithmetic only. A different dimension of the kernel is estimated for two
re-orderings: 390 with a column minimum degree COLMMD, 386 with CLREV. There are
still some approximations that can be made directly on this factorization without pivoting,
by manipulating the R factor: firstly, from top to bottom, only the columns whose non-
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Rank deficiency revealed by the distance of the non-zeros to the diagonal. "Map of conditioning” of the forward model
400 After a sparse QR on a column reordered matrix (minimum degree). 0 T T T
T T
e \
T'\J' 201
&
= Kernel dimension (390) reached
8 at column 3635
2 40+
G
S 200 b
S
£ 60k altered columns |
9]
£
=]
3 Rank deficiency begins at column 178
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]
2
. . = null columns
% 3000 6000 9000 100 = : : == :
column number 0 20 40 60 80

Figure 7: left: Distance to the diagonal term of the last non-zero element of each column.
Each jump towards the top detects a new singularity.

right: Displayed on the reflectivity grid, the relative amplitude of the last non-zero element
of each column of R. Dark locations stand for each column on which a new kernel direction
has been detected.

zeros hit a new row are selected, as they correspond to vectors that expand the range of the
matrix2. When p such columns are selected in R to the left, the other ones being expelled
to the right, a column permutation is obtained, after which R has the following shape:

NN

R= [}S }E] = ) (11)

with R full rank p upper triangular matrix (p < n),

and R”  arectangular (p,n — p) matrix.

x/ yl
Then,R-ac:R-(,,): » | s
T Y

?Indeed, columns of B are linear combinations of columns of @ (following notation: one subscript for
column vectors, 2 subscripts for scalar coefficients):

Josjo<=j
Vj€[l:n], Bj = Z R;;Q;.
i=1
Hence, for any given j, B; adds a new direction to the span of the preceding columns of B if and only if, jo
being the index of the last non null row coefficient of column vector R, then Vk < j, R, = 0.
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is an underdetermined system decomposed on subspaces of respective size p, n —p. It would
have a proper minimum norm solution, but usually the so-called basic solution is extracted:

{solve R .2 =y,

set 7 =0.

Unfortunately, the result is not satisfactory, due to the very bad conditioning of matrix
R’'. Indeed, this permuted (not yet pivoted) version of QR has kept all the singular values
of B in R, even though the previous section has shown the need for a truncation.

The physical meaning of rank deficiency is confirmed, when displaying the location of
the missing columns of R’ on the reflectivity grid. The migration problem seems obviously
ill-posed on the boundaries of the domain, close to where null columns can be found (see
Figure 7). These locations correspond to the loci where common geophysical processing
display the so-called migration smiles.

In turn, additional columns of R’ might be discarded in order to obtain a better con-
ditioning. This can be performed while keeping the sparse QR factorization, by applying
a sequence of Givens rotations to zero the coefficients arising under the diagonal (due to
the shift to the left of the remaining columns). Still, what is the threshold for discarding
such or such column? The normalized absolute value of the pivot (the diagonal coefficient
normalized by the largest entry of the column) can be chosen, as this is the source of the
inflation of the perturbation. But this technique has not proven to be successful in our tests.

4.3 Regularization by Truncated Pivoted QR methods

The pivoted QR factorization (PQR), proceeds by column pivoting at each step of the fac-
torization, in order to obtain an R factor whose entries are steadily decreasing. This factor-
ization leads to:

B-E=Q-R

with E a permutation matrix, () an orthogonal matrix and R an upper triangular matrix.
The permutation E can be stored economically as a vector, and be used in the following
way:

B(:,E)=Q-R (in MATLAB notations)

The various PQR algorithms lead to an R factor whose diagonal coefficients have de-
creasing absolute values. They usually prescribe that :

Vi e [1 : n]: |Rzz| 2 ” R[i:n,j] ”25 Vizi+1. (12)

That is to say, each pivot is larger than the euclidian norm of any remaining sub-column
during the factorization and at the completion of it. This hypothesis (12) implies that,
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Vie[l:n]:

(n—i+1)|Ral>> Y | Risrng ll3,
j=i+1
> || R[i+1:n,i+1:n] ”%‘ ) (Frobenius norm)
> || Riit1:n,it1:m] 3, (majoration of induced matrix 2-norm)
= Vie[l:n],
| Biit1in,itrng ll2 £ VR — i+ 1[ Ryl (13)
This bound allows to neglect the lower block diagonal term in R after a given threshold,
hence to retrieve a shape similar to the one displayed on Equation (11), from which a basic

solution can be evaluated. However, for the remaining upper diagonal block R’, of size p, it
can only be proven that:

Ko (RI) =

T Byl

This inequality involves the singular values of R’, and R being an extension of R’, the
following inequalities hold [2]:

o1(R) > o1(R') > |Rul,
ap(R) > o,(R'),
| Rpp| = UP(R/) :

Hence, if: |Rp,| < 6|Ry1],

” R[p+1:n,p+1:n] ”2 S 5\/ n—p + 101(R) .

Therefore, with such a criterion, the neglected part of the matrix is bounded (no important
contribution has been left aside), but there is no theoretical evidence that R’ has a conve-
nient condition number. Some counter-examples have already been shown, [2]. However,
in practice, for a PQR algorithm respecting (12), the order of magnitude of |R;;| has been
experienced to be close to o;(R) for random matrices.

Hence splitting R with a threshold of the kind:

Viell:p], >0 14
[, g 2 (14)
(15)
(p,p)
assumes an R factor of the shape: , (16)
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that should approximate the TSVD keeping all singular values o; > do;. This algorithm is
called truncated pivoted QR (TPQR).

However, PQR only exists in full matrix form within MATLAB, while in our test case, B
as a full matrix would have 994 320 000 entries (circa 8 Gigabytes would be necessary...).
Section 4.5 shows how to reduce the problem size on which TPQR can be used in full matrix
form. However, Section 4.6 displays an algorithm as well as some adaptations, leading to a
sparse processing that is better suited to our application.

Pivoted QR has also been modified to be precisely rank-revealing [6], [18], but inevitably,
an iterative procedure is then involved: the heuristic advises 2 or 3 iterations only of inverse
power algorithm to find out the smallest singular value of R, thanks to iterated call to
forward and backward substitution. The implied overcost has prevented us from trying out
this method on our problem.

4.4 Regularization of the convolution operator

Diagonal elements of the R—factor of a pivoted QR on Cf Diagonal elements of the R—factor of a pivoted QR on B'B
T T T T T T T T T T T T T

10 T
—diag(IR(B'B)])
~diag(|R(B'C'CB)|
0t E
-
% 10° k2
F 107 i _
@ x
° —_
210 i 3 .
Q g 10
: R B
R ER 1.e-11 threshold: r(B'B) = 7792 /'
5] 2
© Last acceptable pivot: n° 97 2 omh el -
107 O dim(Ker(C)) =3 1 8 10 r(B'C'CB) = 7645
G
10°F
10 L ______Jd____
107k 1.e-20 threshold: r(B'B) = 7895
r(B'C’'CB) = 7892 |
8 1 1 1 1 1 1 1 1 1 = L 1 Ll
s 30 90 100 10 0 6000 9001

.
60 00
pivot number pivot number

Figure 8: left: Display of the diagonal elements of the R factor of pivoted QR factorizations,
on the convolution operator Cf.

right: Display of the diagonal elements of the R factor of pivoted QR factorizations: on the
normal equations, G = BT B for the plain curve, Gy = BJTBf (i.e. with a convolution) for
the dashed line.

On the convolution operator Cf, thanks to the tensorial product observed on equation
(9), the PQR factorization can be performed on a ”small” (n, n;) matrix, and can therefore
be handled as dense. Figure 8 shows the abrupt decline of the absolute value of the diagonal
coeflicients of the R factor. The numerical rank of this operator is thus easy to determine:
in this particular case, the dimension of the numerical kernel is 3.
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Experiments on deconvolution of noisy data with a truncated pseudo-inverse of this rank
are very satisfactory. However forthcoming arguments will show that it might be useless to
build such a deconvolution operator (to be noted C; in the following).

4.5 Usage of full TPQR: on normal equations and on a not pivoted
R factor

One solution to reduce the problem size (hence to be able to handle full matrices) consists
in using the normal equations G = BT B. The numerical rank is certainly lowered by this
procedure, because the singular values of G are the squares of those of B, but at least G can
be manipulated as a full matrix. The density of this matrix is also very high, especially in
our small test case 1’. Indeed, without convolution, G has 16. 10° non-zeros, which amounts
to a density of 24%; with convolution, Gy = BTC} Cy B has 23. 10° non-zeros and its density
reaches 34%. The density of the normal equation matrix is logically less influenced by the
insertion of the convolution operator.

The decrease of the absolute values of the diagonal elements of the R factor from PQR
factorizations is smoother on the propagation operators, as shown on Figure 8, than on the
previous convolution operator. This shape expresses, throughout the aforementioned ap-
proximations, the decrease of the singular values. The observed smoothness implies that the
propagation operators are discrete ill-posed problems, according to customary denomination
[14].

The combined operator (convolution after propagation, Cy - B, the dotted line on Fig-
ure 8) shows an even smoother behaviour than the propagation of the sole Dirac signal (the
plain line). Hence it will be more difficult to extract a satisfying threshold for the truncation.

When the ratio |R;;|/|R11| draws nearer to the machine precision, numerical instabilities
become perceptible, producing the scrambling of the ends of both curves below a relative
value of 10715,

Another way of processing with full matrix code consists of performing a PQR on the R
factor previously obtained without pivoting, by sparse techniques. This R factor, with the
same dimensions as normal equations but retaining a better conditioning, can in turn be
operated as a full matrix. Thus:

=B -E=0Q1-Q> R,. (17)

B = @1-R:1 sparse QR
Ry-Ey = (@2-Rs full PQR

With storage economy in sight, a Q-less form is kept, i.e., solely Ry and the permutation
vector corresponding to Es.

This more precise computation leads to actual zeros on the diagonal of the R factor,
which displays the adequate shape for the basic solution of equation (16). It follows a
dimension of 386 for the kernel of B in problem 1° (41309 null columns wrt. problem 1).

Results displayed on Section 4.7, when only By is factorized by TPQR, are obtained by
this method.
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4.6 Quasi Gram Schmidt TPQR algorithm

Several TPQR algorithms are proposed by Stewart [20], but only one can be adapted to be
performed in an economical Q-less mode, thanks to a downdating technique while performing
a modified Gram-Schmidt orhogonalization. This algorithm is reproduced hereafter, as it
is the most convenient to apply to our problem. Permutations are implicitly performed by
using a permutation vector, which is one of the outputs of the algorithm, together with the
numerical rank and the R factor.

Input: a matrix B of dimensions (n,m), an order of truncation n = 107°.
1: Initialisation: permutation matrix E = [1 : m] ; iteration count k = 1; etc., ...
vi=| B[, j]ll3, s =[1:p] {computation of the column norms}
Extract vp, = max; (v;) and store € = Ny, ;
while v,, > ¢ and k < m do
E(k) 2 E(pr) {column permutation}
v=B[:,E(1:k—1)]TxB[:,E(k)] {beginning of implicit projection}
solve R[1:k—1,1:k—1T«R[1: k- 1,k] = v
{implicitly, R[1: k — 1,k] = Q[:,1: k — 1]TB[:, k]}
solve R[1: k—1,1: k—1]xw=R[1: k— 1,k
90 q=B[,Ek)]—-B[:E1:k-1)]
{implicitly, g = (I — Q[;,1: k — JTQ[:,1: k — 1]) B[;, ]}
{here, re-orthogonalization steps could be added.}
100 RIEK = [lq]s
11: ¢ =gq/R[k,k] {normalization}
122 r[k+1,m]=q¢ B[:,E(k+1:m)]
13 vj=v;—r[j]*, j=[1:p] {update of the column norms}
14:  extract vp,,, = max;s (vj) {search for maximal pivot}
15 k< k+1
16: end while
Output: ¥k =k —1 {numerical rankis m —k}, R[l:k,1:k]and E[1,m].

®

Algorithm 1: Truncated Pivoted QR factorisation: Quasi-Gram-Schmidt version, without
reorthogonalization (TPQR-QGS).

The price to pay arises while downdating with an increasing R factor, which might
become unaffordable. Indeed, the orthogonalization steps are performed with an implicit @
factor, implying each time one forward and one backward substitution with the R factor.
This computational cost might be doubled if reorthogonalization is required (steps to be
inserted between 9. and 10.). However, the fact that the computation is stopped after
reaching a given truncation threshold avoids most needs for re-orthogonalization.

If the updated column norms are saved when the algorithm breaks down, it is then easy
to restart it. Otherwise, these norms can be recomputed by using the following formulae
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(using triangular solvers on matrix right-hand side):

ijR]zj, j=[1:k];
Y = B[;,E[1: k]]T « B[;, B[k + 1 :m]] ;
solve R[1:k—-1,1:k-1]"+Z =Y ;
solve R[l1:k—-1,1:k—-1]xW = Z;
vi = B[, Elj]] = Z; I3, j=[k+1:m].
These instructions can also replace step 13 of the algorithm, when the updates on the column
norm lead to negative values. On our test case, this happens when v;/v; goes below 1071#
hence only rounding errors seem to be involved. Let us however remember that this ratio

corresponds to |R;;/Ry1| ~ 1072, which will be considered in the sequel as an overwhelming
stopping criterion for TPQR.

Above all, it must be stressed that this algorithm is well adapted for inserting a convo-
lution operator:

e step 6 becomes: v = B[, E(1: k= 1)]T % (C] % (Cy * B[:, E(K)])) ;
e step 9 becomes: ¢ = Cf x (B[:, E(k)] — B[:, E(1 : k —1)]) ;
o step 12 becomes: r[k +1,m] = (C} *q)" B[;, E(k +1:m)] .

On our test case, keeping the convolution in this stage rather than computing the combined
matrix By speeds up by 3 the factorization.

This form of TPQR algorithm has been used with success on our problem without any
initial reordering. It provides the most significant results shown in Section 4.7.

4.7 Results with TPQR on different orders of truncation

The data sets are produced by the direct model, d = By -r = Cy - B - r. However, to avoid
any unfounded optimism, some noise must be added to synthetic data, in order to have a
right-hand side that does not belong to the image of the operator, as in reality (remind
the influence of dd in the perturbation analysis). The synthetic data is generated by the
following procedure:

e set ro be a given reflectivity, the same as displayed on Figure 3;
e compute noise-free data: d = B -rg ;

e compute noisy data: d = B -rg + €, each component of € being uniformly distributed
in the range [—7, 7] with 7 = 0.05|| Brg ||2;
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min | Br — Bro ||2
T
ro given
Dirac data

(TPQR in two steps,
Eq. (17), Sec. 4.5)

mTin || Br — (Bro +€) ||2
| €ll2 = 0.05]| Bro |2

Dirac noisy data
(TPQR in two steps,
Eq. (17), Sec. 4.5)

order § :

min || Br — C}(CyBro +¢) ||»
| €ll2 =0.05|| C¢Bro ||2
Ct deconvolved noisy data

(TPQR in two steps,
Eq. (17), Sec. 4.5)

mrin || C¢Br — (C¢Bro + €) ||2
|| € ”2 = 005” CfB’r‘O ”2

Raw noisy data
(TPQR-QGS,
Sec. 4.6)

Figure 9: Sketch of the following fourfold figures.

o for convolved data, equivalently: dy = Cy-B -1y + €, each component of € being
uniformly distributed in the range [—7, 7] with 7 = 0.05|| C;Brg ||2.

TPQR is set with the criterion: |Ry|/|Ri1| > 107%, & being called the order of truncation,
and we have tried to optimize the rendering of the reflectivity (is 7 close enough to r¢?) on
integer values of § only.

On Figure 9, the sketch of the following figures is explained. Results are displayed on a
fourfold frame: for noise free Dirac data (top left), noisy Dirac data (top right), noisy but
ab initio deconvolved data (bottom left), noisy convoluted data (bottom right).

The bottom left frame needs further explanations. Indeed, once the combined operator
is used (Cy - B), one might be tempted to perform the deconvolution ab initio, before the
migration. This frame shows the results of this strategy, with a deconvolution performed
with the TPQR of operator Cy. However, it must be pointed out that, against all odds:

(Cy-Bs)' # B} -Cl.
Indeed, the equality is false in theory, because:

R(Bs) ¢ N(Cy)*".
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TPQR on B: # zeros & quasi-zeros = 386 TPQR on B: # zeros & quasi-zeros = 386

20 20
40 40
60 60
80 fm 80
100 - oS 100 . "
20 40 60 80 20 40 60 80
Dirac data Dirac noisy data
order =11

TPQR on B: # zeros & quasi-zeros = 386 TPQR on Bf: # zeros & quasi-zeros = 387

20}«
40
60
80 e
100 g e E
20 40 60 80
C" deconvolved noisy data Raw noisy data

Figure 10: Solutions with almost no truncation (6 = 11 on B but § = 9 on By, due to a
breakdown of TPQR-QGS on negative column norms).

A sufficient condition would be that:

rank(Bs) = rank(Cy) (18)
and Cyfull rank. (19)

In practice, our operators do not interact that way. B represents a very overdetermined
system, so equality (18) is far from being realized. Moreover, the use of a truncated decon-
volution operator Cl implies that condition (19) is not satisfied. Consequently, the results
displayed in the bottom left-hand corner are expectedly bad, whatever the order of trunca-
tion on B.

In the four cases, the results obtained with a very small truncation (order 11, Figure 10)
are blurred on the fringe. This again proves that the discrete model is ill-posed on the border
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TPQR on B: # zeros & quasi-zeros = 403

TPQR on B: # zeros & quasi-zeros = 403

'-'..
20 i 20
e
40 2 40
.
b -
60 ll-:\. 60
80 "~..\ & 80
£ .
100 R 100
20 40 60 80 20 40 60 80
Dirac data Dirac noisy data

order =5
TPQR on Bf: # zeros & quasi-zeros = 431

TPQR on B: # zeros & quasi-zeros = 403

20F+
40

60

80 .

100

20 40 60 80
Raw noisy data

C" deconvolved noisy data

Figure 11: Optimal truncation (§ = 5) for noise free Dirac data.

of the reflectivity domain: insufficient illumination of the sub-soil by the acquisition device
is the physical counterpart of this remark.

When order 5 is selected (Figure 11), noise-free data is recovered at its best (top left-
hand corner). Lower orders will just add inaccuracy all over the reflectivity field (remember
that matrix B is approximated at a lower rank, and that the dimension of the numerical
kernel, which is quoted at the top of each plot, logically increases when order decreases).

An optimal order of 2 handles noisy data with the narrowest blurred fringe (both right-
hand subplots on Figure 12). There is no hope for the bottom left-hand subplot, where
deconvolution has been performed too soon. The bottom right-hand subplot does not reveal
as much information as the top right-hand one: convolution has expectedly removed part of
information. Choosing § = 2 implies that the TPQR-QGS algorithm could have been stopped
quite early, once 82% of the columns of the matrix have been factorized. As columns are
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TPQR on B: # zeros & quasi-zeros = 683 TPQR on B: # zeros & quasi-zeros = 683

20 v 20 =
40 2 40 1 4

60 r 60 15 |'!§,-

— i
80 \"-.,.\ i) 80 ‘..'-.\ o
o e R R R R
) .L'\. -

ot s PR Tk
100 . . : . 100 Bl A e i .
20 40 60 80 20 40 60 80
Dirac data Dirac noisy data
order =2
TPQR on B: # zeros & quasi-zeros = 683 TPQR on Bf: # zeros & quasi-zeros = 1463
20 pa=F 20 -
40 40F - e
60 60 5 L
80 i 80 "\_{5 BT
iy -'-_--\. --\::-ﬂ- - _-\. E
100 100 .
20 40 60 80
C* deconvolved noisy data Raw noisy data

Figure 12: Optimal truncation (§ = 2) for noisy data (subplots on the right). No progress
for a priori deconvolved data (bottom left-hand subplot).

increasingly expensive to handle, in our case, this threshold could allow to stop at 65% of
the total CPU time.

The optimal order of truncation, found to be 102 in our test case, is related to the
5% noise added to the data. Indeed, other experiments with a noise level of 1% lead to a
slightly higher optimal truncation order (10=2-%). Hence, with real data, the relative noise
level must be estimated in order to set up a truncation threshold with the same order of
magnitude.
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TPQR, order of truncation 1072 QR on Tikhonov regularization (o = 10'4, L= Lx)
0 e —— . _ _ _ __ _ _______ I e
20r S 4 20f
m—— —
401 - ‘i s G 1 a0f
1
60~ =r-F 60 ———
= | —
- - - —
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Figure 13: reflectivity obtained on noisy data (5% noise) with By.

left: by TPQR with truncation at 10~2.

right: by sparse QR only, but on a problem regularized by Tikhonov. The regularizing term
is 10~4.£,, the Laplacian operator in z which favours horizontal reflectors.

4.8 Sparse QR solution on a Tikhonov regularization

The previous results show the ability to handle migration with a truncated direct method,
even when a convolution operator is inserted. However, this factorization is costly, namely
because of the column pivoting. Alternatively, we could think of using the Tikhonov regu-
larization [14] that will form a full-rank approximate operator. Then, straightforward QR
factorization without pivoting becomes possible, allowing the use of the most efficient sparse
techniques.

In this case, the objective function is changed by using a regularizing matrix L, L € RP-™
and a positive factor a.

min J(r) = ||B-r—d||§,

is replaced by: min J(r) = ||B-r —d||3+?||L-r|3. (20)

Definition (20) can easily be reshaped by setting up the following augmented least squares
problem:

min 7 (r) = || B-r - d|f3,

e 9= (°9) 12 wai= (§) }

m

RR n~° 3876



34 Y.-H. De Roeck

Depending whether the rank of L is equal or inferior to the dimension of the reflectivity
space (m, size of r), a norm or a semi-norm is added to the initial cost function.

Choosing L as the identity matrix of R™ tends to minimize the norm of the solution.
However, a very wide choice of regularizing functions is proposed in the literature. In
our case, since most seismic profiles are recorded on horizontally stratified medium, the
Laplace operator restricted to the horizontal direction (the partial second derivative in x)
was selected. The simpler first derivative operator was also tested, but has proven less
efficiency.

The horizontal Laplace operator is discretized by a 3-point template, that connects ver-
tices of each horizontal line of the reflectivity grid,

2 -1 0 --- 0
-1 2 -1
Ez = 0 .. ) ®Inz . (21)
~~
(N2 nzyng-n.) matrix
0

(na ,nm‘)rmatrix
When L is the identity matrix, the benefit of such a regularization lies in the fact that the
smallest singular values of matrix B are shifted. Indeed (same notations as equation (10)):

Vi€ R, 0;(B) = /(0:(B))? + 2.

For L different from identity, the generalized singular value decomposition [13] becomes the
relevant tool for the analysis, but the damping effect can also be evaluated.

Thus, the crux of this method lies in the choice of the adequate «, which can be related
to the selection of the truncation order. Since the smallest singular values are now bounded

downwards by «, and considering @ < o1(B), then o1(B) = 01(B). Therefore, to be
consistent with the previous truncation threshold, we can select:

o 10_‘501 .

Then all the smallest singular values will be set to a.

From Figure 8, 1 (B) can be estimated at 10~2 (square root of the first diagonal element
of the R factor in the PQR factorisation of the normal equation of By). oy is also the 2-norm
of By, for which many estimates are available (the maximum 2-norm of the columns of By,
among others). Anyhow, this estimated value leads in our case to @ = 10~%. Figure 13
displays the results in comparison with TPQR. The blurred area on the fringe of the domain
is then covered by a coherent noise, due to the preferential horizontal direction, but on the
other areas of the domain, the two images are very similar.

Complementary experiments are not displayed herein. With a smaller «, the results can
also be compared to those obtained by TPQR with a lower truncation threshold: they induce
a larger propagated data error, whereas a too large a blurs and wipes the image.
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Although the present work goes beyond the search for a proper sparse linear least squares
algorithm, a form of Tikhonov regularization has already been proposed for the migration
operator in a fundamental paper on waveform inversion, [23]. There, the cost function is
designed in a statistical framework involving two types of covariance matrices:

)= BT O (Bor - d) + T with:

Ca (d(Ri, Sj, t)|d(Rir, Sy twr)) = Uzzjk‘;ii’ 8 Ok
1[((z—2a) (2—2)°
C, (r(z, 2)|r(z’, 2')) = o2 exp (—5 ( % + o _

Cy is a covariance matrix defined by the estimated errors on the data, considering the
noise as uncorrelated. In the cost function, this diagonal matrix introduces a weight in the
norm, with the possibility of setting up local confidence in the data for receiver R;, at shot
S; and time sample t.

C, describes some a priori knowledge on the statistical distribution of r, e.g. the
anisotropy of the continuous reflectors. If L, is set to Az and L, to a very small fraction of
A, then C;71, although having a dense structure, is very close to £, the aforementioned
horizontal Laplacian operator.

4.9 Lessons from the use of direct methods and application to the
global inverse problem

From this study on direct factorization methods, it can be pointed out that an efficient
sparse pivoted QR algorithm would be very handy, for solving the migration problem with
a problem size at hand from nowadays computer power. While performing truncation out
of the resulting factor, a satisfying answer can be given, even in cases propagation and
convolution are combined.

The deconvolution issue has also been addressed carefully: the least squares solution
of the combined operator cannot be properly found if deconvolution is performed ab ini-
tio. This implies a very expensive management of the fill-in for all direct methods, with
respect whether storage or redundant computations. However, TPQR-QGS offers the most
appropriate procedure among truncation methods.

As far as the global inverse problem in seismics is concerned, the aforementioned reduced
least squares formulation (Equation (8), Section 2.2) can be managed by local optimization
methods as long as it remains possible to compute the gradient of the objective function
with respect to the background velocity. This involves the derivative of the pseudo inverse
wrt. ¢, that truncation methods cannot offer. Alternatively, the Tikhonov regularization,
with fixed damping operator and parameter, leads to the computation of a proper Moore-
Penrose pseudo-inverse. In this case, the matrix has full rank and the straightforward
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application of the normal equation induces a simple form for the derivative of the pseudo-
inverse :

B(e)' = (B(9)"B(¢)) " B()",

dB? dB —1dB”*
= —_ptZ—=pgt BTB -
= de de +( )

The last term involves Py pry = I — BB, the orthogonal projection on the kernel of
BT. Since B is rectangular and vertical, although full rank, this projection is not the null
operator.

From the computational point of view, equation (22) is not more awkward than dealing
with the derivation of an inverse, because only two expensive steps arise: namely that the
product with the pseudo inverse matrix has to be computed with two different vectors. In
our framework, where the pseudo-inverse is defined by a Q-less QR factorization, we obtain
the following algorithm (see below). Given a data set d and an increment vector of the
background velocity dc, the gradient of the cost function can be applied by: (the frames
highlight the most expensive computational steps),
< VI(e),dc==< (B-BT -I)d, (((ZB

C

» (I - BB") . (22)

:
5c)-BT+B-(?-6c)>d>
C

(B™B)™' = R'.RT
Bt = R'.R"T.B"

= Bld =R RT|BTd

= (B-B'—-I)d = B-r—d

dB
= (%"SC)T
dBt R T dB T
then: g = (E‘(SC)‘d: =BT f = (00 e

=< VI(c),d0c>=<e, f+B-g> .

due to Q-less formulation: {

o 3

hence, compute first:

This perspective advocates the use of the Tikhonov regularization, together with the
availability of very efficient sparse QR solvers without pivoting. However, specific imple-
mentation is still needed to incorporate a convolution on the fly.

5 Practical solutions by iterative solvers

The size of the linear least squares problem generated by the pre-stack depth migration
obviously favours the use of iterative solvers. These algorithms have already been quoted
and implemented in several research works, [23], [21], [22], [17]. In most cases, a maximum
number of iterations constitutes the stopping criterion rather than any threshold on the
convergence: the considered maximum usually remains very low (~ 10).
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The extreme case consists in performing only one iteration of a well-preconditioned gra-
dient: this procedure has been shown to be equivalent to a weighted form of the Kirchhoff
migration, the algorithm of choice among those implemented in commercial geophysical
software [23], [24].

In this work, however, the aim consists in exhibiting an accurate solution, accepting the
price of the required number of iterations in order to achieve a good convergence. Thanks
to the experience gained in the previous section about this discrete ill-posed problem, the
study described thereafter is really focused on the iterative process. Indeed:

e deconvolution is never performed ab initio: this strategy adopted in stability issues
has a low cost, since the convolution operator can be inserted on the fly in iterative
solvers of the conjugate gradient type, despite the need for a specific implementation,
(further notation B will stand for By = Cy - B).

e 3 regularizing procedure is compulsory with noisy data: we can either apply the
Thikonov regularization as is, or utilize the counterpart of the truncation for direct
methods, i.e. the limitation of the number of iterations. Some recent works will be
quoted, as they propose heuristic error estimates to determine the optimal iteration
count.

This section is devoted to the comparison of several Conjugate Gradients like algorithms
regarding various concerns: convergence rates, error estimates, regularization, precondition-
ers, adequation of the procedure to fit into the global non-linear inverse problem.

5.1 Conjugate gradient algorithms for least squares

The following algorithms have in common that they only involve two matrix-vector products
per iteration, one with B, another with BT. The time spent on these two operations accounts
for most of the computational cost of an iteration: we recall below the total number of BLAS
1 operations (scalar products and vector linear combinations) together with the length of
the vectors involved. The storage issue of intermediate vectors is even more questionable
and will thus be highlighted.

Note that in the sequel, our customary unknown, namely the reflectivity r, will be
named z, in order to preserve the usual denomination for the residual of iterative methods.

Moreover, let us recall the minimization properties of the initial conjugate gradient al-
gorithm acting on a symmetric positive definite matrix A.

let Z be the solution of: AZ = b,

CG minimizes the A-norm of the error, i.e., the quantity:

ek = (2 — )" Alwg — #) (23)
and equivalently the A~!-norm of the residual:

pr = (b— Azx)TA (b — Azy) .
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For the least squares problem, there are two main formulations which, in euclidian norm,
minimize either the residual or the true error. In all cases, the normalized quantity

_ [ Bzx —dlls

—Ll-7r 04 24
[ Bzo—dll;° 24)

Kk

is not going to vanish to zero, since the data d do not generally belong to the range of
B. However, the following normalized quantity, issued from the normal equations, can
potentially converge to zero:

o~ IBT(Ba=a)],
|| BY(Bzo —d) ||2

(25)

Readers familiar with high performing numerical solvers may be disappointed by the results
displayed with normalized ratio (25) in Figure 14. Namely, the computations performed in
double precision arithmetic are deemed to be satisfactory for a convergence reaching 10~5
in relative value at the most. The need for regularization will justify this low demand.

Only the most convincing algorithms will be displayed below, with the appropriate ref-
erences. Some specific steps have been inserted, among which the computation of heuristic
error estimates that will be discussed later on. The stopping criterion is based in any case
on a maximum number of iterations and a targeted convergence of the ratio (25).

e CGLS: the Conjugate Gradient Least Squares method, [2], corresponds to applying the
regular conjugate gradient to normal equations, therefore also called CGNE in [12]:

solve: BT -Bz = B7d.

This method minimizes the residual error on the Krylov subspaces built with BT B,
since, from (23):

er = (z — 2)TBTB(zy, — ) ,
= (Bzy, —d)"(Bxy —d) = || Bxr —d||2 .
Therefore, CGLS is also called CGNR for Conjugate Gradient Normal Residual.

Remembering that m >> n, in addition to the multiplications by B and B, there are
respectively 2 and 3 BLAS1 operations per iteration on vectors of length n and m,
and 2 and 3 intermediate vectors of respective length are to be used.

LSQR is another algorithm known to be more robust than CGLS, which follows in
perfect arithmetic the same convergence path. LSQR, [15], is a Lanczos version of
CGLS, which is based on a bidiagonalization of matrix B. No noticeable improvement
occurs when tested in this case.

¢ ORTHODIR-CR: as it is called in [5] or MR-Il as it is referred in [12] is an algorithm be-
longing to the family of minimum residual algorithms together with CGLS. ORTHODIR-
CR is characterized by a two term recurrence, that allows to handle symmetric indefi-
nite matrices.

INRIA



Sparse linear algebra and geophysical migration 39

Input: a matrix B of dimensions (m,n), a relative stopping criterion &, a maximum number

e e e e e

18:

of iterations kpyax, a right-hand side d, an initial guess xg.
ro = d — Bz {initial residual}
po = BTrqy {first descent direction}

vo = || po|l2; € = Evy {normalised stopping criterion}
go = Bpg {first residual direction}

— 2/,2 :
ao = qo ||53/v§ {step size}

mo = 0; m = o {|II},(0)] for error estimate}
while vy > ¢ and 0 < k < kpax do

ZTp+1 = T + axpr {solution update}

Tr4+1 = Tk — agqy {residual update}

tr+1 = BTriy1 {projected residual update}
Vg1 = || tet1 ||2 {projected residual}

€k+1 = \/Tht1 Vit1 {error estimate}

Brtr = VI%—H/”I%

Prt1 = tgpy1 + Brs1pr {descent direction}
gr+1 = Bpgs1 {residual direction}

kg1 = || grar I3/vi 41 {step size}

Ttz = Mgt + g (1= Begr/aw) (T — mi41) {|TT},(0)] update}
ke—k+1

19: end while
Output: k, zx, v and &.

Algorithm 2: CGLS (CGNE, CGNR) algorithm for least squares problem.

Algorithm 3 straightforwardly replaces the symmetric matrix by the normal equation
matrices, although it could have been rewritten while keeping the usual residual r =
Bzx —d. However, as for CGLS, the stopping criterion is based upon the residual of the
normal equations (25), and not on the true residual (24). Hence, both matrix-vector
products are performed at step 16 on the same variable.

In the original algorithm, the first descent direction (step 4) can either be p = BT Br
or p = r9. In [5], the second alternative is preferred from numerical experiments,
with the restriction that this first vector should preferably belong to the range of the
iteration matrix. Step 1 indicates here that ro belongs to the range of BY. Since
the assertion R(BT) = R(BTB) always holds, the choice p = 7y complies with the
aforementioned advice. Our numerical experiments have confirmed the relevance of
this strategy. There are respectively 5 and 1 intermediate vectors of respective length
n and m to be used. All 9 BLAS1 operations per iteration are performed on vectors
of length n. Somehow, the same economy can be made if CGLS is written as a blank
CG on the normal equations.
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Input: a matrix B of dimensions (m,n), a relative stopping criterion &, a maximum number

T B R e R S i
[P T I AR~ el

22:

of iterations kpyax, a right-hand side d, an initial guess xg.
ro = BT (d — Bzp) {initial residual}

Vo = || ro ||2 {normalised stopping criterion}

€ = €y {normalised stopping criterion}

p—1 = 0; po = r¢ {first descent directions}

g-1 =0; g0 = BT Bp, {first residual directions}

Mo = |l o |2

mo =wo = 0; w1 = 1./ne {II}(0) for error estimate}
while v, > ¢ and 0 < k < kpax do

ar = (reT - qr) /mi? {step size}

ZTp+1 = Tk + agpr {solution update}

Th41 = I — agqr {residual update}

Vg1 = || Tk+1 ||2 {residual norm}

Thy1 = Tk — 20mpwy {11} (0) for error estimate}

Xk+1 = |Tr1| vryr {error estimate}

Ok = N /Mk—1

tk = BTqu

i = (ar"tr) />

Pe+1 = (1./nk) @k — (Vi/Mk) P — okPr—1 {descent and residual directions}
@r+1 = (1./mk) tk — (ve/mk) ar — okar—1 {2 step recurrence update}
Me+1 = || qr+1 [|2

We+1 = wk+1/7)k+1 ; k42 = —VEeWk4+1 — Nk+1Wk {for error estimate}
ke—k+1

23: end while
Output: k, zx, v and xg.

Algorithm 3: ORTHODIR-CR algorithm for least squares problem.

e CGME: in a dual approach to CGLS, the conjugate gradient with minimum error ex-

presses the following two step algorithm:
{ solve by CG: BBTw =d,
then, set: z = BTw .

BB" is a positive semi-definite matrix, with a huge kernel in our case. It can however
be very attractive if the data belongs to the range of B, because it minimizes the true
euclidian error (hence the denomination):

if: B = dand # = B, then CGME minimizes:
Jw—|ppr = (w—@)"BB (w—1b) = [|[z—-2]2.

The actual algorithm is not reproduced herein, since somewhat expectedly the results
for our problem are not encouraging, due to the fact that the data does not belong
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to the range of the operator. However, the relation between CGME and the next
algorithm justifies this short presentation.

The number of BLLAS1 operations and of vector storages is reciprocal to the number
in CGLS, with respect to the vector lengths m and n, which is bad news since m > n.

¢ ORTHODIR-CR+MBTT: aimed at providing a framework for the solution of the global
inverse problem, the Migration Based Travel formulation of the cost function has been
explained in section 2.2, and equation (7) leads to:

{ﬁnd: min,, | BK'BTw —d |2,
then, set: 2 = BTw ,

where K is a positive diagonal matrix approximating BTB. A conjugate gradient
algorithm with iteration matrix A = BK—!BT then becomes a preconditioned version
of CGME. The knowledge that BT B cannot be full rank has already led us to use the
ORTHODIR-CR algorithm on this symmetric indefinite operator in previous work.

A diagonal matrix K of the following kind has been selected:
K = diag(B*B) + al,, ,

which can be inverted for any positive a.

| BK=1BTs —d||5 is the residual displayed for ORTHODIR-CR+MBTT in Figure 14.
Its definition therefore differs somewhat from the other ones.

All the BLAS]1 operations and storage are concerned with vectors of length m. In
section 5.5, it will be shown that the computation of time reflectivity w (which moti-
vated the use of this algorithm) can be obtained by a slight modification of CGLS or
ORTHODIR-CR.

Figure 14 offers two complementary ways of considering the results. On the left-hand
side, the evolution of the normalized residual is plotted in logarithmic scale, while the true
error on the resulting reflectivity is displayed on the right-hand side.

In practice, only the residual should be at our disposal. ORTHODIR-CR shows then the
most convincing behaviour: the residual decreases on a very regular curve, and reaches the
lowest values. CGLS also performs relatively well: although the path is slightly irregular,
with spikes of constant intensity in logarithmic scale, there seems to be no difficulty in
deciding a confident stopping criterion for this algorithm. On the contrary, the residuals of
CGME and ORTHODIR-CR+MBTT are stalled after 50 iterations.

Since the true error is at hand for these numerical experiments, the previous conclusions
are somehow overturned. First, all error curves are U-shaped and very regular. Thus, an
optimal iteration count exists for each of these algorithms, reached at circa 200 iterations
for a problem size of some 8000 unknowns: the coordinates of these optimal points are
indicated on the plot (iteration number, distance to the true solution). In fact, too many

RR n~° 3876



42 Y.-H. De Roeck
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Figure 14: Comparison of conjugate gradient algorithms for the migration problem. The
direct operator includes the convolution and the data has a 5% noise. Tested algorithms:
CGLS(LSQR), ORTHO-CR, CGME and ORTHO-CR+MBTT.

left: Convergence of relative residual in logarithmic scale.

right: Convergence of relative true error in linear scale.

iterations bring back the perturbations that have been observed with the direct methods
without regularization.

With respect to this relative true error, admitting that there is an adequate stopping cri-
terion which retains the optimal iteration count, then CGLS and ORTHODIR-CR achieve the
best performances. CGLS could be preferred for a faster convergence, whereas ORTHODIR-
CR cannot benefit from a slightly better vicinity to the true solution. Behind, CGME gets
closer than ORTHODIR-CR+MBTT, but the main observation is that in both cases, the
minimal error is attained long after the residual is stalled.

5.2 Regularisation by limited convergence

As for the truncation threshold or for the parameter in the Tikhonov damping factor, the
noise level in the data (or the distance between the data and the range of the direct operator)
determines the optimal number of iterations, [12]. With CGLS and 5% noise in the data,
Figure 15 compares the reflectivity fields obtained after 1000 and 250 iterations, the latter
value deriving from an error estimate. The regularizing effect of an early stop is obvious.
The optimal iteration count with respect to the true error would have been 234 in this case,
but the difference could not be noticed on this image (less than 0.5% difference over the true
error!).

In [12], an error estimate is proposed, which is based on the so-called residual polynomials
{II;} that express the linear relation between the initial residual and the residual of the k*"
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Figure 15: Resulting reflectivity after too many iterations (left), or stopped according to an
error estimate (right).
iteration of a Krylov method :

b— A.Z'k = Hk(A)(b — A.Z'o) .

Each of these polynomials has the corresponding degree k. Moreover, if for the Krylov
method, one defines the iterates by:

Tp41 = T + Qgpr {pr} € R", {ax} €R,
DPr1 =b— Az + Brr1Pk {Br} €R,

then the residual polynomials follow a two term recurrence:

Hk+1 (X) = Hk(X) — OAkX . Hk(X) — Qg afil (Hk—l(X) — Hk(X)) . (26)

On the basis of the optimal properties of these polynomials, heuristic error estimates are
derived:

e for CGLS: & = /|1, (0)] || BY(Bzy — d) ||2. In [12], the original estimate takes the
actual residual || Bzy — d ||2, but this value is much too rapidly bounded to a limit
downwards while /|II, (0)| is a growing factor. The product of both expressions gives
a steadily increasing value. Thus we thought of substituting the projected residual.

e for ORTHODIR-CR: xx = |II}(0)| || BY(Bz), — d) ||2 . The previous estimate &, cannot
be defined for this algorithm, since it can be shown that |II}, (0)| = 0 for all k, therefore
the higher order of derivation.
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Figure 16: Performance of error estimates with varying noise levels.
left: on CGLS, right: on ORTHODIR-CR.
top: residual, centre: true error, bottom: error estimate.

These expressions can be evaluated at each step at a low computational cost, from scalar
recurrence formulae calculated from (26). Steps 6, 12 and 17 of Algorithm 2, steps 7, 13, 14
and 21 of Algorithm 3 are devoted to these estimates: although these lines complicate the
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reading, it was thought that it was worth displaying full practical algorithms for once. To
clarify the notations, all vectors are Latin letters while scalars are Greek ones.

According to [12], in both cases the heuristic stopping rule should be to stop whenever
these estimates (which should rather be called indicators) reach a global minimum. How-
ever, in practice, we have observed that the relevant information has to be based upon the
following:

o for &: plot this value in linear scale then identify the end of the decreasing slope
before the value is stalled,

e on xj: plot this value in log scale then identify the centre of the trough.

However, a significant validation is obtained by varying the noise level as reported on
Figure 16, in a comparison between CGLS (left column) and ORTHODIR-CR (right column).

e on the top sketches, the normalized projected residuals are plotted. No stopping
criterion can be extracted from the analysis of this parameter, and the smoother and
faster convergence of ORTHODIR-CR does not guarantee a smaller error than for CGLS;

e the central sketches display the true errors, which are available only in the framework
of such a validation process: as mentioned above, the larger the noise level, the earlier
one should stop, but for 1% noise, the optimum is not reached after 600 iterations of
any of the two algorithms, which somehow always behave similarly with respect to the
true error.

e the bottom line shows the behavior of the error estimates. For CGLS (bottom left
sketch), this information seems relevant. Indeed, the tips of the label arrows target the
area where these spiky curves begin to level off: although not very acute, this criterion
follows the trend of the true error with respect to the noise level. For ORTHODIR-CR
however, the behaviour of the estimate is not easy to analyze: the three curves are
plotted separately since they cross each other several times; moreover, the dependency
seems to be the reverse of what was expected.

Thus, despite a faster residual convergence for ORTHODIR-CR than for CGLS, the latter
algorithm shows a slightly better behaviour with respect to the true error but above all, CGLS
disposes of a more efficient heuristic error estimate for stopping at a convenient regularization
level.

Moreover, our problem might not require the design of a more reliable and more precise
criterion for the optimal iteration count. Since between 150 and 300 iterations, the curve of
the true error is very flat, any criterion designating a stop in this range is acceptable.

5.3 Additional Tikhonov regularization

Albeit, as just quoted, the regularization by limited convergence of iterative methods always
occurs, a Tikhonov regularizing term can be added to the initial least squares function,
especially when some knowledge about the solution distribution exists.
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Using the same function as in Section 4.8 (namely, the Laplacian in z), the results with
a range of coefficients are displayed on Figure 17. This additional regularizing tool does not
enhance the performance of the optimal solution as much as expected. With respect to the
true error (left-hand sketch, Fig. 17), a slightly better result is obtained when a = 10~ at
the price of a longer convergence path. This coefficient is identical to the one chosen with
direct methods.

Furthermore, even though the error estimate (right-hand sketch, Fig. 17) still performs
well in indicating where to stop or not, the various curves cannot be interpreted in order to
decide which parameter has to be chosen in front of the Tikhonov term.

1 T T 1

0.9

a=10"°
anda =0

0.8
0.8f

0.4f

0.2 - L " "
0 200 400 600 0 200 400 600

relative true error vs iteration error estimate vs iteration

Figure 17: Parametric study of damping factors for Tikhonov regularization, with a noise
level of 5%, and computation by CGLS.

left: evolution of the relative true error versus iteration,

right: behavior of the error estimate.

On the so-called L-curves, extensively described in [14], the identification of the optimal
Tikhonov parameter can be performed thanks to a plot over the following coordinates:

(logyo (Il Bzgpe — dll2) , 1ogo(ll Lo 2oy ll2)) - (27)

An L shaped parametric curve should link the values obtained for an increasing a, where
the main elbow in the lower left corner locates the optimal value. This solution embodies
a trade-off between smooth characteristics with respect to £, and a low residual with the
initial operator.

In the part of this study devoted to direct solvers, the CPU cost of one factorization
was already so expensive that the exploration over a full set of Tikhonov parameters was
out of reach. While it becomes feasible with iterative solvers, another difficulty arises: how
many iterations are necessary in order to build a consistent solution? Figure 18 shows the
results obtained after 250 iterations, for this number belongs to the range of convergence
designated in the previous section.
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Figure 18: Search for the optimal Tikhonov parameter with CGLS on data with 5% noise:
min, J(r) = || B-r —d |3 +a?| L-r |3

left: L-curve drawn with coordinates (?7?), an elbow can be identified;

right: true error versus the Tikhonov parameter, the minimum of which corresponds to the
elbow.

The parametric curve on the left of Figure 18 shows a vague L-shape. Still, the interval
[10~%25 10~*] can be selected for the optimal value of o, because it belongs to the elbow of
the curve at the closest distance to the lower left corner. The fact that the residual is not a
strictly growing function of « is due to the fixed number of iterations for solving problems of
varying convergence rates: this is one of the difficulties in drawing an L-curve with results
based on iterative methods.

The display of the true error (right sketch, Fig. 18), indicates that o = 107*2% is the
optimal value, but once again, this information is available for validation purpose only.

In any case, it can be considered that the Tikhonov regularization on top of an iterative
method does not contribute much to the solution of our problem. However, if its use is
justified by some a priori knowledge of statistical properties of the solution, a heuristic
based on a L-curve drawing is feasible.

5.4 Remarks about preconditioning

For all these iterative algorithms, let us recall that a matrix-free implementation can replace
the use of the sparse storage which has been chosen for this study, problem size permit-
ting. Nevertheless, the use of a proper matrix allows the construction of many types of
preconditioners.

Our experience on that matter has revealed that none of the common preconditioning
techniques can convincingly improve the convergence. Diagonal preconditioners, incomplete
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Cholesky factor of the normal equations, incomplete R factor in the QR factorization have
been tested in vain. Because of the huge problem size, the strategy for incompletion was
based on geometry: that is to say, the coefficients are preserved whenever their indices
correspond to neighbouring vertices on the reflectivity grid. The alternative consisting in
evaluating the highest coefficients in the normal equation matrix has also failed.

Indeed, when looking at the convergence path on the relative residuals, the first iterations
do not waste any time. Therefore, preconditioners which are mostly efficient to help in that
matter do not perform well on our problem. However, if the operator does not include the
convolution, then the preconditioners based on incomplete factors show some efficiency, but
it has already been shown that the approach with initial deconvolution is not relevant.

Finally, one can also wonder whether the usage of preconditioners is not antinomic with
the regularization by a limitation of the convergence. Indeed, with an efficient preconditioner
on a symmetric matrix, the components of the solution on the smallest eigenvectors are
displayed earlier in the convergence path, while they generate the unwanted instabilities.

5.5 Lessons from the use of iterative solvers and application to the
global inverse problem

Tterative solvers remain the economical way for solving our very large linear least squares
problem, all the faster as the iterations have to be stopped before the residual actually
converges, because of regularization. The difficulty rests in designing a proper stopping
criterion.

Several algorithms have been tested, together with a heuristic error estimate. By slightly
modifying an estimate already proposed in the literature, we have found that CGLS is the
easiest algorithm to tune, closely followed by ORTHODIR-CR.

Owing to this powerful inherent regularization property, on the one hand, the alternative
by the Tikhonov regularization has a moderate interest, on the other hand, acceleration by
preconditioning has not proven any efficiency and might even not be desirable.

With respect to the global inverse problem, a reduced least square approach subject to
Equation (8), Section 2.2 can only be considered by means of the construction of an adjoint
state if iterative methods are employed, as proposed in [22]. The number of iterations
quoted in the previous sections and the vector length of the reflectivity forbid the use
of such a technique. Conversely, the MBTT formulation, briefly described in section 2.2
was introduced in order to enlarge the domain of attraction of the global minimum of
the complete inverse problem. This is performed by a change of variable, namely setting
2 = BTw and keeping the vector w of much larger size (n >> m) as the new linear unknown.

It has already been shown that ORTHODIR-CR on the MBTT matrix BKBT did not
converge well (see Fig. 14). Figure 19 is even more convincing, by showing the blurred
optimal reflectivity obtained by ORTHODIR-CR + MBTT compared to the focused one
deriving from the simple least squares and ORTHODIR-CR.
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o ORTHO-CR + MBTT on raw data. optimal result. 0 ORTHO-CR with Bf on raw data, optimal result.
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Figure 19: Optimal result with the MBTT formulation (left), and with the simple least
squares formulation (right).

However, by means of two additional variables, it is possible to modify the CGLS algo-
rithm in order to preserve the MBTT formulation. Indeed, on Algorithm 2, the following
modifications should be applied or inserted:

e an initial guess wo of the time reflectivity w can be provided (d is a good choice)
instead of a space reflectivity zo ;

e step 0’ sets zg = BTwy ;

e step 1’ sets vg =19 ;

e step 9’ sets wry1 = wg + agvr {MBTT solution update};
e step 14’ sets vgpt1 = re+1 + BrVk ;

Two additional vectors of length n have to be stored and updated by linear combination
at each step. The final value of w can in turn be used as fixed for the alternate step of
the MBTT algorithm, namely the non-linear optimization with respect to the background
velocity. Consequently, a convenient answer can be proposed to the global inverse problem
with an iterative solver for the linear least square.

6 Conclusion
In the framework of waveform inversion, it has been recalled that the migration of reflection

seismic data can be set up as the solution of a linear least squares problem. An insight
into the associated operator reveals a discrete ill-posed problem of a very large size, with a
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noteworthy sparsity of the matrix. Thereafter, not only matrix-free procedures are practical,
but also the whole toolbox of linear algebra for least squares.

With particular reference to the compulsory incorporation of the convolution operator,
direct and iterative methods have been adapted in order to extract more than a customary
approximate solution. The need for regularization becomes then a key issue for the adequacy
of the result provided. Efficient and tunable algorithms have then been selected in both
families of numerical solvers, namely TPQR as a direct method and CGLS as an iterative
one.

However, the choice of these two most appropriate algorithms can be reconsidered if
the migration is embedded in a global inversion, for instance when the background velocity
has to be identified as well as the reflectivity. Indeed, whenever local optimization meth-
ods are chosen as non-linear solvers, either the differentiation of the solution of the linear
least squares must remain feasible, or the MBTT formulation can be employed. These con-
siderations have designated any efficient QR sparse factorization on a damped Tikhonov
regularized problem as a direct solver and, as regards iterative methods, a version of CGLS
that preserves a dual variable in the data space.

These extensive numerical experiments have been made feasible on a subset of the actual
problem, which is however significant in size as far as common studies on least squares
solvers are concerned. A balanced validation with a CPU efficient implementation on real
data is the natural follow-up to this study, leaving the challenge open between direct and
iterative techniques.
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