-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

On the Finite Volume Reformulation of the Mixed
Finite Elements Method on Triangles
Guy Chavent, Anis Younes, Robert Mosé, Philippe Ackerer

» To cite this version:

Guy Chavent, Anis Younes, Robert Mosé, Philippe Ackerer. On the Finite Volume Reformulation of
the Mixed Finite Elements Method on Triangles. [Research Report] RR-3769, INRIA. 1999. inria-

00072892
HAL Id: inria-00072892
https://hal.inria.fr /inria-00072892
Submitted on 24 May 2006
HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/50451898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072892
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the finite volume reformulation of the mixed
finite elements method on triangles

Guy Chavent Anis Youneés, Robert Mosé, and Philippe Ackerer

N° 3769
September27, 1999

THEME 4

apport
derecherche







%I INRIA

ROCQUENCOURT

On the finite volume reformulation of the
mixed finite elements method on triangles

Guy Chavent*" Anis Younes?, Robert Mosé!, and Philippe
Ackerer!

Théme 4 — Simulation et optimisation
de systéemes complexes
Projet ESTIME

Rapport de recherche n° 3769 — September27, 1999 — 49 pages

Abstract: =~ We analyse the finite volume reformulation of the triangular
mixed finite element approximation for the porous flow equation, as proposed
in [10] [9]. We show that the finite volumes are obtained by aggregation of finite
elements (usually one, sometimes two or more), that the matrix of the finite
volume equations is regular, but generally not symmetrical, and that the finite
volume formulation is algebraically equivalent to the mixed approximation.
The finite volume matrix becomes symmetrical in the stationary case, and
positive definite when the triangulation satisfies the Delaunay condition.
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Sur la reformulation volumes finis de
Papproximation par éléments finis mixtes
triangulaires

Résumé : Nous analysons dans ce travail la reformulation par volumes finis
de I'approximation mixte sur des triangles pour 1’équation des écoulements en
milieux poreux, introduite par [10] [9]. Nous montrons que les volumes finis
sont obtenus en agrégeant un ou plusieurs éléments finis, que la matrice des
équations de volume fini est réguliere, mais généralement non symétrique, et
que cette formulation volume fini est algébriquement équivalente a la formu-
lation mixte. Dans le cas stationnaire, la matrice en volumes finis devient
symétriques, et définie positive lorsque la triangulation satisfait le critere de
Delaunay.

Mots-clé : éléments finis mixtes, volumes finis, écoulement en milieux po-
reux.



On the finite volume reformulation of the mized finite elements method... 3

1 Introduction

We consider in this paper the numerical resolution of the elliptic equation:

( —V(aVu)+bu=f inQ
} u=ucon 02p (1)
ou
\ —am = g on 0¥y

where € is a bounded, polygonal open set of IR*, Q) and 9§y is a partition
of the boundary 052 of €2 corresponding to Dirichlet and Neumann conditions,
and v is the outer normal to 0f2.

This work was originally motivated by efficiency consideration for the com-
putation of transient and stationary flow in porous media. If one uses for
example an implicit time discretization, the corresponding equations are

( u® — un—l

Xy —V(@Vu")+bu™=f"inQ, n=1,2,..,
u" = ul on 0p, n=12,..,
e )
—a 8u =g" onddy, n=12 ..,
v
u® = u, on {2

So we see that

e b =0in (1) corresponds to the stationary or steady state case ¢ = 0 in
(2),
e 0> 0in (1) corresponds to the transient case ¢ > 0 in (2) (substitute b

C C n
by < and f by f+ u )3

RR n°3769



4 Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

and from now on we shall consider only equation (1).

In the context of flow through porous media, the numerical resolution of (1)
by mixed finite elements has received a growing attention in the last years [5]
[7] [4] : the separate approximation of the piezometric head u and the Darcy
velocity ¢ = —aVu it provides allows for a precise determination of flow lines
and propagation of contaminants.

But the development of the mixed approach have been hampered by the com-
putational cost involved. When lowest-order Raviart-Thomas elements [8] are
used, which is almost always the case in practical applications, the resolution
of (1) leads to a system with one scalar unknown Tug per edge E (the no-
tation Tug stands for “trace of v on E” and represents the piezometric head
on E). This can be a major drawback for large problems, compared to finite
difference and finite volume schemes which lead to one unknown ux per cell K.

So attempts to reconcile the precision of mixed approximations and the ef-
ficiency of finite differences and finite volumes have been made by various
authors. The first results were all based on the use of a quadrature formula to
diagonalize the elemental matrices of the mixed approximation. This worked
nicely on rectangular meshes, where numerical quadrature made mixed ap-
proximation equivalent to finite differences (see for example [2]). These results
were extended to the case of tringular meshes in [1] , but the diagonalization of
the elemental matrix by numerical quadrature appears to be a precise approxi-
mation only when the triangle has three sharp angles, and the corresponding
schemes with one unknown ux per triangle do not seem to be used in practice.

Recently, a purely algebraic transformation of the mixed approximation on
a triangular mesh has been proposed, which allows to rewrite the equations in
term of only one unknow Hy per triangle K, where:

Hyg = Z kel UE (3)

ECOK

(H is different from the mixed elemental unknown wuy). This triangulation
was introduced first in [10] for stationary problems, and extended to transient

INRIA



On the finite volume reformulation of the mized finite elements method... 5

problem in [9]. It was shown in these papers that the resulting system for
the Hg unknown was non-symmetrical in the transient case, and symmetrical
(positive definite under additional assumptions) in the stationary case. All the
calculations however were formal, in the sense that for example no attention
was paid to check that the denominators in the formula were non zero, or to
what happened to the final system of equations when some of the coefficients
vanished.

So the objective of this paper is to give a rigorous presentation and a slight
generalization of this material.

After recalling in detail the properties of the lowest-order Raviart-Thomas ap-
proximation on one triangle K in section 1, we introduce in section 2 the new
unknown Hpg by requiring that the formulas

Qu,p = &k,sHr — bk pTup + 7k, E COK (4)

produce on K the same Dirichlet-to-Neumann map as the original mixed ap-
proximation. We give formula for 7x g, &k r, 6x,r and yx both in the case
where all three off-diagonal entries of the 3 x 3 mixed Dirichlet-to-Neumann
matrix are non zero (we call such a K regular), and in the case where some
off-diagonal entries vanish (we call such a K singular). We show that, when
(7n, h > 0)is aregular family of triangulation of €2, it is always possible, pro-
vided h is small enough, to ensure that Hy is a linear interpolate/extrapolate
of the Tug, E C 0K by chosing Z 7Tk,r = 1, and that the 0k g in (4) are

ECOK
non-zero.

In section 3 , we build up the “finite volume” equations
BH =F (5)

where H = (Hy, V € V), and Hy is the unknown associated to the finite vo-
lume V. Most of the times, a finite volume V' will coincide with one triangular
element K (and then Hy = Hg !), but it can also be made of two elements K
and L sharing a singular edge F', that is an edge such that:

1 1

6K,F+6L,F:00r—+—:0 (6)
5K,F 6L,F

RR n° 3769



6 Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

(and then Hy is linked to Hx and Hj, by simple affine relations). For simpli-
city, we limit ourselves in this paper to the case where a finite volume V is
made of one or two elements, but in general a finite volume could be made of
an arbitrary number of elements. The main findings in section 3 are that i)
the finite volume equation (5) is algebraically equivalent to the lowest order
Raviart-Thomas mixed approximation, and ii) the matrix B is regular, under
technical hypothesis which are automatically satisfied, for a regular family of
triangulation, when A is small enough. Notice that the number of finite unk-
nows Hy in (5) can be significantly smaller than the number of elements K if
many finite volumes are made of two elements !

In section 4, we specify the above results to the stationary case where b = 0.
In this case, the finite volume equation (5) is always equivalent to the Raviart-
Thomas mixed approximation, with a finite volume matrix B which is both
regular and symmetrical. Then we give a necessary condition:

Yo byw >0 YWe (7)
ECOV,E¢0y
and a sufficient condition
(SV’{/V>O YWV e Vy,,VE COV,E ¢ 00y (8)

for B to be positive definite, where:

e if £ C OV is an interior edge, then F = K N L, and

1 1 1 1 [ cotan 0 cotan 6
( KE | L,E>7 9)

ovw OkE OLE 2 ag ar,

e if £ C OV is a boundary edge, then £ = K N 0f2, and

11  lcotanfgp (10)
ovw OkE 2 ag

In the above formula, 6k r denotes the angle of K opposite to the edge E.
When the diffusion coefficient a is constant, we see from (6) (9) that one finite

INRIA



On the finite volume reformulation of the mized finite elements method... 7

volume V will be made all elements K of 7;, which have their vertices on a
same circle, and from (8) (9) that the matrix B will be (symmetric) positive
definite as soon as the triangulation 7}, satisfies the Delaunay criterion, i.e.:
for any K of 7, the opposite vertices of its three neighbours are outside the
circle circumvented to K.

2 The lowest order mixed Raviart-Thomas ap-
proximation over one element

Let us consider a triangular element K with vertices a; 1 = 1,2, 3, and denote
by E;, 1 = 1,2,3 the opposite edges. In the mixed-hybrid formulation of the
mixed approximation, the solution u to equation (1) is approximated, over K,
by the following quantities:

ug € IR ~ mean value of u over the element K
Tug; € IR ~ mean value of u over the edge E;, i=1,2,3 (11)
gk € Hx  ~ approximation of § = —aVu over K

where Hp is the lowest-order Raviart-Thomas space [8]. A basis of Hg is given
by:

— 1 -
W i(x) = m(x —a;) 1=1,2,3. (12)
and ¢x writes
3
I = Z Rk, UKk, (13)
i=1

RR n°3769



Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

where Qr; denotes the flow leaving K through the i edge. We introduce now
local matrix notations on element K:

(

Ag = [Ak,; | with Ag,;; = / Wk, - Wk j,
K

(symmetric, positive definite elemental Raviart-Thomas matrix)
D=[1 1 1] (elemental divergence matrix)

Qr, Tug (14)
Qr = QK,2 yTug = TUK,z
QK3 Tugs

| (elemental flow and edge pressure vectors).

When the domain €2 is covered by a single element K, the lowest order Raviart-
Thomas mixed approximation to the elliptic problem (1) is:

D Qx +bx|K|ug = Qs .k, (15)

ArQr = GK(UKDT - TuK)7 (16)

with the boundary conditions:

Tuk,; = ue,; if edgeiis part of 02p (17)

Qk;i+ Qi =0 if edge i is part of 0y, (18)

where we have used the notations:

(K| = area of K
ag >0 approximation of a¢ on K,
b >0 approximation of b on K,
S Qs = / f source flow rate injected in K (19)
K
Qe,i = / g source flow rate injected through edge E;
E;
Ue; € IR approximation of u, on the edge FE;.

INRIA



On the finite volume reformulation of the mized finite elements method... 9

Even in the very simple case of Dirichlet boundary conditions (0Q2p = 09)
where both Qs k and Tug are known, one can notice that the matrix for the
resolution of the one-element approximation (15), (16) is:

1 T
EAK -D

"D bklK| (20)

which is symmetric but not positive definite. The elemental Raviart-Thomas
matrix Ag satisfies some nice properties, which we recall now (we refer to [3]
and [6] for the proofs).

Lemma 2.1 For any non-degenerated triangular element K, the matriz Ax
1$ 1nvertible, and:

1
A =Ck + %DTD (21)

where (see figure 2 for the notations) the elements of the 3 x 3 matriz Ck are:

E;
{ Crki= 2‘}”,‘ = 2(cotan Ok ; + cotan Ok ) (22)
1=1,2,3 1,74,k all different
CK,i,j = —2 cotan 0K,k (23)
1,7 =1,2,3 1,4,k all different

and where lg > 0 is a dimensionless shape coefficient of K, defined by:

1 : 3 p?
le = —— —ay) = 2Pk 24

where pg s the radius of giration of K defined by:

1
§pg(|K| = / \z — g|?, where g = gravity center of K. (25)
K

RR n° 3769



10 Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

Ok k

a .
ay E; J

Figure 1: Notations for Lemma 2.1

INRIA



On the finite volume reformulation of the mized finite elements method... 11

Lemma 2.2 The coefficients Ck;; of Ck satisfy, for a non-degenerated tri-
angle K (we drop the indez K ):

Ci+Cij +Ciu, =0 (3,7, k all different), (26)
Ci1 4 Cyy + C33 = 48l (27)

Cig + Co3 + C3 = —24l, (28)

C12C13 + Cy1Co3 + C31C39 = 4, (29)
CiiCjj — Cli=4  (i,],k all different), (30)
Ci, < % — % (4, 7,k all different), (31)

Moreover, the shape coefficient | satisfies always:
1>+/3/12 e 482> 1, (32)
and for a given [, the achievable off-diagonal Cjy’s satisfy:
Cy + 81| < % (AP —1) jk=1,2,3,5 £k (33)
The equality holds in (31) (32) and (33) when K is equilateral.

Lemma 2.3

AR DT = ;DT (35)

RR n~° 3769



12 Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

We can now use lemma 2.1 and 2.3 to compute the Dirichlet-to-Neumann map
of the one-element approximation (15), (16), i.e. the formula which expresses
the flux vector Q in term of the edge-value vector Tug:

Proposition 2.1 The mized Dirichlet-to-Neumann map on the element K 1is

given by:

QK: —aK {CK+3VZ—KDTD}TUK+(1—Z/K)QS,KDT/?) (36)
K

where 0 < v < 1 is defined by:

VK _ bKlK|K| :1 9 b_K
1—1/K 3&[{ 8 KGK

(37)

where li is the shape coefficient of K defined in (24) and pg its radius of

giration defined in (25).

Proof : Premultiplying (16) by D and using (34) of lemma 2.3 gives:
ZKDQK = 3GKUK — aKDTuK

Plugging this expression for D@k into the balance equation (15) gives:

3a a
S b bk|K| ) ug = SDTug + Q, k.
lK lK

Substituting again the above expression for ux in the constitutive equation
(16) gives:

CZL—KDTUK +Qux

AxQr = ax K3 D" — Tug ¢,
aK
— + bk | K|
Ik

which involves only Qx and Tug. Then solving this equation for Qi gives,
using formula (35) of lemma 2.3 :

1 l

gD ur + 5 Qurc |
K — DT — AT

+ bKlK|K| Ik K LUK

3(1,](

QK=CLK
1

INRIA



On the finite volume reformulation of the mized finite elements method... 13

which is (36) once A, is expresses by formula (21) of lemma 2.1 and bylx|K|/(3ax)
is expressed in term of v using (37).

From proposition 2.1 we see that, in the stationary case where by = 0 and
hence vk = 0, formula (36) reduces to

Qx = —axCxTux + Qs x D" /3 (38)

which shows that the linear part axCy of the Dirichlet-to-Neumann map de-
pends only on the geometry of K (up to the scalar coefficient ay of course).

On the contrary, in the non stationary case where bx > 0 and hence 0 <
vk < 1, we see from (36) that the linear part of the Dirichlet-to-Neumann
map depends both on the geometry of K (through Ck) and on the material
properties ratio bx /ax (through vg). Its limit value is given by

b
Ck + VZ—KDTD — A% when X o de vk — 1. (39)
K aK

Corollary 2.1 The balance equation on K writes:
DQk + pxDTug = (1 — vi)Qs i (40)

where we have set

br | K|
3

pie = ag e = (1 vg) (41)

lk
Proof : Formula (40) is obtained by premultiplying (36) by D and using the
fact that DCy = 0 (property (26) of lemma 2.2).

The formulation (40) of the balance equation in terms of the edge unknowns
Rk and Tug only will be our starting point for the determination of the finite
volume equations in section 3.

RR n° 3769



14 Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

3 Definition of the new unknown Hy associa-
ted to element K

The idea is as follows: we want to define on the element K a new scalar
unknown Hyg such that

the flux @k ; leaving K through the edge E;
can be expressed in term of Hyg and T'u; only: (42)
Qi =¢xiHk — 6k iTuk; +7k; ©=1,2,3

the unknown Hp is a linear combination
of the edge-values Tu; 1=1,2,3:

3
HK: E WKijUK,j

=1

Condition (42) will be the key to the elimination of the Qx and Tug unk-
nowns, thus leading to a finite volume type systems of equations written in
term of the sole Hx unknowns (see section 4).

(43)

Condition (43) will ensume that the Dirichelet-to-Neumann map associated
to the new formulation is affine, which is a first necessary step.

All the calculations in this section are relative to one given element K. So
we shall drop the K indexes in the rest of this section.

The mixed-hybrid Dirichlet-to-Neumann map (36) rewrites, with simpler no-
tations:

3
Qi=-a) oyTuj+(1-v)Q,/3 i=1,2,3 (44)
j=1

where we have defined
Qij :Cij—f—l//:ﬂ Vi,j:1,2,3. (45)

From (22) of lemma 2.1, we know that the diagonal coefficients ay; @ =1,2,3
are all strictly positive. But the off-diagonal elements «;; 4 # j can be nega-
tive, zero or positive.

INRIA



On the finite volume reformulation of the mized finite elements method... 15

The existence of an H satisfying (42), (43) depends on wether some of the
off-diagonal «;; vanish or not:

Definition 3.1 Let K = triangle and v € [0, 1] be given. We shall say that

o (K,v) is a regular element if and only if K is non-degenerated, and all
off-diagonal o’s are non-zero:

e (K,v) is a singular element if and only if K is non-degenerated, and at
least one of the off-diagonal o’s vanishes. We shall say that (K,v) is a
singular element of type k = 1,2 or 3 if exactly k off-diagonal o’s vanish.

Notice that singular elements of type 2 and 3 can occur ounly if v > 0. A
singular element of type 2 is necessarily isosceles, and a singular element of
type 3 is necessarily equilateral.

Theorem 3.1 Let (K,v) be a reqular element. Then the set of coefficients
7, &y 0; and ;i =1,2,3 such that (42), (43) hold is non-void. It is comple-
tely described by the following formula:

m = S9%k Sk all different, (47)
o
o .. .

& =—a— 1,7,k all different, (48)

Ozjk
6 =a {Oéz'i _ ik } .1, 7, k all different, (49)

Oéjk
def
ni=7 = (1-v)Qs/3 (50)
where

g #0 (51)

can be chosen arbitrarily.

RR n°3769



16 Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

Proof : The Dirichlet-to-Neumann map associated to (42) , (43) is:
3
Q=&Y mTu;— 6Tui+v i=1,23. (52)
j=1

We write now the equations to be satisfed by &;, 6;, v, m @ =1,2,3 for (52)
to coincide with the mixed Dirichelet-to-Neumann map (44):

i) equality of the constant terms:

712(1_7/)@5/3 7’:1’2a3

which is (50).

ii) equality of the coefficients of T'u; in ();, ¢ # j (“off-diagonal terms”):

fﬂl’j = Qyj 7;, ] = 15 2a 3, i 7é.7 (53)
This rewrites as:
E1mg = Eam = —aaqy
&imy = &M = —aoy (54)
§omy = &3y = —aaws

As (K, v) is a regular element, none of the numbers &;, m;7 = 1,2,3 can
be zero. Hence the first and second equation imply

™ _ & _ o
T3 &3 a13
We get similary from the first and third

mo_ & o

3 &3 Q23 ’

and finally from the second and third:

mo_ & s
T2 52 Q23

INRIA



On the finite volume reformulation of the mized finite elements method... 17

This implies that the vectors (mmam3) and (£1€2€3) are necessarily pro-
portional. Hence we can search without restriction m;,&;, ¢ = 1,2,3
under the form

m=p& 1=1,2,3 (n#0) (55)

where the proportionality coefficient y is still to be determined. Condi-
tion (55) implies that the three left equalities are satisfied in (54). Then
the three right equalities rewrite:

&6 = —p taans
§obs = —p ' acns (56)
&6 = —plaans

Multiplying two of the equations and dividing by the third gives

7= —p taanaans/ o
5 = —plaaipags/ang (57)
€§ = —N_laa230413/0412

The right hand sides of (57) have always the same sign, whatever the
individual signs of aqs, a3 and ag; are. Hence (57) will admit solutions
as soon as p is chosen such that

sign () = — sign (aq2003031).
Without loss of generality, we can satisfy this by setting:

1
Mn = —504120423&31/0_44 (58)

where @ > 0 is still to be chosen. Whith this choice of p, (57) rewrites:
& =ad’a'/(a;1)? 1,4,k all different.
Hence &; is necessarily of the form:

& = ;00 oy, 14,7,k all different. (59)

RR n° 3769
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where the ¢; = 1 have to be chosen in such a way that the original
equations (56) are satisfied. Substituting (59) into (56) shows that this
will be the case as soon as

gig; = +1fori,j =1,2,3 with i # j

which implies that all the ¢;’s have the same value (either +1 or —1).
Hence we choose:

gi=¢, 1=1,23
where ¢ takes either the value 4+1 or the value —1. Finally the formula
giving &; is
& = —aed@ Joyy i, 7,k all different, (60)
which is (48) with & = ea®. Then (55) (58) give
™ = eqijau /&%, 4,7,k all different, (61)

which is (47) with again & = ea?.

iii) equality of the coefficient of Tu; in Q; (“diagonal terms”):

&mi— 6, =—aqy; 1=1,2,3

which gives exactly (49) when &; and m; are substituted using (60) and
(61).

This ends the proof of theorem 3.1.

Before we discuss the choice of the constant ¢ in theorem 3.1, we devote two
lemmas to properties of 7;,&; and §;:

Lemma 3.1 Let (K,v) be a reqular elements and m;, & and 6; determined by
theorem 3.1 for some constant o # 0. Then one has:

QI Q

(62)

3
E 7Tj =
Jj=1

INRIA
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Q1223031

3 _
Yg=—a—T (63)
j=1

3
G=mY &=6-p 1=1,2,3 (64)
j=1
where o s defined by:
3 2
U:;aijaik=4—16y+ﬁ (65)

Proof : Properties (62) and (63) result directly from the definitions (47) (48)
of m; and &;. The first equality in (64) is obtained by combining (47) (48)
with (63) and the definition of o (first equality in (65)). To proove the second
equality in (64), notice that, given any three numbers T'u; ¢ = 1,2, 3, the Q;
given by (52) coincide with the ones given by the mixed-hybrid Dirichelet-
to-Neumann map (44), and hence satisfy the balance equation (40). Then
substituting in (40) for the @); using (52) givens:

=1 ]—1

which completes the proof of (64) as the T'u; can take any values. The last
equality in (65) results from the definition (45) of c;; and the properties of C;;
started in lemma 2.2.

We investigate in the second lemma wether ¢ (and hence ij and Zgj)

j j
and 6; can vanish or not.

Lemma 3.2 Let (K,v) be a reqular element with a shape coefficient | (see
lemma 2.1 and 2.2) and a material property coefficient ¢ defined by:
WK vt

L 1-v (67)

RR n° 3769



20 Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

i) Let o be defined by (65), and l, > \/3/12 by:

8 — /16 + 2 ’

¥

3(4812 — 1) = [

Then:

o>0 for V3/12<1<1,,
oc=0 for l=1I,, (69)
oc<0 for I, <l.

ii) Suppose that o # 0 (see above), and let 6; i = 1,2,3 be determined by
theorem 3.1 for the choice & = o # 0, and ls > \/3/12 by:

2

16 — /16 + 52
3(4812 — 1) = [ kil (70)
o
Then:
6 #0i=1,2,3 forv/3/12 <1 < Is
3K with same L, ¢ (71)

st. 6; =0 for somei=1,2,3 forls <l

iii) Both l, and ls decrease from +oo (flat degenerated triangle) for ¢ =0 to
V/3/12 (equilateral triangle) for ¢ = 4+/3, and then increase and tend
to 1/6 (for l,) or 1/3v/5 (for ls) when ¢ tends to infinity. They satisfy
moreover

V3/12<15 <1, Yy >0. (72)

The proof of this lemma is given in Appendix 1. We turn now to the choice
of the constant & # 0 in theorem 3.1. One would like to be able to interpret
the new elemental unknown H as a linear interpolate/ extrapolate of the three
edge values Tu; ¢ =1,2,3. This will be the case if we can choose

7 = o defined by (65) (73)
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as this ensures by lemma 3.1 that the 7; sum up to one. But theorem 3.1
requires that & # 0 , so the choice (73) will be possible only if ¢ # 0 , which
will be the case by lemma 3.2 as soon as ¢ and [ satisfy

V3/12 <1 < 1. (74)
We summarize the situation for such a regular element in the next theorem:

Theorem 3.2 Let (K, v) be a reqular element satisfying (74). Let m;, &, 6;, %yt =
1,2, 3 be defined by theorem 3.1 with the choice (78) for &.
Then (42) (43) hold, with:

0< & <400, 06 <400 i=1,2,3, (75)

3
D mi=1 (76)
i=1

and B3; defined by

Gi=6/& 1=1,2,3 (77)
satisfies:

Notice that 3; = 1 in the stationary case, where ¢ = v = p = 0. This pro-
perty is important, as it will ensure the symmetry of the final finite volume
equations. It is also not true in general in the transient case.

We give now a reciprocal to theorem 3.2.

Corollary 3.1 Let (K,v) be a reqular element satisfying (74). Let m;, &, 6;, 7 1 =
1,2, 3 be defined by theorem 3.2 , and u defined by (41).
Let Q;,Tu; 1 =1,2,3 and H be any numbers satisfying:
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3

> Qi+ pTu) = (1 - v)Qs. (80)
i=1
Then necessarily
3
i=1

{ Qi, Tu; 1 = 1,2,3 satisfy the mized-hybrid

Dirichlet-to-Neumann relation (44) (82)

Proof: Let Q;, Tu; i = 1,2,3 and H satisfy (79) (80). Elimination of Q1Q2Qs3
in these equations gives immediately

(Z fj) H= Z(éz — w)Tu;. (83)

=1

But from (74) implies by lemma 3.2 that o = & > 0 that Z & #0.
J
Hence we can divide (83) by Zﬁj, which gives (81) using (64).
J

We turn now to the case of singular elements, where some of the off-diagonal
;s vanish.

The natural thing to do in that case is to add € # 0 to v to get all off-diagonal
a;; non-zero, apply theorem 3.2 and pass to the limit when ¢ — 0. But
because in that case £ and 6 can simultaneously tend to infinity, the Dirichlet-
to-Neumann formula (42) does not always hold in the limit, but rather its
Neumann-to-Dirichlet counterpart:

H 1T W

- B b;
The result of this approach is given in the next theorem for the case of singular
elements of type 1, where one o;; only vanishes (see definition 3.1); the proof
of this theorem, and the results for singular elements of type 2 and 3, are given
in Appendix 2.

=1,2,3. (84)
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Theorem 3.3 Let (K,v) be a singular element of type 1. Hence one of the
off-diagonal c;; vanishes, say ass = 0. Let m;,&,6;,v %= 1,2,3 be defined
by:

(1 =1 m =0 w3 =0,
61 = “cd” by =aagy O3 = awss,
) pr =1 fo = —Z—iz By = _Z—i’ )
(= Y2 = 7 =1 -v)Qs/3.
Then (84) (43) hold, with
0< |Gl <400 , 0< b <+o0 (86)

3

D mi=1 (87)

i=1
and &; defined by

& = 6;/B; (88)
satisfies

Bi=1+p/& (89)

Once again, one sees that 3; = 1 in the stationary case. We give also a
reciprocal for the case of singular elements:

Corollary 3.2 Let (K,v) be a singular element of type 1. Let m;, &, 6,7, © =
1,2, 3 be defined by theorem 3.8 , and u defined by (41).
Let Q;,Tu; i =1,2,3 and H be any numbers satisfying

H v—-Q;
Tu=H L 0= (90)

B 0;
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3

Z(Qi + pTu;) = (1 - v)Qs. (91)

i=1
Then necessarily Q;, Tu; 1 = 1,2,3 satisfy (81) and (82).

Proof : In a singular element of type 1, one of the ¢; is infinite, say for example
61 = 00, so that §; =1 (see (85)). Hence (90) for 4 = 1 implies that

which is (81) as 7; = 1 and m, = 73 = 0. Let us denote by Q; i = 1,2,3 the
flux variables associated to Tu; ¢ = 1,2,3 by the mixed-hybrid Dirichlet-to-
Neumann map (44). Then the Q; satisfy (91) (corollary 2.1) and (90) (because
of (81) and theorem 3.3). But §; = aay; # 0 for ¢ = 2,3, so that (90) can be
solved univocally for Q,, Qs, and (91) for Q;. Hence Q; =Q; i=1,2,3, and
(82) is proved.

4 The finite volume formulation

We consider now the mixed approximation of the elliptic equation (1) over a
triangular finite element mesh with lowest order Raviart-Thomas elements.

We denote by {7, h > 0} a family of triangulation of Q which is regular:
Flmax such that VA > 0,VK € T, : v3/12 < g < lnax (93)
and adaptated to the boundary conditions:

either F' is an interior edge,
for any E € &, one has ¢ or E C 0€)p, (94)
or F C GQN

where we have set, for any A > 0:

En = {edges E of elements K of 7, }. (95)
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The mixed approximation to equation (1), and the equivalent mixed-hybrid
formulation, can both be derived from the following set of equations:
Find (ug, Tug, Qk) € R", K € Ty, such that:

on all K € 7;:
{ DQk + bk |K|uk ?.r Qs,x, (96)
AxQk = ax(uxg D' — Tug).
on all interior edges £ = K N L:
{omsanto &
on all Dirichlet edges F C 0Qp:
Tuk,p = UeE- (98)
on all Neumann edges F C 0{Qy:
Rr,p+ Qer = 0. (99)

Elimination of the edge-unknowns Tug g leads to the original mixed approxi-
mation, and elimination of the element unknowns ux and the edge fluxes Qx g
leads to the equivalent mixed-hybrid formulation (see [2]).

So we know that equation (96) thru (99) admit a unique solution (us, Tur, Qk),
K eT,.

In order to limit the complexity of the forthcoming discussion of the finite
volume formulation, we shall make a few simplifying assumptions. We give
here the two first:

all singular elements are of type 1, (100)

ok #0 VK € Tj. (101)

As (75, h > 0) is a regular family of triangulation, it follows from (67) and (93)
that A — 0 implies v — 0. Hence (100) and (101) will be automatically
satisfied if h is small enough, as we check now:
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e we see first from lemma 2.2 that:

Cij =Ci < — ! - < 0 if K isosceles,
6l(1+4/1— @)
Cij =Cip =Cyy = —73 <0 if K equilateral,
so that there will be no singular element of type 2 or 3 as soon as
0<v< ! — (102)
21+ 4/1— TIE )

max

in which case (100) will be satisfied.

e lemma 3.2 part i) implies that (101) will hold as soon as h is chosen small
enough for px = by |K|/3ax to produce by (68) on each regular K an
lo,k > lmax defined in (93). On a singular K where, say, o = 0, one
always has ox = a;j04, # 0, and (101) is always satisfied.

We can now apply theorem 3.2 on all regular elements K of 7;, and theorem
3.3 on the remaining singular elements. The coefficients 7x g,k &, Bk 5, Ok,E
and vk g defined in this way on all edges E of all elements K satisfy:

0 < |ék,E| < 400, 0 < |6k,r| < 400 VE C 0K if K is regular, (103)

0 < |Bk,E| < +00, 0 < |6kr| <+oo VE C 0K if K is singular, (104)

Y mkp=1 (105)

ECOK
ok, = ¢k ePre VE C 0K, (106)

Brkp =1+ pux/éxp VE C OK. (107)
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We can now define, on each K € 7}, the elemental quantity Hyx by

Hig =Y mgpTup, (108)

ECOK

which, as we know from theorems 3.2 and 3.3 , are linked to Tup and Qxk,r
by:

Qe =&k pHk — 6k gTug + vk VE C OK if K is regular, (109)
H _
Tup = —— + Tk — Qe VE C 0K if K is singular. (110)
Br,E Or,E

Now the elemental quantities Hx are defined on each element K. The next
step consists in establishing the equations satisfied by these new quantities.
We shall start for this from the balance equation on each K in the form of
corollary 2.1, which we recall here:

3 @k + bxTug) = (1 — vk)Qsx VK € Ty, (111)
ECOK

Our goal will be achieved if we can express on all edges E € 7;, the quantity
Qk,p + pxTugr in term of Hx on the adjacent elements and possibly the
boundary conditions. The possibility of doing this will depend on wether or
not E is a “regular edge” in the following sense:

Definition 4.1 An edge E C 7T}, is called singular if and only if:

Z‘SK;E:O O’I"Z 1/6K,E:0

K>E KOE (112)
(whichever makes sense)

and one of the following properties holds:

E=KnNL 1S interior,

or:

E=KnodQp andK is singular, (113)
or:

EF=KnodQy andK is regular.

All other edges are called regular.
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We recall that |0k, | can range from zero for a regular element - see (103) - to
infinity for a singular element - see (104).

We make here a third simplifying assumption to the effect of limiting again
the complexity of the final equations:

{ on all interior edges ' = K N L, there is at most (114)

one zero 0.y, 1 = K or L.

We do not eliminate the case where éx p = 05, 5 = 0o (which can happen if K
and L are singular), as this does not incur additional complexity in the dis-
cussion, and corresponds for stationary problems to the pratically interesting
case of a rectangular mesh where each rectangle is split into two triangles.

Once again, we see from part ii) of lemma 3.2 that (114) will hold as soon
as h is small enough for g = bg|K|/ax to produce by (70) on each regular
K an ls g > lyay defined in (93).

The important feature of a regular edge F is that one can always retrieve
both Tup and Qg g from the neighbouring H-values and /or the boundary
conditions.

Lemma 4.1 Let E € T;, be a regular edge.
i) if E = K N L is an interior edge:

(5K,E + 5L,E)TUE =¢x,pHk + vk +&,eHr + 71

(bkp+61E)QkE =06k eHr +Vx)— 6k,6(€e,eHL +71)

. if K and L are regular, (115)
) 1 H
<1+ﬂ) Tug =—(§K,EHK+7K)+—L+£
oL,k oL,k BrEe  OLE

0 H
<1 + ;—E) Qr,r =&kpHrk + 7k — 0k,B <—L + L
LE
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. if K is reqular and L singular, (116)

1 1 Hx 7k ) Hyp L

—+— | Tug =4 ( + + 5 +

(5K,E 5L,E) o e \ Brkp  OkE Swe \ e OLE
1 1 HK YK HL YL
) Q= +
( : ) S R Bre Ok

. if K and L are singular, (117)

il) £ = K N 0Sp is a Dirichlet boundary edge :

TUE = Ue,E,
Qr,r = Exk,pHKk + Yk — Ok, Ele,B:

(with the convention that & is replaced by 6/5 if K is singular). (118)

iii) £ = K N 00y is a Neumann boundary edge :

o, eTup =k eHr + VK + Qe,E,
Qrp+Qer=0

(with the convention that & is replaced by 6/5 if K singular)  (119)

The proof follows immediately from (109) (110) and the definition 4.1 of a
regular edge. Of course, it follows immediately from lemma 4.1 that Qx g +
wrTup can also be expressed in terms of the H unknows and the boundary
conditions on any regular edge:

Lemma 4.2 Let E € &, be a given reqular edge.
i) if E = K N L is an interior edge :

MK — 5K,E

P +0r.E "
Ok, + 01,5

H
Src + 01 (éx,pHk + 7K)

(&r,eHr + 1),
(120)

Qr,p+ pxTup =
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ii) if £ = K N 0Qp is a Dirichlet boundary edge :
Qu,p+ pxTup = ExpHr + v + (bk — Ok, 5)Ue B, (121)
iii) if £ = K N0y is a Neumann boundary edge :

Qk.e+ pxTug = éUJ—K{fIc,EHK + Yk + Qep} — Qe (122)
K,E

with the convention that, in the above formula, §r g is replaced by
or.g/Pre if T = K and / or L happens to be singular.

Because of the possible presence of singular edges, it will not be possible to
write the balance equation (111) in terms of the H unknowns and boundary
conditions on all elements K of 7,. Once again, in order to limit the complexity
of the final H equations, we make a fourth, but non-essential, assumption:

VK € 7y, K contains at most one singular edge. (123)

We clear first the case of elements K € 7, having one singular edge F' on 0€2:

if F =K NoQp , then necessarily K is singular, and 6k p = oo (definition
4.1). But (85) implies that

Bkr=1 0<|éxp| <+ox VECOK,E#F (124)
Hence we get from (110) (98) that
Hg = ue,p. (125)

if = K N0Qy , then necessarily K is regular, and 6x r = 0 (definition 4.1).
Notice that this can happen only in the transient case (if the problem
is stationary, one has vx = ux = 0, so necessarily éx r = {x,» # 0 by
theorem 3.2).

But then we get from (99) (109) that

ExrHr + vk + Qer =0, (126)

and Hy is known on K.
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So we shall call boundary elements (BE) the above elements:

Kisa B.E. < K nNo0Q is a singular edge, (127)
which have the property that:
Hy is known on all Boundary Elements. (128)
Hence we are led to define:

T, = {K € T;|K is not a BF}, (129)

Q=Ugezr K (130)
and to partition 92 into
0Q = 00p UdQx U Qe (131)

So we are left with searching for (Hy, K € 7,). Because of the possible
presence of singular edges in 75, which now are necessarily interior to Q , we
are led to introduce finite volumes V| which will aggregate the elements on
each side of a singular edge:

Definition 4.2 A finite volume V is made of
o cither one element K € T, with no singular edge

e or two elements K and L of T, sharing a common singular edge F.

We call V), the set of all finite volumes V in Q.
We associate now to each finite volume V' € V), a finite volume unknown Hy
and a finite volume equation:

i) if V is made of a single element K € T, , we define simply H, by
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Then by definition 4.2, all edges in 0K are regular, and we decide that:

the finite volume equation on V' is obtained
(FV — 1)< by substituting in the balance equation (111)
Qx,r + pxTug by its expressions given in lemma 4.2.
(133)

i) if V is made of two-elements K, L € 7, sharing a common singular
edge F' = K N L, we have, by definition 4.1:
1 1
6KF+6LF:O or —+—=0 (134)
’ ’ O0k,r O F
whichever makes sense according to (103) (104). When K and L are
both regular, (134) cannot be satisfied with 6k p = 6. = 0 because of
hypothesis (114).
When K or L or both are singular, then at least one of the 6k r or 6. p
is non-zero because of (104).
Hence in all cases one has

Ox,r = —6rr # 0. (135)
When K and L are regular, we get from (134) and (109) that:
ExrHi + 7k +&rHp +7 =0
which rewrites, after division by gz # 0 :

H H
K+’YK L+’YL

Brr  OkF B Br,r

: 136
Sir (136)

where Orp = én,r/érrp T = K, L satisfies, because of (135) (103):

0 < |Br,r

< +o0. (137)

When K or L or both become singular, one checks easily using (104)
that (136) (137) remain valid.
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This leads to define the finite volume unknown Hy on V = K U L by:

H H
_ K T Tk L + 7L (138)
Bk,F

ok r  Brr  OLr
Because of (137), the above formula defines a one-to-one relation between Hy
and Hy, as weel as between Hy and H;.
We turn now to the choice of the finite volume equation on V=K U L. As F
is singular, it is now impossible to express Qr,r + purTup for T = K, L using
lemma 4.2. These expression will always involve one edge variable ! From
(109) (110) and (135) one finds easily that

{ Qr,r + prTur = pr <E + ’Y—T) + (1 - /L—T> Qr,F (139)

Brr  OrF or,r

Hy

(this formula is valid for 0,1 or 2 singular elements among K, L).
The only way to eliminate the edge value ()7 will be to combine properly
the balance equations (111) on K and L: we multiply first (111) written on

K, by 1— L , then multiply (111), written on L by 1 — 'M—K, and add the
6L,F 6K,F
resulting equations. This gives:

(1 - ﬁ) Y Qo+ pxTup) + (1 - “—K) Y (Que+piTur)

6L,F 6K,F
FE C 0K F coL
E#F E#F
+(px + p)Hy = (1 — £> (1 —vs,x)Qs i + (1 — 'M—K) (1 —vs1)Qs1
Or.F OK.F

(140)
The edges E C 0K U 0L with E # F' are regular. Hence:

(FV - 2) the finite volume equation on V = K U L is obtained by substituting in equation (140),
Qk,p+ pxTug and Qr g + prTup by their expressions given in lemma 4.2
(141)

We can now state the main theorem of this section.
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Theorem 4.1 Under hypothesis (100) (101) (114) and (123), the finite vo-
lume equation

BH =F where H = (Hy,V €V) (142)

defined by (FV — 1)(FV — 2) is equivalent to the lowest order triangular
Raviart-Thomas approzimation (96) - (99). The matriz B is regular, but not
symmetric in general.

Proof : We have already proven that, if (us, Tux, Qk, K € 73) is a solution
of (96) (99), then (Hy,V € V) defined by (108) (132) (138) satisfies (142).
Conversely, let (Hy,V € V) be a solution of (142). We construct first edge
values Tup and Qg for all edges E € &, elements K € 7), such that 0K D F,
in such a way that

(143)

formula (109) (if K is regular) or (110)
(if K is singular) holds on F for all K such that 0K D F

We first define, on all boundary elements, Hx by (125) (if K is singular) or
(126) (if K is regular). Then we define Tup and Qk, g as follows:

¢ on a regular edge , we define Tuy and Qg for 0T D E using lemma 4.1.
It is immediate to check that (143) holds in that case.

e on a singular interior edge F' = K N L, we already know Tug, Qxg =
—Qrp on all edges E C (K U L) = 0V, where V is the two elements
finite volume associated to the singular edge F'.

We search for Qg r = —Qr,r and Tup which satisfy two conditions:

i) we want first that (143) holds both for 7= K and L. But we have seen in
(135) that éx r = —0r F # 0, so that (109) can always be rewritten in
the for of (110). Hence (143) is equivalent, using the definition (135) of
Hv, to:

Qrr Tup = Hy, VT =K, L. (144)

or,F
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ii) we want also that formula (52) be satisfied on both K and L:

Qrr+prTup+ > (Qre+prTup) = (1—vr)Qur VT =K, L.
EcCor
E#F
(145)

The two equations (144) for T = K and L are obviously dependant,

as Qrr = —Qrr and 6gp = —06rp. Then, multiplying (145) on K

by 1 — (S/JJ—L and on L by 1 — ;L—K and adding produces equation (144)

LF K,F

multiplied by px + pr, when the finite volume equation (140) is used.
Hence the four equations (144) (145) will be satisfied as soon as (144)
and (145) are satisfied on one element, say K.

But theorem 3.2 (if K is regular) or 3.3 (if K is singular) show that

1
lg—K -1= e # 0. Hence equations (144) (145) on K have a unique
K
solution Qg p = —Qr r and Tup.

e On a singular edge F = K N 0f)p , necessarily K is singular, with 6x r =
oo and Pk r =1, and Hg is defined by (125). So we define:

TUF = Ue,F, (146)
and Qk,r by requiring that formula (52) is satisfied on K:
Qur+pxTur+ Y, (Qrp+pxTur) = (1—vk)Qsk. (147)

FE Cc 0K
E+F

Then (146) , 6k, = 0o and Bk, r = 1 imply that (125) reduces to (110),
so that (143) is satisfied on F.

e On a singular edge F = K N 0€Q2y , necessarily K is regular with g p =
0, ux > 0 (see before (126), and Hy is defined by (126).

Hence we can define Qg r by

Rr,r = —Qe,r, (148)

RR n°3769



36 Guy Chavent Anis Younés, Robert Mosé, and Philippe Ackerer

and Tup by requiring that (52) holds on K , ie by equation (147).
Then (148) and 6k r = 0 imply that (126) reduces to (109), so that (143)
is satisfied on F.

So we have constructed edge values Tug and Qk,r on all edges E which satisfy
(143). These edge values satisfy also equation (52) on all elements K of 7j:

e because of the finite volume equation (F'V —1) on all K with no singular
edge,

e because of (145) on all K with a singular edge interior to € ,

e because of (147) on all K with a boundary singular edge.

So we can apply corollary 3.1 on regular elements K and 3.2 on singular ele-
ments, which proves that

VK € T, Qk,p and Tug, E C 0K satisty (149)
the mixed-hybrid Dirichlet-to-Neumann relation (44).
But by construction
Qe and Tug, E C 09 satisfy the Dirichlet (150)
and Neumann condition on 0Q2p and 0y

Hence Qk,r and Tug, E € &, coincide with the unique solution of the mixed-
hybrid equations (96) - (99). The elemental value ux can be defined afterwards
on each K in the usual way by the formula:

l 1
Uk = i(1 - VK)QS,K + —(1 - I/K) Z TUK,E VK € ,Z;L (151)

3ak 3 ECOK

This proves the equivalence of the mixed-hybrid approximation and the new
formulation.

It remains to check that the matrix B in (142) is regular. So let H K €
Tn, j=1,2 be two solutions of (142), and set

AHyx = H, — H: VK €1, (152)

As the edge values Qi g, Tup, E € &, associated to Hj and Hi are the same
(the mixed-hybrid equations (96) - (99) have a unique solution !), we see that:
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on each regular edge E , lemma 4.1 implies:
i) if F = K N L is interior, then

Ex,pAHg + &, pAHL =0 AHg =AH;, =0
-
5LE§K,EAHK - 5K,E€L,EAHL =0 as fK,EfL,E((SK,E + 5L,E) #0

... if K and L are regular, (153)

AHj,

SKBAp —0 AHy = AH, =0
OL.E Br,e
AHp ~ Skp (14 0RE) L
as
Ex,pAHk — 6k.p B s =0 Br.E oL,B

... if K is regular and L is singular, (154)

1 AHg 1 AH;

=0 AHiy =AH; =0

Ore Prxe  OkE PrE K t

AHx AHp, AH[ — as ! ( ! + L )7’50
=0 Br,ebre \Oke OLE

ﬁK,E ﬁL,E ﬂL,E B

... if K and L are singular. (155)

ii) if F = KN 0N is a boundary edge, then necessarily 0 < |0k 5| <
400 and

ExpAHr =0= AHx =0as 0 < [{x.p| < +00

... if K is regular, (156)
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AHK { AHK:03S0<‘(5K’E‘<+OO

6K’E =0= and 0 < |ﬂK,E| < +00

Br.E

... if K is singular, (157)

on each singular edge F = K N L interior to ) , we get from (144) that
AHy =0, and hence from (138) that

This ends the proof of theorem 4.1.

5 The stationary case

We consider in this section the case where b = 0 in equation (1), which corres-
ponds to the case of an elliptic, time independant diffusion equation. Hence

bK:(,OK:Z/K:,LLk:O VKE% (159)

Hence the coefficicents ak g r of the mixed-hybrid Dirichlet-to-Neumann re-
lation (44) are given, using lemma 2.1 and the notations of figure 1 with
E., E,, E5 replaced by: E, F,G:

akrc =Ckre=—2cotan 0k g, E,F,G all different, (160)

ak g r = Ckpr=2(cotan g r + cotan Ox ), E,F,G all different. (161)

Singular elements of type 1 correspond to triangles K having one right angle.
There are no singular elements of type 2 and 3, as a triangle cannot have more
than one right angle | Hence (100) is always satisfied.

Also lemma 3.1 with vg = 0 implies

OK = Z CK,E,FCK,E,G =4 (162)
E,F,G all different
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for any regular K. But (29) in lemma 2.2 shows that (162) holds also if K is
singular. Hence hypothesis (101) is always satisfied.

Then (7k,g, {k,E, Ok B, Br,p and i, K € T, E C 0K) defined by theorems
3.2 and 3.3 satisfy:

. Ck,p,rCk.p,c

Tkp= 1 = cotan 0k, + cotan Ok r, (163)

Z TK,E = 1, (164)

4aK 2&[{

$rem = Oxcp = Ckra ~ cotan Ok g’ (165)
0 < [k, = |0k,8] < +o0, (166)

Br,p = bxp/éxp =1, (167)

Vi = Qs,x/3. (168)

So we get from (165) or (166) that dx r # 0 for any K € 7, and E C 0K.
Hence (114) is always satisfied, as there is no edge on which 6k = 0. Also,

by definition 4.1 we see that on any regular interior edge £ = K N L, one has

1 1
—— + —— # 0. Hence we are led to define:

Ok,e  OLE

VE € &, with FE interior and regular,

1 1 1 1 (cotan Oxrp  cotan 0L,E> (169)
= = — + .
5K,L 5K,E (5L,E 2 (174 ar,
which satisfies
0 < |6k,1] < +o0o E interior and regular. (170)
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In the stationary case considered here, singular edges are more directly linked
to the geometry:

F C 09 is singular <= g g = 7/2 (171)

F = KN L with ax = a;, <= K and L have the same circumcentre. (172)

So even in the constant coefficient case ax = a VK, it is possible for an element
K to have more than one singular edge ! It is still possible, in this case to
write a finite volume formulation equivalent to the mixed-hybrid formulation.
But then a finite volume V' will possibly be made of more than two elements
K, and the definition of Hy will be slightly more complex.

So in order to keep things simple, we shall continue to make the non-essential
hypothesis (123) that each K has at most one singular edge..

Before we define the finite volumes V', we have first to eliminate from the
list of unknowns the Boundary Elements (defined in (127)) where Hg is di-
rectly given by the boundary conditions. From (171) we see that a Boundary
Element K is necessarily singular, as it has a right angle opposite to the sin-
gular boundary edge F', which implies that F' is necessarily in 0€2p. Hence we
define Hg on all Boundary Elements by (125), i.e.:

Hyx =u.r VK =B.E.. (173)

The finite volumes V' € V), are then made of one or two non-boundary elements
according to definition (97).

The definitions (132) (138) of the finite volume unknows reduce now to:

7K L .
Hy=Hx+ " =H,+ if V=KUL. (175)
6K,F 6L,F
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Then the finite volume equations (FV-1) (FV-2) or (142) simplify to:

S emeq(merg) - ()
Or,E 0,8

ECcov
F interior
(176)

+ Z Ok.E { (HK + 7—K> - Ue,E}

ECAVNIn oK

D

- Z Qe,E = Z QS,T VV e Vh;

ECAOVNINy TCcV

where it is understood that K is the element of V' which contains F, and ,
when F is interior, L is the element exterior to V' which contains F.

Theorem 5.1 In the stationary case, the finite volume equation (142) is de-
fined, under hypothesis (123), by (174)-(176), and the matriz B is symmetric
and reqular.

A necessary condition for B to be positive definite is:

Y byw >0 YV e, (177)

ECOV,E¢d0p

and a sufficient condition is:
oyw >0 VYV €V,,VE CIV,E ¢ 0O, (178)
where oy is defined by:

Syw =06k if E=KNLCOV is interior, (179)

byw =0kr fE=KNOoQp C AV is a Dirichlet edge. (180)

Proof : We know from theorem 4.1 that B is regular, and see from (174)-
(176) that it is symmetric. In order to investigate its definite positiveness, we
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evaluate:

<BH,H> =Y (BH)yHy
VeV .

=) Y byw(Hy — Hw) + > bv,pHy » Hy,
VEV) E c oV EC@Vﬂ@QD

| E interior )

which rewrites after rearranging the summations:

< BH,H >= > Syw(Hy — Hy)? + > Sy H2.
E interior and regular E C 09p and regular
(181)

The necessary condition (177) is obtained by requiring that < BH, H > > 0
for Hy = 1 and Hy = 0 for V' # W; then (178) implies obviously that
< BH,H > > 0 for H # 0, and hence that B is positive definite.

When the coefficient a is constant, condition (178) amount to require that the
triangulation satisfies the Delaunay condition.
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Appendix A: Proof of lemma 2.4

Proof of part i) We want to study the sign of o defined in (65). But from
(37) and (64) we see that

v=Ilp/(1+lp). (182)
Substitution into o gives:

> —3612p% — 24lp + (p* +12)
B 3(1 + lp)?

(183)

The denominator is always strictly positive, and the numerator is, for given ¢,
a second order polynomial in [ with a single positive roor [, given by

24 /16 + &
A (184)

6

Ly

Hence

442165 & — V3
L —V312= 7 1; o= V3
@

(¢ — 4V/3)?

l,—3/12 =
! / 120(24/16 + 2 + 4 + ©\/3)

(185)

Changing /3 into —v/3 gives:

(¢ + 4v/3)?
12¢(24/16 + 2 + 4 — pV/3)

Multiplying (185) and (186) gives:

L, +V3/12 = (186)

p? — 48

12¢(8 + /16 + ¢?)

(187)

2 —
12— 1/48 = [
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which gives (70) after multiplying by the conjugate quantity.

Proof of part ii) We want to study under which conditions §; defined by
(49) can vanish.
From (64) we see that

0;=0<=&+u=0 (188)
ie, using definition (48) of &; and (68) of u:
o v
(&1 l
2
Buto=0c=4-16v + e and «j; = Cj; + v/3l so the equation rewrites:

4—wu+£i:%(Qw+§),

312
le.
4—wy=%jb
Subsituting v by lp/(1 + lp) gives
4 =12l = ¢Cjy, (189)

But we know exactly by lemma 2.2 the range of C}; which can be achieved in
triangles with a given shape coefficient [:

4
G+ 81| < 5/3(a8P = 1). (190)

Hence we see that (189) will have a solution for some K if and only if the value
of Cji, given by (189) falls into the range of Cj; given by (190). Hence 6; will
possibly vanish if and only if:

4—12lp 4

— 4+ 8l < -=4/3(4812 -1

S s < VB[P ),
()02

(1—1p)? < S8l 1),
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1.e.:

2
151207 + 2l — (1 + %) > 0. (191)

This second degree equation admits a unique positive root /s given by:

-1 1 2
= V104007 (192)

15¢

Hence the 6; will possibly vanish if and only if [ > 6, which is (71). Then (70)
is obtqined by transformation of (192).

Proof of part iii) is straightforward by comparing the right-hand sides of
(68) and (70).
Appendix B: The case of a singular element

Let (K,v) be a singular element. We define then m;, 3;,6;,v ¢« = 1,2,3 as
follows:

%~=7d=ef(1—1/)Q8/3 i=1,2,3 (193)

and:

i) for an element of type 1, say as; =0

(T, =1 my =0 T =0,
< 61 — “oo” 62 = a0y 63 = aQ3s, (194)
o (6%
B =1 By =——= By =——=,
\ 19 13
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ii) for an element of type 2, say as3 = ay3 = 0 (hence necessarily v > 0
and K isosceles):

( 1

=M =3 w3 =0
< (51 = 52 = a(d — alg) 53 = aQ;3s, (195)
Qg — &
B = B = 12 B3 = “o0”,
\ (5P

where we have set & = a1 = 9,

iii) for an element of type 3, where oy = as3 = az; = 0 (here necessarily
v > 0 and K is equilateral):

TG =Ty =T33 = 1/3,
(51 = 62 = 63 aéz, (196)
B =0 =P = “cd”,

where we have set & = o] = Q99 = Qi33.

We check now that m;, §;, 6;,7; @ = 1,2,3 defined in (194) for a singular ele-
ment of type 1 satisfy the properties stated in theorem 3.3.

We derive first equations (194) We know that
19 75 0, 13 = 0, but Q93 = 0.

for € # 0 small enough, we replace v by v°* = v + €. hence a9, a3 and asg are
replaced by:

ajy =0 +e#0, ajs=03+e#0, a5 =¢c#0.
Moreover, (65) shows that
0 = (12013 75 0

and o can be replaced by

2

0524—161/3—1-%—>(7=0412a13vvhen6—>0.
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So we can apply theorem 3.2 to define 5, 67, 3 by:

£ —_ £ £ £
T = afyaiz/of,

£ — £ £
T5 = 0f,e/0”,

£ — £ £
T3 = 04135/0 )

of,af
e c 12013
67 —a<0411_7‘s )a
as,e
e c 12
65 =a (0‘22 - ) ;
3F]

af5q€
£ _ £ 13
&5)

Bi = (afaf; — af€) /o0,
B = (afe — 04§2a§3)/(75,
B = (aize — ag3a5,)/0°.

Passing to the limit in the above equations leads to define 7, 6;,, 3, 1=1,2,3
by formulas (194).

We prove now that (79) (43) hold. Let Tu;,Q; i = 1,2,3 satisfy the
mixed Dirichlet-to-Neumann map (44). Then, for ¢ # 0, we define:

3
Qf =—a)y_ ajTu;+(1-17)Q,/3 i=1,23, (197)
=1

so that

Tu;, Q; i =1,2,3 satisfy the perturbed Dirichlet-to-Neumann map (198)
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and of course
Q; — Q;whene — 0, i=1,23. (199)

But from theorem 3.2 we know, as «f; # 0,7 # j for ¢ small enough, that
Tu;, Q5 satisfy (42) and (43). But 67 and 55 # 0 for £ small enough, so (42)
(43) rewrite:

He ,.ye _ st

Ti:_ )
U /Bf+ 5

7

3
H® = E ;1w
i=1

i=1,23,
(200)

When ¢ — 0, we can pass to the limit in (189), as we know that 7§ — m;, 6; —
0iy B8 — Biy,7E — i, and Q5 — @ (the fact that 6f — 6; = “oco” means simply
that, in the limit, the last term disappears from the first equation of (189) for
i =1). This proves that Tu;, Q; i = 1,2, 3 satisfy (84) and (43).

The remaining equalities (87) (66) are obtained by passing to the limit
in (76) (78) written for 7§, §f and &;.
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