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La dérivée topologique dans le cas d’ouvertures de forme arbitraire.

Abstract: Jusqu’a maintenant, la littérature existante concernant la dérivée topologique de fonction-
nelles de forme s’intéressait aux perturbations de domaines dues a I'introduction d’ouvertures circulaires
ou sphériques. On généralise, dans ce rapport, la notion de dérivée topologique au cas d’ouvertures
de forme arbitraire. On s’intéresse aux fonctionnelles d’énergie relatives au probléme de Neumann et
d’élasticité 2D.

Key-words: optimisation de forme, la dérivée par rapport au domaine, la dérivée topologique, la
matrice de masse, probléme de Neumann.
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1. Introduction

One of the most challenging problems of optimization of solids and structures are the shape opti-
mization problems which in the two-dimensional case are formulated as follows. Let a body be loaded
on the boundary of a certain domain © C R? that should be filled up with a given material. Assume
that the amount of the material is fixed, which means that the area of the domain Q \ K occupied
by the material is given: |2\ K| = A, A being given. The domain K is said to be empty. Let us
focus our attention on minimization of a certain shape functional J : Q \ K — IR, under the condition
|2\ K| = A.

In the case of J being the functional of compliance and within the framework of linear elasticity, the
problem is ill-posed. To make it correctly posed one should let the domains K and 2\ K be perfectly
mixed, which gives rise to appearing perforated micro-structures, cf. Allaire and Kohn (1993), Allaire
et al. (1997). One can proceed further in two ways.

One strategy is to accept the perforated microstructures. The other is to seek suboptimal solutions
by: (i) imposing isoperimetric constraints, as suggested by Ambrosio and Buttazzo (1993); (ii) admitting
openings in those subdomains where removing material does not cause essential changes of the merit
function, cf. Eschenauer et al. (1994).

The perforated microstructures are not uniquely determined. The microstructures which assure
correct relaxation for all regimes of strain invariants have a hierarchic property; they constitute n-rank
laminates (n = 1,2,3), the anisotropic materials of more mathematical than physical nature and rather
impossible to be manufactured. The only known optimal and non-hierarchic microstructures are those
discovered by Vigdergauz (1994). These are, however, optimal only in some regimes of strain values.
The aforementioned reasons prompts one to looking for suboptimal solutions by penalizing the domains
occupied by the perforated microstructures, see Allaire et al. (1997) and Bendsge (1995). The results
should coincide with those found by the "bubble" method of Eschenauer et al. (1994).

In the present report we put forward a new technique of finding a topological derivative of energy
functional in the plane problems: of Neumann and of linear elasticity. A proof is given that the topo-
logical derivative is a quadratic form of the gradient of the solution of the original problem (without
opening) measured at the point of nucleation of a small opening of arbitrary shape. This quadra-
tic form represents the so-called characteristic function of the "bubble" method. The minima of this
characteristic function show the places, where the material can be removed.

The notion of the topological derivative has been put forward in the papers by Sokotowski and
Zochowski (1997, 1999) under the condition of the openings being balls in R™. The methods of com-
pound asymptotics developed in Maz’ya and Nazarov (1987) and Maz’ya et al. (1991) make it possible
to generalize the notion of the topological derivative to the case of nucleation of openings of arbitrary
shape.

We show in the present report that the topological derivative of the energy functional of the
Neumann’s problem is a positive definite quadratic form (with matrix G = (G*?)) in the case of
nucleation of star-shaped openings. To this end we apply the sensitivity analysis methods of Sokotowski
and Zolesio (1992). A stronger result has been reported by Maz’ya and Nazarov (1997) who proved
that the energy increment due to appearing of an opening is a positive definite quadratic form, of the
domain being star-shaped or not. The proof is based on the mass matrix m of Polya-Szego (see Schiffer
and Szegd (1949)) being negative definite. In the present report we prove that the matrices m and G
are identical if the opening is an ellipse in IRZ.

A generalization of the notion of the mass matrix to the isotropic elasticity is due to Maz'ya et
al. (1991). In the present report we generalize the mass matrix concept to the anisotropic elasticity.
Moreover, we show that the generalized mass matrix M = (M aBrv ) of isotropic elasticity coincides
with the matrix G' = (G**) (that occurs in the expression for the topological derivative of energy of
the elastic medium) in the case when the opening is circular. Further generalization of this result to
the three-dimensional elasticity problem and to the ball-shaped openings is straightforward.

RR n 3798



4 Tomasz Lewiriski and Jan Sokotowski

In Appendix A the main properties of the mass matrix for the Neumann problem are recalled. In
Appendix B the mass matrix for the two-dimensional elasticity is introduced and examined. In our
approach the mass matrix components form a fourth rank tensor. Appendix C recalls the derivation
by Maz’ya and Nazarov (1987) of the formula for the energy increment due to appearing of an opening
in the Neumann problem.

The summation convention is adopted. It refers to small Greek indices «, 3, A, y, K, §,... (except
for €) taking values 1 or 2.

2. The notion of topological derivative

Let © C R? be an open domain. This domain is parametrized by the cartesian coordinate system
(z1,z2). It is assumed that O = (0,0) € Q. Let us form a family of domains w. around O in the
following way. Let O € w, and

we = {w

where £ = (z1,22), w is an open domain in IR%; ¢ is a positive, small parameter. The domain w will be
parametrized by the cartesian coordinate system (y1,y2); its central point O € w, see Fig.2.1.

Eew} , (2.1)

€

<

(
—

Fig.2.1. a) Domains  and w,; b) The rescaled domain w

a

Let A = (y1,y2) € Ow. Then A. := (ey1,ey2) € Ow.. Let us direct the normal vectors: v = (v1,v2)
at A and v* = (1f,15) at A, outward to the domains w and w,, respectively. Let us note that v, = v,
for every e > O. The areas of w. and w are linked by: |w:| = €2|w|. Let K C Q be a compact subset.

Assume that a shape functional:
J:Q\K >R (2:2)

is given. Assume that the following limit exists

(2.3)

This limit will be called the topological derivative of the functional J, computed at the point O € €,
for nucleation of voids of the shape w. In an obvious manner one can define the value ¥, (zg) at other
point zg = (zo1,z02) € Q. Note that

7,(0) = [w| '%,(0) , (2.4)
where
= _ o J@\ @) - J(Q)
T,(0) = ;1\1‘1(1) 2 . (2.5)

INRIA
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In the case when w is a circle the index w in (2.3) and (2.5) will be omitted. The topological derivatives
% and ¥ defined in this way were introduced by Sokolowski and Zochowski (1997) for the shape
functionals in R™; w is assumed there to be an open ball in R™.

3. The Neumann problem in the plane domain Q \ @..
Asymptotic expansion of the solution u,

The subject of our consideration is an asymptotic analysis of the solution u. of the problem:

find u, € H?t*(Q,) satisfying the Laplace equation

pAu, =0 in Q. =Q\w, (3.1)
0? 0?
where A = + , k>2, and the boundary conditions
(P.) oz1)? " O(s)? '
ou
w 8}; =0 on 0w, (3.2)
u% =p on ON. (3.3)

The given loading p € H 2tk (092) satisfies the condition

/pds =0 (3.4)

N

assuring the solution u. being determined up to an additive constant.

We assume that the domains €2 and w. satisfy the known conditions of regularity such that u.
exists and is of class C2.

The modulus g is assumed to be constant.

Let us formulate the problem on the domain € (or without an opening):

find v € C%(Q) such that

(Py) pAv=0 in Q, (3.5)
HZ_Z =p on O00N. (3.6)

The asymptotic expansion of the solution u. can be found in section 4.4 of the paper by Maz’ya and
Nazarov (1987). It has the form
-1
) | (3.7
The function v is the solution of (Fp).

The function w is defined on [R? \ @, see (2.1). By virtue of the formula

ue(z) = v(z) + ew (g) + e22(x) + €20 <H§'

1
Au.(z) = Av(z) + - Ayw(y)],—= + Az + ..., (3.8)
where o2 o2
A, = + : 3.9
Y 0y)? T 9(y2)? (39)
we find
Ayw =0, w=w(y) , y € R\ @. (3.10)

RR n " 3798



6 Tomasz Lewiriski and Jan Sokotowski

In the vicinity of z = (0,0) we have

v(z) = v(0) + ejzs + O (||al?) (3.11)
where e% = aa—;ﬂ(O) The boundary condition (3.2) imposes
% = 6% vg + (89111/) +0()=0 on Ow . (3.12)
Hence we have . )
5, = T€8Ys - (3.13)
We conclude that the function w satisfies the following conditions
Ayw =0 in R*\@ (3.14)
(P,) (89_1;) = —E%I/ﬂ on Ow (3.15)
w(y) =0, if |ly|]| = oo (3.16)

1
Here [lyll = ((y1)* + (42)*)*.

Let us encompass the domain w by a circle Bg = {y|||y|| < R};0Br = I'g. The condition of
function w being harmonic implies the variational equation

ow Oy ow ow
——dy= —d 1
Oy Oy dy : on / £ (3.17)

Br\w R ow

valid for each ¢ € H?(Bg).
The function w = w(y) is harmonic, singular for y = O and vanishes at infinity. Thus it is a linear
combination of the functions

0 9?
— (In ) In ’
3y () s 5= iyl

Thus the following expansion holds

Yo 1
wi) = o +0 () (3.18)

ow ow ow 1 ow 1
Along I'p we have: o= m There we have = =0 (RQ) and 8—d3 =0 <§> df. Thus the first

integral at the right-hand side of (3.17) tends to zero if R — oo. Now, the substitution ¢ = const

implies the identity:
wd5—63/1/3d5—() (319)
8 )

ow

The condition (3.16) eliminates the candidate: w = const for the solution of (P,). We conclude that
the problem (P,) is well-posed and its solution w is unique. This solution can be decomposed as follows

w(y) = eyws(y) , (3.20)

INRIA



1opotogical derivative jor nucieation of non-circutar vo1as "

the functions wg being solutions to the problems:

Aywg =0 in R?\@, (3.21)
ow

(PP) 8—1/5 ——vs  on Ow, (3.22)
wg — 0 in infinity . (3.23)

Let us denote by G(z — y) the Green’s function for the Laplace equation in IR%. The function S(y) =
G(y — O) satisfies the equation
pAyS+ 46y —0) =0 (3.24)

and the condition: ||y||V.S = O(1) in infinity, which makes this function unique. Here d(-) represents
the Dirac measure. The function S has the known form:

1
Sly) = ——1 . 3.25
W) = =g Iyl (3.25)
The solutions to the (P?) problems are singular for y = O. It turns out that the terms of the weakest

singularities will play a crucial role further. Let us disclose them as follows, see Schiffer and Szego
(1949) 55
1
wg(y) Mpa g~ +0 (Ilyll2> : (3.26)
The coefficients mg, will be called the components of the mass matrix m, as suggested by G. Polya
in the papers cited in Schiffer and Szeg6 (1949). It turns out that the matrix m is symmetric and its
components can be computed by the following formula

1
Mag = —Hdaplw| — S /(Vawﬂ +vgwa) ds (3.27)
Ow

see Appendix A. Thus we have now a better insight into the structure of the functions wg. Let us come
back to the expansion (3.7), taking into account the decomposition (3.20):

—1
) . (3.28)

The function z(z) should be determined by the condition (3.3), see Appendix B. Nevertheless, this
function will not play any role in this and the next sections.
In the neighbourhood of dw, the expansion (3.28) can be written in the form

£

ue () = v(z) + eSwy (x) +&%2(x) + €20 (Hg‘

-1
u(z) = v(0) + eegWp (g) + &%2(z) + €20 ( g ) , (3.29)
where
Ws(y) = yp + ws(y) - (3.30)
The functions Wp are solutions to the following problems
AWs=0 in R*\w, (3.31)
~ ow
(Pg) 5 -0 on Ow, (3.32)
ov
W3 — yg it |y|| = oo . (3.33)
The first derivatives of the solution u, can be expressed as follows
Oue ow, 0
Y = & B te2 2y o(e) . (3.34)

Oz, A Yo y=2 0z

RR n " 3798



8 Tomasz Lewiriski and Jan Sokotowski

4. Topological derivative of the energy functional

The subject of our consideration will be the shape functional

G(Qs) = Js(us) ; (4.1)
where 5
D -
Je( =3 /uﬁ—da} ép'uds (4.2)

and u, is the solution to the problem (3.1) — (3.4). Let j(¢) := &(Q). We shall prove

Theorem 4.1.
Under the conditions concerning the domains {2 and w and the loading p on 92, introduced in Sec. 3,
the function j(g) can be expanded as follows

jeo+ ) = (eo) + 7' (eo)e + 57" (E0)e” +0 ((e0 +6)?) | (43

where
j'(e0) = '(07) =0, if e\, 0",
§"(e0) = 3"(07) = GGmed, i €0\ 0F
and the matrix (Ggy) is expressed by

Gor = —ulinlwl + [ Ma(w)yareds] (46)
ow
Here w = (wy,wy) and
1 (Owy Ow, Owydw,
== . 4.
’Y/\N(w) 9 (331“ + ay/\ + Byg- 6y0_ ( 7)

The functions wg are solutions to the problems (P?). The quantity 5j”(

the topological derivative ¥,,(O) for the functional &(£).

0") determines the value of

Proof.

We shall draw upon the following lemma, concerning sensitivity of the solutions of the Neumann
problem. Consider the following family of Neumann’s problem in the domain €2 of boundaries ~; and
I, see Fig.4.1:

find u; € H1(2¢)/R such that

92, . dz p(pds Vo € H () (4.8)
Q¢
b Xy Qt

) )
(A

Fig.4.1. Domain Q; with the varying internal boundary ~,
INRIA
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The domain €2; is an image of the domain 2

O =Ty(V)(Q) . (4.9)
The mapping T; depends on the velocity field V' such that supp V NTI' = @ and

ve=T(V)(7) - (4.10)

Then the shape derivative of u;, denoted by uj (cf. Sokotowski and Zolesio (1992)) is given by the
unique solution to the following problem

find u} € H'(%)\R such that

D) !
(Pt) auta—‘pdwr/ (aut 8‘p)v vids; =0 VYo H* Q). (4.11)

0% 0T, 0o 0%q
t

Tt

The latter problem can be reformulated as follows, cf. Sokotowski and Zolesio (1992, Prop. 3.2, p. 120)
Aup=0 in
Ouy.
0z,

Using this result it is easy to see that the derivative of the energy functional associated with the

Neumann problem equals,
/ Ouy Oy
= Uy "'ds =
2 2 Ba:a 8xa

Vi = div,y, (V-4 Vyuy)  onyy .

hence 4S(9 )
(,gt t) = 5 / |Vut|2V UVt dst (412)
Vi
for 1 [ duy @ 1
Uy Out
i el 200 JON = __ . 4.1
S(Y) = 5] 9. oa. dz /put ds 5 /put ds (4.13)
Q4 N T

To analyse the behaviour of the function j(¢) in the point 07 we introduce two small parameters:
€0 > 0 and ¢ being sufficiently small. The latter parameter will play the role of the parameter ¢. The
following perturbation of the domain will be considered, cf. Fig. 4.2

Q€0+E - Q \ GEO+€ - (414)

Fig. 4.2. Variation of the boundary: from Ow,, t0 Owey4e
RR n~°3798



10 Tomasz Lewiriski and Jan Sokotowski

3
For any g9 > 0, g9 small enough and || < ?O’ we define the one-to-one mapping

T @ Owey — Owegre (4.15)
of the form
i(e) =T.(X) = (1 + f) X, X€ow,. (4.16)
0

The mapping 7. is extended to a small neighbourhood of Owg,. Let 9 > 0 be fixed and let n €
C§°(92),0 < n(z) <1 be a function such that n(z) = 0 for |z| < ro and |z| > r1, for some r; > 79 > 0
which depend on gy, n(z) =1 for € w.y4. and for all € € [0,e9/4]. Introduce the vector field

L ze e <X (4.17)

View) = nla) ;

and denote by z(e) = T.(V)(X) a solution to the system

dr(e)
e V(e,z(e)) (4.18)

z(0) = X . (4.19)

Then T. : Q — Q is an extension of T, which equals to the identity in the ball B,,(0) and in the
exterior of the ball B, (0). Here we assume that 7 is chosen in such a way that Owe,4+e C By, (0)
for all € € [0,69/4]. Using the field V' and the material derivative method we can evaluate the shape
derivatives with respect to the parameter ¢, at ¢ = 0, of the energy functional j(eyp + &) = &(Qep+e)
defined below.

The energy functional is given by

1 ou ou
G(Qso-f—&) = G(Q\wso-f-e) = 9 / a%—l—sa%—i—g dr — /pu50+€ ds . (420)
Qe * 80

Now we can apply the general formula (4.12) to find the topological derivative. For ¢ sufficiently small

we find
d6(960+6)

and . 3 5 ©
.1 Ugg+e OUgg+e \ Toll
- - e 4.22
Fe+e) ==z [ (e} 22 (o) docy (422
Wep+e

According to (3.34) we have

0xn Oxq Yo

a’u,50+5 au€0+5 _ €0 (an ) <8WA
Y= Ya

We change the integration domain from dwe,+. to Ow. Using (4.18) and the formula: ds. 1. = (e9+¢) ds
we find

) &+ O0(eg+¢) . (4.23)

__z
y_eo+s

oW OW 0.0 2
aya a—yaya-l/o- dS) Gﬁf)\ +0 ((8() + 5) ) . (424)
w

(o +€) = —5e0 + e (ﬁ

Let us note that j(07) = 0.
Direct differentiation of (4.24) gives

: 1 oWz OW
]”(50) = _Eu (a 5 4 a—)‘yo-yo- dS) 6%6())\ + 0(50) (425)
, Yo TYe INRIA
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hence one arrives at

7"(0%) = 3Gpey , (4.26)
with 1 [ OW, oW
Ié] A
S . 4.2
G 2,u/ v Do —YoVy ds (4.27)

To rearrange the matrix (Ggy) to the form (4.6) one should make use of (3.30) and of the formula:

Oaulw| = ay,\ 6yﬂ / g— ds = /ygu)\ ds . (4.28)
ow
Hence
/yo—l/,, ds = 050 |w| = 2|w] , (4.29)
Ow

which confirms the equation (4.6).

Definition 4.1.
Let the boundary dw be piece-wise smooth. The domain w will be called star-shaped if one can place
the origin O of the coordinate system (y1,y2) such that O € w and

Ya(s)va(s) >0  ae. ondw, (4.30)

where s is a natural parameter of Jw.

The convex domains are star-shaped. One can easy draw star-shaped domains which are not convex,
as well as domains which are not star-shaped.

Let us consider the functional

Ou, Oug
B(Q,) = / pps S do (4.31)
Qe

or E(2:) = —26((2.). Passing to the right-hand limit: ¢y — 0" in the expansion (4.3) gives

E(Q;)=E() — 626%Gg)\eg + o(£?) , (4.32)
where 5 8
v v
EQ) = _— 4.
@) = [z (4.3

We shall prove

Theorem 4.2.
Assume that the domain w is star-shaped. Then, nucleation of a small opening w, increases the energy:

E(Q.) > E(Q) . (4.34)
Proof.
We have . J——
E(Q:) - E(Q) = 562u By By Vv ds + ol 2y, (4.35)

where W = eﬂWg Taking into account the boundary condition (3.32) one finds

Ta (436)
RR n~°3798



12 Tomasz Lewiriski and Jan Sokotowski

where (74) are components of the unit vector tangent to dw. Thus we have

OW oW oW\ 2
— 4.
aya aya ( Os ) ( 37)
and \
EQ.)—E(Q) = %ezu/ (%—T) YaVa ds + o(e?) . (4.38)
ow

The constant functions do not satisfy the condition (3.33) in the problem (P?). Thus W # const and
OW/3s is not identically zero along dw. The condition (4.30) implies the inequality (4.34). [ |

By (4.36) and (4.37) the formula (4.27) can be put in the form

1 OWg OW
== — ) 4.
Gﬂ)\ 2”/ 9s  Os Yo Vo dS ( 39)
ow
Let us introduce the "force" fields 5
o (u) = - (4.40)

and the boundary forces: 0, = 0%y, and o, = 0*7,. The boundary condition (3.32) implies o, (W3) =
0. Thus the formula (4.39) can be expressed in terms of the "force" fields as follows

1
Gﬂ)\ =5 UT(Wﬁ)UT(W)\)yUVU ds (4.41)
M@w
and the energy increment is given by
1
B(©2) = B@) = 36 [ o (W) yovo ds +o(e?) (4.42)

ow

The result (4.32) has its counterpart in the literature. By applying the method of compound
asymptotics Maz’'ya and Nazarov (1987) found the expansion of the form

E(Q.)=EQ) — 626%m5)\eg + 0(e210) | (4.43)

where mg) are coefficients in the representation (3.26) and can be computed by (3.27), cf. Appendix
A. The derivation of the formula (4.43) can be found in Appendix B.

Let us consider the relations between the matrices G and m. By Theorem 4.2 the star-shaped
property implies positive definiteness of the matrix (—G). No obvious reason is seen why this matrix
should always be positive definite. On the other hand, the matrix (—m) is always positive definite, see
Appendix A. Thus result (4.43) of Maz’ya and Nazarov (1987) means that drilling an opening always
results in the increase of the energy, i.e. irrespective of its shape. On the other hand the Theorem 4.2
states that drilling a star-shaped opening increases the energy, and not more.

A natural question arises, whether the matrices G and m coincide for some shapes of w. The answer
is formulated as

Theorem 4.3.
In the case when w is an ellipse the matrices G and m coincide.

The proof is divided into small steps.
INRIA
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Step 1. Formulae for W; W,
Let us consider problems (f’f ;3.31-3.33). We assume that the function of complex variable

o(C) = ¢ (g +op 2By ) (4.44)
¢ ¢ ¢
depending on real parameters £,c,c; ,i = 2,3,..., transforms IR \ w onto the exterior of the unit circle in
the complex plane.

The assumption requires some explanations. With the choice of £ - exp (i\) instead of £ it follows
that the latter transformation works for the domain w rotated by the angle A. On the other hand, we
can rotate the coordinate system (yi,y2) before the transformation since we deal with the only one
domain w. Therefore, without any loss of the generality, we can assume that A = 0. The choice of ¢ € IR
is a standard assumption while selecting in a more general way ¢; with complex values does not really
change the formulae obtained in the sequel.

For ¢; =0 ,i =23,..., and ¢ € (0,1), w is an ellipse with the major and minor axes coinciding with
the coordinate system in the plane. In particular, we have

a—>

R >b7
a+b “

1
L= §(a +b), c=
where a,b are the half-lengths of major and minor axis of the ellipse w. For ¢ = 0, a = b and the ellipse
w becomes a circle. On the other hand, the ellipse tends to a cut (crack) with the limit passage ¢ — 1.
Schiffer and Szegd (1949) have shown that for £ € R the solutions W ,Ws of problems (P2), (P2?)
take the following form

lefﬂ%[ul], WF—&R[i(g—l

; C)] =) (4.45)

Step 2. G, for an arbitrary opening w
The formulae for G4 are given by (4.27), that is

Gop = / YWa - VW y - vds . (4.46)
Ow
We have
y-v==R(zexp(—ia)) , (4.47)
where z = p(¢). We make use of the following formula (see Muskhelishvili N.I. (1975), formula (49.3))
exp (~ia) = -+ i T (1.48)
xp (—ia) = — (- , .
p TWOI
where p = |(|. Therefore,
1 1 —
w1 _1 wlE.g0. 4.49
yv=— g R0 (4.49)
On the contour dw we have p = 1, and ds takes the form
ds = \/(dy1)? + (dy2)? = |dz| = [¢'(C)dC| = |p'()]pd? , (4.50)
because |d(| = pdd, and we evaluate
y-vds =R[C- Q) ()] _ 9. (4.51)

Next step is to evaluate ||VW1||2, VW7 - VIWa,||[VW2]||? on the contour p = 1.
RR n " 3798



14 Tomasz Lewiriski and Jan Sokotowski

For the function f(z) = £ (C + %) = Wily1,y2) + iV (y1,2), ¢ = e '(z), compare with (4.45),
taking into account that f(z) is a holomorphic function, it follows that

ow, oW,
!
= — — 11—
fie) oY1 Oy
hence 1
Vw2:flz2:f1<2 ’
IVWL" = [ (2)[7 = [F(O)] PG
where f'(¢) =£(1— % ). Thus
402 sin? ¥
Wil ~ { o w52
lp=1
In the similar way we evaluate
202 sin 249
VW -VWs} =8 ——r0r—— 4.53
VW Vi) { PP }lp 1 (4:59)
and )
402 cos? ¥
TWalls = { s} (w54
[p=1
Using (4.51)-(4.54) in (4.46) we find
2m
Gi1 = —2uf? / sin2 9 h(9)do (4.55)
0
2w
Gio = 2l / sin® cos 9 h(9)dd | (4.56)
0
2m
Gy = —2ul? / cos? 9 h(8)dd , (4.57)
0
where 0
h(d 14 [exp 11 ]
(9) ( )p( 1.
Step 3. G, for an ellipse
For an ellipse
v exp (i9) + cexp (—2'19)] Ié]
= —i0 =
M) = R |exp (=i )exp (19) — cexp (—i?) (2 cos2 9 + sin? 9
where we denote 8 = . Therefore, simple calculations show that
G = —271'/1@2(1 — C), G2 =0, Goy = —271'/1@2(1 + C) . (4.58)

The same formulae can be obtained for the mass matrix for an ellipse (Schiffer, Szegé 1949) which
confirms the equality: m,g = G,g for the ellipse.

In general, however, G # m in the case of w not being any ellipse since G depends on £,c and
all the coefficients ¢ ,k > 2. The mass matrix m depends only on £,c and is independent of of the
coefficients ¢ ,k > 2.

INRIA



1opotogical derivative jor nucieation of non-circutar vo1as

5. The plane problem of linear elasticity in the domain Q\w.. Asymp-
totic expansion of the solution u°

5.1. Formulation of the problem

We consider a plane elasticity problem in the domain Q\@,, see. Fig. 2.1. Both plane stress and plane
strain cases will be dealt with. Our main unknown is the displacement field u®(z) = (uj(z),u5(z));

uf,(x) represents the displacement of point z in the z, direction. Let ¥ = (v1,02) be a certain vector

field. Let us define the strains associated with this field
~ 1 (00, Ovg
==+ . 5.1
a5 (9) 2 (8:35 + 0z, (5.1)
The stresses associated with strains (5.1) are given by the constitutive relationships

0% () = A%PMe,y (D) (5.2)

where (A% form the tensor A of reduced moduli of elasticity. The term: reduced concerns only the
case of plane stress.

The material occupying the domain Q\@, is assumed to be homogeneous, the components A®M
are constants. They obey the following symmetry rules

Aaﬂ)\u — A)\;wcﬁ , Aaﬁ)\u — Aﬁa)\u — Aﬂau)\ (53)

and satisfy the following conditions of positive definiteness
Aaﬁ)"ufiaﬁh‘,,\u > CKapkag Vk € IME , (5.4)
where
IM? = {k| k = (Kap) ; Kap = Kpa}
and ¢ > 0.
The stresses associated with the unknown displacement field u® satisfy the homogeneous equations
of equilibrium
) afB(,,E
907 (u) _ 0. (5.5)
Oxg
The body forces are omitted. The loading is applied to the boundary 052
aaﬂ(us)ng =p%(x) , x €00 ; (5.6)
here p® represent intensities of the boundary. The boundary of the opening is unloaded:

o (uf)vg =0 on Owe ; (5.7)

note that the vector ¢ = (v1,1) is outward normal to dw, see Fig. 2.1.
The strong formulation of the equilibrium problem has the form

find u®* € H 2+’“(QE,IRZ) that satisfies: the equilibrium equa-
(P:) tions (5.5), the constitutive relations (5.2) for ¥ = u* and
the boundary conditions (5.6), (5.7); k > 2.

The variational form of the equations (5.5)

/ 0B (u) e () dz = / PBads Vo € H(Q.:RY) (5.8)
RR n~° 3798 Qe on



16 Tomasz Lewiriski and Jan Sokotowski

implies the solvability conditions of (P;)

/paff)a ds=0 YveR (5.9)
N

where
R = {v| eap(v) =0} . (5.10)

The set R consists of translations and infinitesimal rotations, cf. Necas and Hlavacek (1981):
R = {#] 5o =5 + deap s} (5.11)
where v3, ¢ are constants and (eqp) represents the Ricci tensor of the components
e11 =exp =0, elp = —ey; =1. (5.12)
Substitution of the constitutive relations
o (uf) = Aaﬁ)‘“em(us) (5.13)

into (5.8) gives the weak formulation of the problem (P;). The solution u® is determined up to additive
terms of the set R, while the fields €, (u®) and oy, (u®) are uniquely determined provided that € and
we satisfy appropriate regularity assumptions, see Duvaut and Lions (1972).

5.2. Asymptotic expansion of u°®

We shall apply the method of compound asymptotics to the problem (5.8), see Maz’ya et al. (1991).
Let us consider first the problem for the domain without an opening. The unknown displacement field
v(z) is the solution to the problem

find v € H?t#(Q; IR?) such that the stresses

o (v) = A%Mey () (5.14)
satisfy the equlibrium equations
(Fo) 0o®P (v) _ (5.15)
Ozp
and the boundary conditions
o (v)ng = p*(z) , € 0N. (5.16)

The asymptotic expansion of the solution u® of the (P.) problem reads

1) , (5.17)

where v is the solution to the problem (Py). The field v does not satisfy the condition (5.7). By adding

u®(z) = v(z) + ew (g) +e2z(x) + €20 (Hg‘

the term ew (—) we satisfy this condition. The strains associated with u® can be expanded as follows
€

u(1°(2)) = e, (v(2)) + er(w) (%) +0(e) . (5.18)

Consequently, the stresses can be represented by

099 (u (2)) = A% [y (0(2)) + 2, (0) (g)] +0(e) . (5.19)
INRIA
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the fields €y, (w) being defined by

L2 aﬂ> (5.20)

ot =3 (5 + G

for the fields w = (wy(y1,y2)) given in the domain IR?\@ parametrized by the coordinates y;, y2. Along
the boundary dw. we have

exu(v) = exu(v)(0) + O(e) .
Thus the condition (5.7) is approximated by

Ay (w)vg = —AYPMe, () (0)vg (5.21)

for g € Owg or y € Ow.
The equilibrium equations (5.5) imply

0s°(v) 10

3{175 € 3y6 [Aaﬁ)\ue)‘“(w)] ‘ + O(E) =0. (5.22)

y==2
Thus we confirm the equations (5.15) and find the governing equations for w

0
afiu : 2\ —
—5yg [A e)\u(w)] =0 in R\w. (5.23)

The field w is the solution of the problem on the rescaled domain R*\@:

find w defined in R?\@ such that |w| — 0 if ||jy|| — co and
(P,) w satisfies the equations (5.23) along with the boundary
conditions (5.21).

The field w depends in the linear way on the values of strains €y, (v) at point z = O. Let us introduce
notation

&, = exu(v)(0) (5.24)

to shorten further formulae. The solution w of the problem (P,) can be decomposed according to the
formula

w(y) =3, XM (y) , (5.25)

the functions x(*) being solutions to the problems

find x**) defined on R?*\w such that

9 [Aaﬂv%w(x(w)] =0 in R2\@ , (5.26)
(P9 9Ys

Aaﬂ"‘sew(x()‘“))l/g = — APy, on Ow , (5.27)

x* — 0 if ||y|| — oo . (5.28)

The variational formulation and the existence and uniqueness results of the exterior problems of linear
elasticity are given by Giroire (1976) and Bonnemay (1979). In the case of tractions prescribed on
Ow the variational formulation can be found in Bonnemay (1979, Ch I, Sec. 3, page 8). The space of
solutions is defined by

V(R*\@) = (W5 (R*\w)/R)*

RR n " 3798
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where
v

(L +[lyl1%)'/? n(2 + [ly]1?)

and 5—; € I2(R\»)}

Wy (R\@) = {v € Li,(R\w))| € L*(R*\w)

with the norm

v 2

2 2
v _ = + ||V = .

| ||1,0,|R2\w H 1+ [ly[2)2 (2 + [|jy|]2) R\ | U||0,R2\w
Here || - ||o g2\ means the L?(R*\@) norm.
The following expansion holds, see Appendix B

() — om Y8 ( L )

Xa 't = + 0 , (5.29)
¢ Bly] lyl?

where Cig are certain constants. Let us write down the weak formulation of ( e )). Let the circle Bg
encompass the domain w, as in Sec. 3. The following variational equation holds

AP / (X )eap (@) dy = AP / (XN ngtg ds 4+ AP / Vv ds (5.30)
Br\w Tr dw

The term underscored in (5.30) is of order O(]|y||=2). Thus the integral over ['r = OBp vanishes if
R — oo and the fields v, are sufficiently smooth and of compact support.
Passing to infinity: R — oo gives the variational equation

R2\@ Ow
valid for 7, € V(R*\@).
(Au)

Let us prove that the problems (P,"") are uniquely solvable. It is sufficient to show that the
right-hand side of (5.31) vanishes for v € R. Let us put first 9,4 = v, = const. Then

0
/vgl/g ds =0 / —(1)dy=0. (5.32)
0yg
dw w
Let us take now 04 = €qoYs Or U1 = Y2, U2 = —yi1. The right-hand side of (5.31) equals, see (4.28)
AeBrdg /y,,l/ﬂ ds = Aaﬂ“‘seagéa[ﬂw\ = Aaﬂ"‘seaﬁ =0,
ow

due to the symmetry property (5.3).

Let us reformulate the problems (Pu(,)‘“ ) ). Assume that we know the fields E®*) defined on IR? such
that

eap(EXW) =63t (5.33)
where the components
1
A
5% = 5 (620% + 0163 (5.34)

form a unit tensor in the space of tensors of fourth rank, of symmetry properties (5.3). Then the
condition (5.27) can be rewritten in the form

A%y, (XD 4 By =0 . (5.35)
INRIA
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Let e, ey are basis vectors of the coordinate system (y1,y2). The fields EM) of property (5.33) are
given by

1
B (y) = 5 (yreu + yuen) (5.36)
or
EXW (y) = EQW (y)ea (5.37)
with
B (y) = = (526 5 5.38
o y)—§(y)\ pa t Yudra) - (5.38)
Let us define new fields
@) (y) = B (y) + x(@P)(y) . (5.39)

They are solutions to the following problems

find 9 defined on IR?\@ such that
0
Y [ pqaBru (k&) _ : 2\ —
(50w o 4%y, ()] =0 in R2\@ (5.40)
Aaﬂ’\“@w(i/)("‘s))z/ﬂ =0 on Ow (5.41)
(R0 —y gK0) if ||y|| — oo - (5.42)

Well posedness of the problems ( u(,’\“ )) imply that the functions "% are uniquely determined.

Substitution of (5.25) into the asymptotic formula (5.17) gives

u®(z) = v(z) + eeg“ X (%) +ez(z)+... . (5.43)

In the vicinity of the domain w, the function v(z) can be expanded by the Taylor series
v(z) = v(0) + &, EM (2) + ¢r(z) + O(?) (5.44)

where ¢ represents a rigid rotation of the neighbourhood of O and

1
r(r) = 5(—x2e1 + z1€2). The terms underscored in (5.44) belong to the set R. Hence we have

€ap(v) = egﬂ +O(e) . (5.45)
Thus the strains associated with the field u® can be expanded as follows
€ap (1) = €45 + Xueap(XM)|y=z + O(e) (5.46)
or, alternatively

cap(u’) = Sucap(®™M)]y=z + O(e) . (5.47)

6. Topological derivative of the energy functional
in the two-dimensional elasticity problem

Let us examine the shape functional

where )
@) =5 / AN (5) e, (B) di — / Pea d . (6.2)
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The field u® is the solution of the problem (P.) formulated in Sec.5.1. Let us introduce the function:
jle) = T ().

Theorem 6.1.
Let the hitherto adopted assumptions concerning 2, w and p, hold here. Then for g9 > 0, |e| < €¢/2,
the function € — j(g¢ + €) has the following expansion

1

i(e0 +€) = jeo) + §'(e0)e + 573" (0) + 0 ((e0 +2)°) (6.3)

where
J'(e0) = 5'(07) =0 if & \0F, (6.4)
§"(e0) = 5"(0F) , if & \(O0T, (6.5)
§"(07) = €05 G}, . (6.6)

The matrix G = (G*¢?%) is defined as follows
G0 = — a9 |58, 38 ol + [ 24807 (x)yovs ds] , (6.72)
ow
where
() 6 L L

180D (x) = [5(1[,%( 00) + 630 €as (X)) + eas(x“D)eru(x )] - (6.7b)
The functions x(*#) are solutions to the problems (P ples )) formulated in Sec. 5. The quantity ! ] "(0T)

determines the value of the topological derivative ,,(O) of the functional J(£2).

Proof.

We proceed similarly to the lines of the proof of Theorem 4.1. We consider the domain 2., and its
perturbation €.,tc. Next we determine the transformation 7 and the velocity field V' (e,z(g)). The
equations (5.14)-(5.19) hold good. We shall make use of the formula for the shape derivative of the
solution of the equations of linear elasticity, given in the book of Sokotowski and Zolesio (1992, Theorem
3.11, page 140).

Thus we find
§' (o + ) = J'(u0") (6.8)
with )
J(v) = —§Aaﬁ)‘” / €ap(0)exu(0)V (g,z(e)) - v(z(€)) dseote - (6.9)
6w50+5
Substitution of (4.15) gives
1 o
Feote) =24 [ s e (wo ) D (a(e)) sy e (6.10)
D €+ €
EO €

Now we substitute (5.47) and change the integration domain from Owg,+e to dw, which results in

1
j'(eo +¢€) = —3 “ (g0 + ) AWPED O €y / eaﬂ(i/)(“’))e)\“('tph‘s))yaug ds + (g9 + €)O(e) . (6.11)
Ow

Hence j/(07) = 0. To find 5”(0") we differentiate (6.11) with respect to € and then put € = 0. Passing

to zero with ¢ gives

§"(0%) = 4,60,

%5 (6.12)
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where

GLg’y(S — _%Aaﬂ)\u / GQﬂ(w(Lg))GAM(¢(76))yUVJ ds . (613)
Ow

Substitution of (5.39) and making use of (4.28) results in the formula (6.7). This ends the proof. N

Let us examine now the functional

BQ.) = / AWM (e, () da (6.14)
Qe

linked with J(€.) by the formula: E(Q.) = —2J (). Let us rewrite the expansion (6.3) in the form
E(Q:) = E(Q) — %) 3G*Me}  + o(e?) . (6.15)

Now we are ready to formulate

Theorem 6.2.
Consider an elastic two-dimensional body loaded on its boundary. Its energy increases if in its interior
a star-shaped domain appears.

Proof.
Assume that w is star-shaped. We shall prove that

E(Q.) > E(Q) (6.16)

if e >0.
Let us define the function W = 6991/)(“’). Then we can write

1
B(Q.) - B(0) = 624 / eas(W)exa (W)yove ds . (6.17)
ow

By virtue of the positive definiteness property (5.4) one can estimate

E(Q.) - BQ) >

N[O

62/eag(W)eaﬂ(W)ygl/g ds . (6.18)
Ow

Note that 9(® ¢ R, hence W ¢ R. We conclude that €a3(W)eqs(W) is not identically zero along
Ow. Since the condition (4.30) holds the inequality (6.16) follows. Thus nucleation of a star-shaped
domain increases the energy. |

It turns out that the components of the matrix G are determined by the values of the hoop stresses
o7 (49)) around dw. To show this property it is sufficient to prove that

Gbmd - _% /CTTTT(S)UTT("p(Lg))UTT(":b(’yd))yUVU ds , (6'19)
ow

where the quantity C,,r, follows from the decomposition of the tensor C' = A~! in the basis &; = T,

€y = V:
C = Copau(s)€a(s) @ €5(s) @ x(s) ® &u(s) - (6.20)
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Hence Cyrrrr = Cr111. Similarly, the quantity 0”7 (s) follows from the representation
o=5"(s)e,®€5, (6.21)

or ! = 077; above €, = €4(5).

The derivation of (6.19) is as follows. Let us recall the boundary condition (5.41)
Uo‘ﬁ('t/)('“s))uﬂ =0 on OJw . (6.22)
According to (6.21) we can write
0P = 0" Ta1g + 0 (VaTs + 1pTa) + 0 101p .

The condition (6.22) implies

o (p*)) =0 , o () = 0 on Ow . (6.23)
Thus along dw we have
0% = 0" ra1s . (6.24)
Let us invert the relation
o = A*PMie) (6.25)
to the form
E\p = C)\paﬂaaﬂ (626)

involving the flexibility matrix C. One can write C = A™!, having in mind (6.25) and (6.26). Now we
can express G'¢ in terms of stresses

Grevd — _% / Caﬂ,\uaaﬁ(w(“’))a’\"(w(w)yal/a ds . (6.27)
ow

We make use of the invariance property

Copruo () ()0 (5) = Capru(s)5) ()58 (5) (6.28)
and the representation (6.24). We find
Capruo ™ (1) (00) = Crrrr (5)0™ ()™ (07) (6.29)

which ends the proof of (6.19).
Let us note that the formula (6.15) can be expressed as follows

B(Q.) - B(Q) = %EZ / Crrrn(8) [0 (W) yovy ds + of?) - (6.30)
ow

It is seen that the energy increment is determined by the values of the hoop stress ¢”” (W) around the
boundary of the rescaled opening.

Remark.

The compound asymptotics method applied in the Neumann problem have made it possible to derive
the formula (4.43) for the energy of a body with a small opening. A sketch of its derivation is given in
the Appendix C. In a similar way one can substantiate the expansion

E(Q.) — EQ) = —e%gﬁMaﬂA“egu + o(e?) (6.31)
INRIA
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for the plane elasticity problem, cf. Movchan and Movchan (1995, Sec. 5.1.3, page 256). The components
of the matrix M are given by the formula

MROTT . _ ford / P g ds (6.32)
dw

see Appendix B.

According to Theorem 6.2 the energy increases if the body is weakened by an opening of star-
shape. On the other hand the formula (6.31) implies a stronger conclusion: the energy increases always,
irrespective of the shape of the opening. This follows from the matrix M being negative definite, see
Appendix B.

At the present stage of the best authors’ knowledge we can formulate

Theorem 6.3.
Assume that the body is isotropic, i.e. tensor A can be represented by

A =2kA; + 2uAs , (6.33)

where k represents the Kelvin modulus and g is the Kirchhoff modulus. The tensors A, are given by

1
aﬂ)\u —- - af s 4
A7 25 o (6.34)
1
aBiu _ 1 (cadsBu ap BN _ saf sAp
AS _2(55 L) 55). (6.35)
Moreover, assume that @ is a circle: ||y|| < R.
Then
M — qeBAu (6.36)
Proof.

The proof is constructive; we shall find the components of the tensor G.
The tensor C = A~ ! is easy constructed from (6.33)
1

1
C=gphit st (6.37)

171 1 k
Due to isotropy: Crrrr = Ci111 and hence Crrrr = = (— + —) = ﬂ Note that C,,, is inde-
2\2k  2u 4k

pendent of s. In the polar system (7,0) the component 7" equals opp on dw. Thus the formula (6.19)

reduces to
2T

) 1k+ .
Gt = — B [ 0w )on(w00) ab (6.38)
0

Due to symmetries of the problem the tensor G must be isotropic. Thus there exist constants g, such
that
G = 2g1A1 + 2g2A5 . (639)

To find g, it is sufficient to find two components, e.g. G and G122
Let us note that the following stresses applied at infinity:

o'éé:k+u, 0'22:]4;—/1,’ 0'12:() (640)

o o

are equivalent to the following strain values at infinity

e =1, €9 =0, €55 =0. (6.41)
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This state of strain is associated with the field 1/)(11).

The hoop stress ogp(R,0) caused by stresses (oil,0%2,012 = 0) applied at infinity are independent

of the elastic moduli and are given by, see Sokolowski and Zochowski (1997, Eq. (54))
099(R,0) = (o4t +022) —2(ol) — 022) cos 26 . (6.42)

Substitution of (6.40) gives
oo0 (%) (R.0) = 2k — 4100520 . (6.43)

On the other hand, the following stresses applied at infinity
ol =k —yu, o2 =k+u, o2 =0 (6.44)
cause there the following strains
ell=0, €£=1, €2=0 (6.45)
which are associated with the displacement field 1. Thus we find
o9 (1,[)(22)) (R,0) = 2k + 4pcos 20 . (6.46)
Substitution of (6.43), (6.46) into (6.38) and integration over € gives

TR (k* + 2%) (k + 1)

QUi —
k ?
o (6.47)
G122 — ~ mRAES —2p%) (k + p) .
kp
From the equations
Gllll =g + 92 , G1122 =0g1— g2 (648)
one finds . L L
g = BTk TR (6.49)
W k
Other components are given by (6.39). They are as follows
G2222 _ 11l G212 — g G211 _ 1122
(6.50)

G212t — 2112 — (1221 — g,
The components of the mass matrix M for the circle can be found from the formulae found in Movchan
and Movchan (1995, Eq. 5.1.22) for the elliptical opening. One can easy check that the matrix M found
in this way is equal to the matrix G found above. To this end it is sufficient to note that A = k —

and
1

Mllll =mi , M1122 = M2 , M2222 = M99 , M1212 — §m33 , (651)
where the notation A and m;; is used by Movchan and Movchan (1995).
Thus the theorem is proved. u

In the case of isotropy and the opening w being of circular shape the quadratic form j”(07) =
€05GPME} | is expressed as follows

7"(07) = gi(eds + e35)? + 9o [ (D1 + e2)? + 4(eD)?] - (6.52)
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Let us decompose € into the spherical and deviatoric part

e = %treOI + e, (6.53)

where I represents the unit tensor in IM2. The norm of the deviator e® equals ||€°| = (egﬂegﬁ)l/ 2 or
oz _ L0 _ 052 4(9.)2 6.54

el 2 (€11 — €22)" +4(e1a)”| - (6.54)

The formula (6.52) can be written in the form
7"(0%) = g1(tre)® + 2go[1€°]? . (6.55)
Let us recall the constitutive relations

1 1
0_ 0 0_ 0
tre’ = thrcr , e QMS , (6.56)

1
with s = 60 — EtraoI being the deviator of stress. Substitution of (6.56) into (6.55) gives

: 1191 92 ]
nint+y — - | JL 042 2110712
7'07) = 7 | o) + 22)1°) (6.57)

an by taking account of (6.49) one finds

_7rR2(k + )

Mty —

[(tra®)? +4]|s°]%] . (6.58)
Note that the expression in the square brackets does not depend on the ratio u/k.
Let us rearrange the formula (6.58) to the form expressed in terms of the principal stresses o}, o¥;:

B TR2(k + u)

M0ty

(09 +0)? +2(0F — 097 (6.59)
This formula has already been found by Sokotowski and Zochowski (1997). Tt differs in a factor from
the characteristic function of the bubble method, cf. Eschenauer et al. (1994, Eq. (25)) and Schumacher
(1995).

Let us come back to the general case of a non-circular opening and discuss the expression (6.6) for
the topological derivative of the energy functional. This formula is expressed in terms of strains egﬂ of
the virgin body, measured at a point of possible nucleation of a void w.. One can rearrange this formula
such that it would depend on the stresses agﬂ = Ao‘ﬁ)‘“egu. This would be not a plain formality. Let
us discuss it below in a greater detail.

Let us introduce new vector fields

oy (y) = Coyig®"? (y) - (6.60)

They are solutions to the following problems

find ®,,) defined in [R?\@ such that

0 . _
(Aw ) 305 [Aaww(@(ﬂ))] =0 in R2\w , (6.61)
(o7)
Aaﬂ)‘“e,\u(Q(M))l/ﬂ =0 on Ow , (6.62)

RR n° 3798 P (®(5y)) = 657 if ||ly[| — oo . (6.63)
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It is sufficient to prove (6.63). We compute
0 (B (o)) = AP e3u(B(y)) = AN Crpigern($1?) .
According to (5.42)
au(®?) = 830, i lyll = oo .
Hence
0P (B(5y)) = AYPMC 5038 = 627
by definition of C' and of the object ((53‘5 )

The function W = e?g':,b(“’) can be expressed by W = 8"7@(07) and substitution of this formula
into (6.30) gives

E(Q.) — E(Q) = €26°7H,.,00' + 0(¢?) , (6.64)
where .
Hoo = / Crrre(8)07 (B(y) )07 (B(,09) YV s - (6.65)
ow

Note that in the case of isotropy the stress fields o®? (®(ry)) are independent of the elastic moduli &
and u, see e.g. Hahn (1985, Sec. 8.4.2.3), which simplifies the formulae (6.65). This formula is highly
useful since just the stress fields Uaﬂ(i'(m)), associated with constant stresses at infinity, are displayed
in the available monographs and handbooks on stress concentration around holes.

7. Final remarks

The method of compound asymptotics has made it possible to generalize the notion of the topolo-
gical derivative for the case of nucleation of non-circular openings in the plane problems of Neumann
and linear elasticity. Proceeding similarly one can generalize the topological derivative to the case of
nucleation of an inclusion made from an isotropic material of properties different than the anisotropic
properties of the virgin body. Moreover, in both the cases a passage to the three-dimensional setting
is straightforward.

Optimization of shells seems to be a challenging task. Nucleation of circular openings makes sense
only in the problems of optimal formation of shells on a sphere, see Lewinski and Sokotowski (1998). It
seems that using the compound asymptotics method will make it possible to develop effective algorithms
for finding the topological derivatives of various shape functionals, describing the overall behaviour of
various shells in which curvilinear openings can nucleate.

The formulae for the topological derivative of the energy functional for the case of an opening
of arbitrary shape can be a starting point for further optimal design. In a natural way the following
problem arises: for given (egﬂ) and given area |w| find the optimal shape of w such that the quality
7"(0") assumes maximum. In the context of an infinite isotropic body loaded at infinity, and with
the help of the formula (6.31), this problem has been partly solved by Cherkaev et al. (1998). In the
context of the present report such optimization means optimizing the shape of the bubbles depending
on the actual deformation state. It seems that a lot can be done in this direction.

APPENDIX A. The mass matrix in the Neumann problem

The components m,g, entering the representation (3.26) of the solutions of problems (PS) are
expressed by the following integral formula

Mag = —u/z/an ds (A1)
ow
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or

Mag = —H léag|w| + /z/awg ds] (A.2)

ow

or

Mag = _ll‘saﬂh“)‘ — Mag , (A.3)

where S, 9

wo Owg
Mog = / d AA
g " Byx dya (44
R:\w

The formulae (A.3), (A.4) imply the symmetry property: mqg = mgo. Symmetrization of (A.2) gives
(3.27).

Proof of the formula (A.1).
Let the domain w be encompassed by a circle Bg of boundary I'g = {y| ||ly|| = R}; R > diam(w). The
functions wg and Wy are harmonic, hence the following variational equation hold

Owy 0 / / Owa
oy = A5
T 9 p pl e (A.5)
Br\w
%Wﬂ 99 4 / 2 ﬂ ds — 1 / BWﬂ ds (A.6)
Yx
BR w

for ¢ and @ sufficiently regular. Let us put ¢ = W3 and § = w,. We find

Owg ow,
s u/(Wﬂ - _waa—ﬂ> ds , (A7)
Ow
where 5 oW
Wa
Jpa ,U/ (Wﬂ on _waa—ﬂ> ds (A.8)
T'r

We shall prove that Jgo = mqg. To this end let us recall the formula (3.26). We find

Wg =yg+ mga% + O (W) , (A.9)
‘98“7’: - maga(jj% (ﬁ) : (A.10)
Wa = maag—i +0 (ﬁ) : (A.11)
=t mf’aign +0 (1) (4.12)

We substitute (A.9) — (A.12) into (A.8) and disregard the terms of order O (H ||") n > 2. We find

0?5 05 dy, 1

_ _ 90 9%s = Al

Jﬁa maO'F/ [yﬂ 8y03n 6:[/0— an ] dS + O (R) bl ( 3)
R

where S = uS.
RR n " 3798
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The weak formulation of the equation (3.24) reads

o oy o5
95 9p 4 Ald
Byaaya /a "”d”/‘“S (A-14)

a5
for sufficiently regular ¢. The function o satisfies the equation
Yo

a5\  95(y)
A, (ayg>+ Sy =0 (A.15)

Let us consider the mollifier function defined by
- Y
antw) =09 (1) .

where h is a small positive number and

(Cep 1/ a?)] i ] <1
o) = {0 i flof > 1

and C is chosen such that

/ d(z)dr =1
R2

Then
[ ety dy =1
RZ

Let S,(y) be a solution to the equation (A.14) with §(y) replaced by ¢ (y). Since S(x —y) is the Green
function, one can represent Sp,(y) as follows

v = [ - o)) do
R2

By symmetry: S;(y) = Sp(—y), én(z) = ¢n(—2z) we can rearrange the formula above to the form

= [ oty - 95() 2
IR2

According to Theorem 1.6.1 and Lemma 2.1.3 reported in Ziemer (1989) the functions Sp(y) tend to
S(y) pointwise, as well as in Sobolev spaces, when h \, 0. We shall make use of this property in the
sequel.

oS . :
Note that the function — satisfies the variational equation

Yo
925, Oy 9%, Obn(y)
— = d — 22 d A.16
6yaaya Bya dy L anaya(’o ot / 4 aya Y ( )
R R

for sufficiently regular ¢.
The function yg is harmonic, hence

Byﬂ [“)cp 3y5 -
Al
TR dy= | 5 ~pds (A.17)

Br T'n INRIA
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for sufficiently regular ¢.

Now we put ¢ = yg in (A.16) and ¢ = gjh
equating the right-hand sides we find ’
Kh _ Lh
o — Hap
where én(y)
Kh, = — / Ier\Y) 4
0',3 y,B 8y0— y
Br
and

82§h 8yg 88 h
Lh, = / :
oh <8n3ya Y6~ “on o ds

Tr

Note that K gﬁ = 0qp for h sufficiently small and

0'

AN\0 ondy, s on Jy,

I'r

since @ tend to ﬁ
Yo Yo
We conclude that

Tr

y (A.13) we find
J = lim J = Mael =m
fa 1\‘ Ba acVcf af

since Jgo does not depend on R, cf. (A.8). Thus we have

Owg, oWg
/(Wga — aay)ds.

By introducing (3.22) and (3.32) one finds (A.1).

To prove (A.2) we substitute W, = y, + w, and make use of the identity

0Ya ayﬂ / a_
J oo = W, ®

W

from which we have

Saplw| = /ygl/a ds ,
ow

where |w| represents the area of w.
Let us prove now (A.3). At first we show that

Mg = u/wgz/a ds .
ow
Let us put = wg in (A.5). Let us note that
owg
li ——ds =0
im /wg 5, 45 ,

R—o0
RR n~°3798

- _
lim K", /(ﬂ _ %ﬁ) ds

025 dys 05
/(anaygy _%a_yJ ds = dop

in (A.17) to make their left-hand sides identical. By

(A.18a)

(A.18b)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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1 o 1 .
since wg = (” H) Owa _ =0 (W), ds = O(||ly|])- Thus we arrive at
Y

o / e % Owa ds . (A.25)

ayx oyx 0 H ] PPy
Ow
Substitution of Qw,/dv = —v, on Ow gives (A.23), from which we find (A.3).
Let note that the quadratic form

~g"mapa’ = ol g+ [ [Vuldy (A.26)
R*\w
where w = ¢®w, is positive definite. We conclude that the matrix (mqg) is negative definite.

The present Appendix has been written with the help of the papers by: Schiffer and Szego (1949),
Maz’ya et al. (1991) and Movchan and Movchan (1995).

APPENDIX B.

The mass matrix in the plane problems of anisotropic elasticity.

B1. The Somigliana tensor

Let us recall the fundamental solutions (Somigliana’s solutions or Kelvin’s solutions, according to
other authors) in the plane problem of linear elasticity. The body is considered as homogeneous and
anisotropic, of elastic moduli A%** extended to the whole plane IR?, parametrized by the cartesian
coordinate system (y1,y2) with the basis (e1,e2).

Assume that in point O = (0,0) a force of value 1 is applied in the direction of the oth axis. This
force is represented as a concentrated body force of intensity

b,y =d(y — O)e, (B.1)

with the components: (b(y))a = dasd(y — O). This force causes the displacement field T'(,) of com-
ponents (T'(,))1 and (T'(4))2- In each circular domain Br = {y| ||y|| < R} the following variational
equation is satisfied

[ AT o) )eas(p)dy = 9(O) - € + [ A%, (T(p))nppa ds (B-2)
Br I'r

for all sufficiently regular test functions ¢ = (¢q)-
The field T,y can be found by making the Fourier transform of the equations

aﬂbga (T( )) _
A W + 0000y —0) =0. (B.3)
One can prove that the fields (T(y))a include singularities of order O(ln|[y|), while
€ap(T (»)) include singularities of order O(|ly||=1). The fields T, are infinite at infinity, but eag(T (o))
and, consequently the stresses o®? (T(5)) vanish at infinity and thus they well describe the response of
the body to the concentrated force (B.1).

In the case of general anisotropy the fields (T'(,)) cannot be put in closed forms. This is possible in
some special types of anisotropy. The simplest formulae concern the isotropy case. Then the components
(T'(5))a are given by, cf. Bonnet (1995, Eq. (4.49)), Hahn (1985, page 274), Movchan and Movchan
(1995, Eq. 5.1.18)

1 YolYa
Ti)a=———|—(k+2u)0s0 In|yl| + & . B.4
(T(s)) Tl 1) ( 1) lyll e (B.4)

INRIA
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B2. Definition of the mass matrix

The fields x9 or the solutions of the problems (PUS'“D), are singular at y = O and are there of
order O(||ly||™™), n = 1,2,3,.... The subsequent singular terms are generated by the functions

0 0?
— (T T ...
35 (o)) - e (T@)e) -
o 0 9? .
describing the response of the body to the hyperforces: —d(y), ————4d(y), ...applied at y = O.
9y 9Y0Ya

The most important are the terms of the weakest singularity of order O(||y||~!). Let us disclose them

as follows
X = MFPey (T ) + Oyl ™?) , (B.5)

where M®9M are certain constants depending on the shape of the w domain.

Theorem B1.
The coefficients M** that enter the expansion (B.5) are determined by the following integral formulae

(i) formula (6.32)

(i)

M09 = _ ARSTY| | — AgRIOY (B.6)

where
MY — / Aaﬁ/\ue)\p(x(ms))eaﬂ (X(U’Y)) dy (B.7)

R2\w
or
Mmia’y :Aaﬂmj/X((xa’Y)Vﬂ ds (BS)
Ow

(iii) the following symmetry properties hold
Mmfo’y — Ma'yn& ’ Mmsa'y — MJno’y — Mnﬁ'ya . (Bg)

(iv) the matrix M is negative definite.

Proof of (i).

Let us encompass the domain w by the circle By, similarly to Sec. 5, where the variational equation
(5.30) is derived. The fields %°?) or solutions to the problems (15&07)), see Sec. 5, Egs. (5.40) — (5.42),
satisfy the variational equation of the form similar to (5.30):

4w [ e, (57 eap(®) dy = A% [ e, (9 ngoads (8.10)
Br\w Tr

valid for sufficiently regular fields ¥,. The boundary conditions (5.41) have been taken into account.
Let us put @ = () in (5.30) and & = x(9 in (B.10). Thus we arrive at two identities of the
same left-hand sides. Equating the right-hand sides gives the formula

NEdoy _Aaﬁné/¢&07)yﬂ ds | (B.11)
ow
where
NHEOTY . gaBAn / I:G)‘/J (X(n5)) wgf’ﬂ 2y (IP(U’)‘)) Xt(xms)] ng ds . (B12)

RR n " 3798 Tr



32 Tomasz Lewiriski and Jan Sokotowski

Thus the matrix N does not depend on R. The coefficients N®9?7 will be found by passing with R to
infinity in the formula (B.12). We substitute

1
¢((lav)|FR =E") +0 (E) ) (B.13)
1

(o7) — 577 —

Exp (¢ oy ) Irp = 0%, + O <R2> , (B.14)
into (B.12). By disregarding the terms that do not contribute to the final result we obtain
NrdoY — Rh_r};o AeBiu / [6)\“ (X(mi)) E((IU’Y) _ X&ms)é;;ﬂ ngds , (B.15)
I'r

and substitution of the representation (B.5) gives

Nmia’y — Mmhgna'yg ’ (B.16)

where
0%y o= A lim [ (e, (e0(T)) BY™ = e1g(T(w))057] ms ds - (B.17)
Tr

We have introduced the following notation cf. (B.5)

3 (F0) = M= (T) + O (||y||—2) ’ (B.18)
with 5 5
X" =[5 T =TT - (B.19)

The matrix T is a representation of the Somigliana tensor.
Our aim now is to show that

N0 =01y - (B.20)

The key idea of the proof is to make use of the Somigliana’s equation (B.2).
Let the hyperforce

s = [fAu(b(l))aG)\u(b(Z))] (B.21a)
be applied at the point O = (0,0); A and u are viewed here as fixed. Its components read
s = exu (b)) (B.21b)
and are given by
1] 0 0 1 51 00
() — 2 |2 - = _ - — . B.22
Sa 5 [ a0, (6ard(y)) + A (5au5(y))] 5 <5aA o9, + Gy ay/\> (B.22)
The force (B.21a) causes the displacement field
Ut = [GAH(T(U),G)\“(T@))] (B.23)
or
UM = ¢),(T) . (B.24)

The displacement field UM satisfies the variational equation (B.2) in which the force b, is now
replaced with s(M) . Tt reads

[ A, (0T)) eaple) dy = (s809,0) + [ A0, (,(T) mgpads ,  (B.25)
Br Tr INRIA
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where ¢, denote the components of the vector test function ¢ which is assumed to be sufficiently
regular.
Using the pseudoforces introduced below, we have

1 0 0
¢ ") = pasi = 5 (wai’l + goai") = exul(@n - @) — () bn () (B.26)
Yu YX

which leads to the expression, by the limit passage,

O ) = 1 ) L\ —
(M) = lim (57"0) = ~eru(9)(0) - (B.27)
Let us introduce the pseudoforces sSL)‘“ ) of components (sg‘“ )) given by (B.22) with é(y) replaced by
(&7

¢n(y). Here ¢p(y) is the mollifier defined in Appendix A. The pseudoforces s; cause the displacement

fields €y, (T™) which satisfy the variational equation:

(Au)
h

a2 [ ey (™) cap(@)dy = [ @0 dy+ 420 [ e,y (e3,(T") ngpa ds
Br Br Ir

for sufficiently regular ¢. One can substitute ¢ = E"9) to obtain

AoBPre / €10 (GAN(Th)) dy = / E(+9) . sg‘u) dy + AaBre / €10 (EA“(Th)) E((fé)ng ds . (B.28)
Br Bgr I'r

Note that the stresses associated with the field E*9) satisfy the homogeneous equations of equilibrium.
Thus the following variational equation holds

a0t [ ) (B) eap®) dy = 4272 [ ey (BUD) mgiiq ds (B.29)
BR FR

for sufficiently regular 7. Let us substitute v = eAu(Th) to obtain

ACPR / €af <6Au(Th)) dy = A% / GA“(T?OC))nﬂ ds . (B-30)
Bgr Tr

By equating the right-hand sides of the indentities (B.28) and (B.30) one finds

a5t [ ey (exalT") BE — e, (Tl))és ] ngds = — [ BEO () ady
I'r Bgr

Let us go with h to zero. The left-hand side of the above identity tends to n_’f“ﬁu defined by (B.17). The

right-hand side tends to ey, (E*?) = 5§Z. This proves (B.20).

Substitution (B.20) into (B.16) gives N = M. The thesis (i) is proved.

Let us proceed to derive the formula (B.6). We substitute & = x(*?) in the variational equation
(5.30). We note that

/e,\u (x("‘s)) X&‘”)ng ds — 0
T'r

it R — oo. Indeed, €, (XWD) = O(R™?) and ¥ = O(R™'), ds = Rdf. Thus the above result
holds. Consequently, we find

42 [ e (X0 cap (X)) dy = 4°59 [ Xy ds (B-31)
RR n 3798 R2\& ow
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which proves (B.8).
Let us write down (B.11) in the form

AR — _ paBRs / [ B 4 X(am)] v ds . (B.32)
ow

By using the formula (A.22) we compute

[ s = : [ s + oty v ds = 5 Gaobyp + 8oy o] = dT3J] (B.33)
ow ow
Thus the formulae (B.22) and (B.8) imply (B.6), which proves the thesis (ii).
The symmetry properties (B.9) are the consequences of the formulae (B.6) — (B.7) and the symmetry
properties (5.3) of the tensor A.
Let us prove (iv). Consider the quadratic form

f(Q) = Qaﬂ(_Maﬂ)‘u)Q)\u .

By (B.6), (B.7) we have

f(Q) = QnéAKJU’YQU’)'|w| + / 6Au(¢)A)\“aﬂ€aﬁ(¢) dy 3 (B'34)
R2\w

with ¢ = qagx(o‘ﬂ). Since x(@®) ¢ R we know that exu(@) # 0. The estimation (5.4) implies f(g) >0
if g # 0. The thesis (iv) is proved.

The present Appendix has been written with the help of the book by Maz’ya et al. (1991), where
the notion of the mass matrix had been introduced in the case of isotropy of the tensor A.

APPENDIX C.

The Maz’ya-Nazarov formula for the energy of a body with a small opening.
The Neumann problem.

The aim of the present Appendix is to recall the derivation of the formula (4.43). This formula
appeared in the literature for the first time in the paper by Maz’ya and Nazarov (1987). The derivation
given below repeats the arguments of the original derivation.

The energy function E(€2.) equals

E(Q.) = /p(x)ug(x) ds . (C.1)
o

To use the formula above we must assure that the boundary condition (3.3) is fulfilled with accuracy
O(&?). Let us write down the expansion (3.28) with using (3.26). We write

1 =z e
2 a 0 2
— ) 2
us(xz) =v(x) — ¢ mgaZ T HQeﬂ +e“z(x) + €O < ) (C.2)
The condition (3.3) imposes
0z 1 0 0 T )
Bg = 5 Mt <|| E on 0N . (C.3)

Thus the function z is harmonic and satisfies (C.3). Let us decompose this function

z(z) = mgae%za(m) ) (C.4)
INRIA
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where z, are solutions to the problems

find z, defined in € such that

(13&) uAzq =0 in Q, (C.5)
% — ig (a:_a> on 69 (C.6)
Fon = 2ron ||z ) ’
Let us note that the functions f, = 1 || ”2 do not satisfy (C.5) for z = O € Q.
Let a5
rale) = Tule) — 22 1)
where S(z) satisfies (3.24). Thus we have
1 =z,
2a(1) = To(z) + 5—7— (C.8)
2mp |||
and 98 )
Az = pATy — pA ( > = pAT, (z) (C.9)
0T, 0z
Along the boundary 92 we have
0z, 0T, 1 0 ( T )
92 _ 0Ty 1 0 ( %o 1
Fon =" an + 27 on \||z||? (C.10)
We see that the functions T}, satisfy:
00 (x) )
AT, = — Q A1
p or. in (C.11)
BT
pH=0  on 0Q. (C.12)
Substitution of (C.8) into (C.2) gives
2
ue(z) = v(z) + *mpq e% To(z) + €O ( g ) . (C.13)
We substitute now the above expression into (C.1) and find
E(.) = E(Q) + e*mpac) / (2)ds + o (7). (C.14)
N
Let us write down the weak formulation of the problems (C.11 — C.12) and (FPp) of Sec. 3:
To
,u/ 0 8(’0 = 66($)90ds, (C.15)
0z &Bﬂ 0z
N
v 3(,0 -
. A
8:% 9z; dx /p(pds (C.16)
o
Substitution of ¢ = v and @ =T, leads to the identity
/pTa ds = / Mv(x) dz | (C.17)
0z,
o9 o0
which gives
ov ov
T = — [ = - = — 0 . ].
64 T, ds ([ B(a) 5o dz = =5 -(0) =~ (C.18)

The expansion (4.43) is now confirmed.
RR n " 3798
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