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2 W. Amme, P. Braun, E. Zehendner, F. Thomasset

Abstract: Determination of data dependences is a task typically performed with high-

level language source code in today’s optimizing and parallelizing compilers. Very little

work has been done in the field of data dependence analysis on assembly language code,

but this area will be of growing importance, e.g. for increasing Instruction Level Paral-

lelism. A central element of a data dependence analysis in this case is a method for mem-

ory reference disambiguation which decides whether two memory operations may/must

access the same memory location. In this paper we describe a new approach for deter-

mination of data dependences in assembly code. Our method is based on a sophisticated

algorithm for symbolic value propagation, and it can derive value-based dependences be-

tween memory operations instead of just address-based dependences. We have integrated

our method into the SALTO system for assembly language optimization. Experimental

results show that our approach greatly improves the accuracy of the dependence analysis

in many cases.

Key-words: compiler, static analysis, assembler, dependence analysis
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Analyse de dépendances de codes assembleur

Résumé : Si de nos jours le calcul des dépendances de données est une tâche effec-

tuée couramment par les compilateurs optimisants ou parallélisants pour des langages de

haut niveau, il existe encore très peu de travaux sur l’analyse de code assembleur ; ce

domaine devrait pourtant acquérir une importance croissante, par exemple pour aider la

portabilité des codes en exploitant le parallélisme à grain fin des processeurs. Le point

capital de telles analyses est une méthode de résolution des références mémoire, qui per-

mette de décider si deux opérations d’accès à la mémoire doivent (ou peuvent) accéder

à la même cellule mémoire. Dans cet article, nous décrivons une approche nouvelle de

détermination des dépendances de données dans le codes assembleur ; notre méthode

est basée sur un algorithme de propagation de valeurs symboliques ; elle est capable de

calculer les dépendances de flot (“value-based”) au lieu des dépendances classiques ba-

sées sur la simple comparaison des adresses. Nous avons intégré notre méthode dans

l’environnement SALTO, système développé à l’IRISA pour aider l’optimisation de codes

assembleur. Nous donnons quelques résultats expérimentaux, qui indiquent que notre

approche améliore sensiblement la précision de l’analyse dans un grand nombre de cas.

Mots-clé : compilation, analyse statique, assembleur, analyse de dépendances
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1 Introduction

The determination of data dependences is nowadays most often done by parallelizing and

optimizing compiler systems on the level of source code, e.g. C or FORTRAN 90, or some

intermediate code, e.g. RTL [25]. Data dependence analysis on the level of assembly code

aims at increasing instruction level parallelism. Using various scheduling techniques like

list scheduling [6], trace scheduling [9], or percolation scheduling [18], a new sequence

of instructions is constructed with regard to data and control dependences, and properties

of the target processor. Most of today’s instruction schedulers only determine data depen-

dences between register accesses and consider memory to be one cell, so that every two

memory accesses must be assumed as data dependent. Thus, analyzing memory accesses

becomes more important while doing global instruction scheduling [3].

Performing optimizations at the level of assembly code has many benefits. The deve-

loper of machine-dependent optimization techniques needs an easily programmable tool,

which exposes (almost) all processor properties. Implementing new techniques in an

existing compiler (even if the compiler is retargetable, such as the GNU C Compiler gcc

[24]) fails, because new processor features may not be expressible within the machine

description. In addition, working on assembly code also gives the opportunity to optimize

during link-time. Wall [27] gives an overview of systems which perform the so–called

late-code-modification. A full description of such techniques can be found in Srivastava

[23]. Another aspect concerns optimization of delivered code. Fisher [10] makes the

suggestion to translate an executable program during loading, e.g. replace multimedia

extensions by ‘normal’ instructions or vice versa. When processors of the same family

differ in the number of functional units or number of registers, rescheduling [21] can be

used to optimize in the new processor. A program can be made executable on a comple-

tely different processor by the use of binary translation [22]. In all these areas a better

analysis of assembly code and more accurate data dependence information would offer

significant benefits.

In this paper, we describe an intraprocedural value-based data dependence analysis

[15]. When analyzing data dependences in assembly code we must distinguish between

accesses to registers and those to memory. In both cases we derive data dependences

from reaching definitions and reaching uses information that we obtain by a monotone

data flow analysis. Register analysis does not involve any complication: the set of used

INRIA



Analysis of assembler code 5

and defined registers in one instruction can be established easily, because registers do not

have aliases. Therefore, determination of data dependences between register accesses is

not in the scope of this paper.

For memory references we have to solve the aliasing problem [26, 12]: decide whether

two memory references access the same location. We have to prove that two references

always point to the same location (must-alias) or must show that they never refer to the

same location. If we cannot prove the latter, we would like to have a conservative approxi-

mation of all alias pairs (may-alias), i.e., memory references that might refer to the same

location. To derive all possible addresses that might be accessed by one memory instruc-

tion, we use a symbolic value propagation algorithm. To compare memory addresses we

use a modification of the GCD test [28].

We implemented our technique in the context of the SALTO tool [20]. SALTO is a

framework to develop optimization and transformation techniques for various processors.

The user describes the target processor using a mixture of RTL and C language. A pro-

gram written in assembly code can then be analyzed and modified using an interface in

C++. SALTO has already implemented some kind of conflict analysis [13], but only de-

termines address-based dependences between register accesses and assumes memory to

be one cell. The technique we present in this paper goes beyond the one we have already

implemented in the SALTO tool. But our first experimental results indicate that even this

simplified form of our analysis can be more accurate in the determination of data depen-

dences than other previous methods.

The rest of this paper is structured as follows: In section 2 we introduce our program-

ming model. Section 3 gives a brief introduction in the field of data dependence analysis

and alias analysis in assembly code. Section 4 describes the concept of monotone data

flow systems, which is the theoretical basis of our approach. We present our method in

detail in section 5. Section 6 gives experimental results, in section 7 we discuss related

work, and in section 8 we conclude with an outlook to further developments.

2 Programming Model and Assumptions

In the following we assume a RISC instruction set, which is strongly influenced by the

SPARC architecture1. Memory is only accessed through load (ld) and store (st) instruc-

1Although our analysis is not limited to the SPARC.

RR n˚3764



6 W. Amme, P. Braun, E. Zehendner, F. Thomasset

tions. Memory references can only have the following format: a) mem = %rx + %ry or b)

mem = %rx + offset. Use of a scaling factor is not provided in this model, but an addi-

tion would not be difficult. Memory accesses normally read or write a word of four bytes.

By use of special instructions it is possible to read and write only one or two bytes, too.

For global memory access, the address (which is a label) first has to be moved to a register.

Then it can be read or written using a memory instruction. Initialization of registers or

copying the contents of one register to another can be done using the mv instruction. All

logic and arithmetic operators have the following format: op �������������	��
�� �� ��� . The ope-

ration op is executed on operand ������� and operand ���	��
 ; the result is written to register
�� ��� . An operand can be a register or an integer constant.

Arithmetics on adresses We want to take care of the fact that computations of adresses

may wrap around beyond ��� , where � is the number of bits used to represent adresses.

Arithmetic operations are based on modulo arithmetic, i.e., we assume that all integer

registers have the same width � and calculations are performed modulo � � with wrap

around where applicable. Calculation of all coefficients in section 5 is modulo ��� and

with nonnegative results.

Control Flow Control flow is modeled using unconditional (b) or conditional (bcc)

branch instructions. Further, we assume that the control flow graph is reducible; every

cycle of the control flow graph then constitutes a loop in the usual sense2. Runtime-

memory can be divided into three classes [1]: static or global memory, stack, and heap

memory. When an address unequivocally references one of these classes, some simple

memory reference disambiguation is feasible (see section 3). Unfortunately it is not easy

to prove that an address always references the stack, when no interprocedural analysis is

done from which one could obtain information about the frame pointer. In our approach

we do not make such assumptions.

2In the appendix (section 10), we have reproduced a formal definition, together with an algorithm to

identify all loops of a control flow graph [1].

INRIA



Analysis of assembler code 7

1: ld [%fp-4],%o1

2: st %o2,[%fp-8]

1: ld [%fp-4],%o1

2: sethi %hi(.LLC0),%o2

3: st %o3,[%o2+%lo(.LLC0)]

1: add %fp,-20,%o1

2: st %o2,[%o1-4]

3: ld [%fp-20],%o3

(a) (b) (c)

Figure 1: Sample code for different techniques of alias detection: (a) and (b) can be solved

by instruction inspection, whereas (c) needs a sophisticated analysis.

3 Data Dependences in Assembly Code

In assembly programs we have two classes of locations in which a program can store data:

registers and memory. For a definition of data dependences we can group both classes and

treat them both as memory locations:

A statement � 
 has a value-based data dependence on a statement � � if � 
 can be

reached after the execution of � � , and the following conditions hold:

(i) Both statements access a common memory location � .

(ii) At least one of them writes to � .

(iii) Between the execution of � � and � 
 , there is no statement ��� that also writes to � .

A data dependence is called a flow dependence if � � writes to � whereas � 
 reads

from � . It is called an anti dependence if � � reads from � and � 
 writes to � ; it is an

output dependence if both statements write to � . � � and � 
 are in conflict, if conditions

(i) and (ii) hold, whereas (iii) may or may not be fulfilled. Another name for a conflict is

address-based data dependence. Conflict analysis is a frequently used approximation of

data dependences.

The determination of data dependences can be achieved by different means. The most

commonly used is the calculation of reaching definitions (resp. reaching uses) for all

statements. This can be described as the problem of determining all statements where the

value of a specific memory location has been written last resp. has been used last. Once

the reaching definitions and uses have been determined, we are able to infer def-use, def-

def, and use-def associations; a def-use pair of statements indicates a flow dependence

between them, a def-def pair an output dependence, and a use-def pair an anti dependence.

RR n˚3764
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defreg, usereg

Data Dependences
of Registers

Reachability Reachability

Data Dependences
of Memory

RDU of Registers

Registers

Symbolic Value Sets

Non-Invariant

RDU of Memory

May Alias InformationMust Alias Information

Initialization Points

Loops

Artificial/Nature

Symbolic Address Sets

Figure 2: Overview of the determination of data dependences.

Data dependence analysis of registers causes no problems. The set of used and defined

registers can be established for each instruction by its semantics. For memory references

we have to solve the aliasing problem, i.e., we have to determine, whether two memory

references access the same location. In the following we briefly review techniques for

alias analysis of memory references.

Doing no alias analysis leads to the assumption that a memory load instruction is

always dependent on a store instruction, whereas a store instruction is always dependent

on any memory instruction. A common technique in compile-time instruction schedulers

is alias analysis by instruction inspection, where the scheduler looks at two instructions

to see if it is obvious that different memory addresses are referenced. With this technique,

independence of the memory references in Fig. 1 (a) and (b) can be proved, because

the same base register but different offsets are used (a), or different memory classes are

referenced (b). Fig. 1 (c) shows an example where this technique fails. By looking only at

register %o1 it must be assumed that register %o1 can point to any memory location, and

therefore we cannot exclude that ��� is data dependent on � � — in fact, these instructions

are independent. This local analysis disables notice of the definition of register %o1 in

the first statement. This example makes it clear that a two-fold improvement is needed.

First, we need to save information about address arithmetic, and second, we need some

kind of copy-propagation. Provided that we have such an algorithm, it would be easy to

show that in statement � � register %o1 has the value ������� �
	 and therefore there is no

overlap between the 4 bytes memory blocks starting at �������� resp. ������� ��	 .
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Analysis of assembler code 9

4 Monotone Data Flow Analysis

The most important passes of our analysis are performed by data flow analysis [11]. The-

refore, several parts of the analysis have to be described as a monotone data flow frame-

work. Formally, a monotone data flow framework is a triple MDFS � ����� ���	��
 � �� . DF

is called the data flow information set, which is a formal description of the information

that will be propagated through the control flow graph. The meet operator ����
 of a data

flow framework describes the effect of joining paths in the flow graph. It answers the

question, how we can compute data flow information for a node that has more than one

predecessor.
��������������� �����

is the set of our semantic functions. To each node

of the control flow graph we assign one of these semantic functions. A semantic function

specifies the effect of an application of this node to the data flow information.

If the semantic functions are monotone and
����� ������
 � forms a bounded semi-lattice

with a one element and a zero element [28], we can use a general iterative algorithm

[11] that determines for each statement of the control flow graph an element
�� ���

that is a safe approximation of the data flow information reaching the statement. The

solution of a monotone data flow framework thus can be expressed as a function mdfs
�

�� �!� � ���
. The initial data flow information at each statement is the one element of

the corresponding semi-lattice.

We can define a relation " based on the semi-lattice
����� ���	��
 � of a monotone data

flow framework, that is defined as:

#�$ �&% � �'�(� $ ")%+*-, $ �.��
/%0� $

Monotonicity of the semantic functions can be expressed using the relation " . Semantic

function
� � �

is monotone iff
#�$ �&% � ���1� $ "2%', �3� $ � " �3� % � . Note that for a

statement s and for all
�4� �'�

that may reach statement s, the solution obtained when

applying the general algorithm satisfies: mdfs
� � � " �

.

Description of semantic functions A unifying description of semantic functions can

simplify the proving of monotonicity. If there is a suitable definition of a difference

operator 5 , the general form of a semantic function is given as3:

��67����� � ��� 5�8 69���:�;� �.��
/< 69���:�
3 =+>@?BADC is a “kill function”, and E >@?BADC is a “generate function”.

RR n˚3764



10 W. Amme, P. Braun, E. Zehendner, F. Thomasset

In this formula, D stands for data flow information that is reaching statement s. An

application of 8 6�� �:� returns the part of the incoming data flow information that will be

destroyed by the execution of statement s. < 69� �:� describes the data flow information that

is introduced by the execution of s.

5 Determination of Data Dependences

Fig. 2 shows an overview of our data dependence analysis for machine code. Our tech-

nique determines data dependences for register accesses (resp. memory accesses) by the

calculation of reaching definitions and reaching uses (RDU). For registers the determina-

tion of reaching definitions/uses can be performed by a well-known standard algorithm

described in [1]. To use this algorithm for data dependence analysis of memory accesses

we have to derive the may-alias information, i.e., we have to check whether two storage

accesses could refer to the same storage object. To improve the accuracy of the data de-

pendence analysis the must-alias information is needed, i.e., we have to check whether

two storage accesses always refer to the same storage object.

5.1 Informal Description of the Method

The main task of our analysis concerns the determination of memory addresses. The-

refore, we have to determine all possible values of registers in memory expressions. In

some rare cases solving this problem is trivial, e.g., moving a constant to a register or

adding two registers, for which the values are known. In contrast, there are situations, in

which it is in general impossible to derive the value of a register, e.g. when the register

is defined by a load instruction. As we want to perform an accurate analysis, we have to

look for a way to work with these as yet unknown values.

Symbolic Value Sets In our approach we use the concept of symbolic values. A sta-

tement j is called an initialization point if j defines a register with an unknown value.

The finite set of all natural initialization points of P is given by the image of function
���

,

defined further below. In our programming model, natural initialization points are load

instructions, call nodes, or entry nodes of a procedure. If an initialization point j defines

the contents of register ��� we refer to this value through the symbol ���	� 
 .

INRIA



Analysis of assembler code 11

0: entry

1: ld [%r31+68],%r1

2: cmp %r1,189 ���������
	��� �
�
3: bne .LL8 ���������
	��� �
�
4: mov 0,%r2 ���������
	 �� � �
5: b .LL9 ���������
	 �� � � �������������
6: .LL8:

7: mov 4,%r2 ���������
	 �� � �
8: .LL9:

9: add %r2,4,%r3 ���������
	��� �
� �����������������
10: add %r31,68,%r1 ���������
	��� �
� ����������������� ���������
��� ���
11: st %r2,[%r1+%r3] ���������
	"!��# $&%(')��� ����������������� ���������
��� ���

Table 1: Results of a symbolic value set propagation for a simple program. Registers � �
that are not mentioned have the value

� ���	� * � .

With our method we calculate possible symbolic value sets (SVS) for each register

and each program statement. A symbolic value set is a set of polynomials, whereby each

polynomial stands for a possible content of the associated register. Variables of such

polynomials are represented by the symbols ���	� 
 , i.e., definition values of initialization

points. Table 1 shows an example of the calculation of symbolic value sets for a simple

assembly program. For each statement we determined symbolic value sets that describe

the register contents immediately before the execution of the statement.

Without limiting the cardinality of symbolic value sets our propagation algorithm

might lead to infinite sets. Registers whose contents could change at each loop iteration

are responsible for this phenomenon. Performing an l-bounded analysis, the calculated

symbolic value set for these registers would comprise only the special value + , i.e., we

cannot determine the value of the register with our method. Such an inaccuracy in the ana-

lysis should not be accepted in practice. We improve the symbolic value set propagation

algorithm by introducing the concept of non-invariant registers in a loop.

A non-invariant register of a loop <-, is a register ��� used in <., , whose value is not

proven to be constant in each loop iteration. The set of non-invariant registers contains,

for instance, registers containing induction variables and registers which will be defined

by a load instruction in < , . For each non-invariant register ��� of a loop we insert an

artificial initialization point / : init ��� into the control flow graph at the beginning of the

RR n˚3764



12 W. Amme, P. Braun, E. Zehendner, F. Thomasset

loop. The concept of artificial initialization points has two advantages: the number of

iterations of the general iterative algorithm, which we use for data flow analysis, will be

reduced. Additionally, we can compare memory addresses even though they depend on

non-invariant registers.

Fig. 3 shows the results of a symbolic value set propagation using artificial initializa-

tion points for a simple program. The non-invariant registers of the loop are %r1, %r2,

%r3, and %r4. For each non-invariant register an artificial initialization point is inserted

into the program. As a consequence, the data flow algorithm terminates after the third

iteration. The concept of artificial initialization points allows a more accurate analysis of

memory references inside the loop. Without special treatment of non-invariant registers

the value of register %r1 would have been set to + eventually.

Symbolic Address Sets Calculation of symbolic value sets of registers is necessary for

the determination of symbolic address sets of a statement (SAS). In a subsequent step of

our analysis we use the SAS information and information of control flow for the deter-

mination of may and must alias information as well as reaching definitions and reaching

uses. In the last step we derive data dependence information of memory accesses.

In order to obtain all this information we need a mechanism which checks whether

the index expressions of two storage accesses X and Y could (resp. must) represent the

same value. To solve this problem, we replace the appearances of registers in X and

Y with elements of their corresponding symbolic value sets, and check for all possible

combinations whether the equation � ��� � 	 has a solution.

As an example, we refer to Fig. 3. Obviously, instruction 5 is a reaching use of

memory in instruction 8. The derived memory addresses are � � � � 
 � � 	 and � � � � 
 ����	 ,
respectively. With the assumption that both instructions are executed in the same loop

iteration, we can prove that different memory addresses will be accessed.

5.2 Basic definitions

In this section we introduce basic definitions that we need for the formal description of

our method. Let ���	� � be the set of all registers and
�� �!  

the set of all statements.

The set of all symbols is denoted as
��
 !

. Note that all symbols that we introduced for

initialization points are elements of
��
�!

. Furthermore, let ��������� and ��������� be defined

as following:

INRIA



Analysis of assembler code 13

1. iteration 2. iteration

0 entry

1 mov 1,%r2

2 .LL11:

12 init %r1 ��������� �
	 �������������� � � ����� ��� 	 , ��������� � � ���� ����� �
	
����� ������
� � ��! ��
� ���"�#
� $&% 	 , ���&'(�����#
� � � ��#
� $ 	

13 init %r2 �������������� ��� 	 , ��������� �
	 �������������� ��� 	 , ��������� � � ����� ����� �
	
����� ����� �
� � ��! � �
� � �"� #
� $ % 	 , ���&'(����� #
� � � � #
� $ 	

14 init %r3 �������������� ��� 	 , �������������� ��� 	 �������������� ��� 	 , �������������� ��� 	
����� ������
� � ��! ��
� ���"�#
� $&% 	 , ���&'(�����#
� � � ��#
� $ 	

15 init %r4 �������������� ��� 	 , �������������� ��� 	 �������������� ��� 	 , �������������� ��� 	
����� ������
� ��# 	 ����� ������
� ��# 	 , ���&'(������#
� � � �#
� $ 	

3 ld [%r1-40],%r3 �������������� ��� 	 , �������������� ��� 	 �������������� ��� 	 , ��������������� ��� 	
����� ����� �
� ��# 	 , ���&'(����� #
� ��$ 	 ����� ����� �
� ��# 	 , ���&'(����� #
� ��$ 	

4 add %r2,1,%r2 �������������� ��� 	 , �������������� ��� 	 �������������� ��� 	 , �������������� ��� 	
����� ������
� � 	 , ���&'(������#
� ��$ 	 ����� ������
� � 	 , ���&'(������#
� ��$ 	

5 ld [%r1-80],%r4 �������������� ��� 	 , ����� �������
� � 	 �������������� ��� 	 , ����� �������
� � 	
��������� ! ����� ����� � % 	 , ���&'�������#
� ��$ 	 ��������� ! ����� ���� � % 	 , �(�&'(�����#
� ��$ 	

6 cmp %r2,9 �������������� ��� 	 , ����� �������
� � 	 �������������� ��� 	 , ����� �������
� � 	
��������� ! � ��� ��� � � % 	 , ���&'������ #
� $ 	 ��������� ! � ��� ��� � � % 	 , ���&'(����� #
� $ 	

7 add %r3,%r4,%r3 �������������� ��� 	 , ����� �������
� � 	 �������������� ��� 	 , ����� �������
� � 	
��������� ! ����� ����� � % 	 , ���&'�������#
� $ 	 ��������� ! ����� ���� � % 	 , ���&'(�����#
� $ 	

8 st %r3,[%r1-40] �������������� ��� 	 , ���&'(������#
� $ 	 �������������� ��� 	 , ���&'(������#
� $ 	
��������� ! ����� ����� � % 	 ��������� ! ����� ���� � % 	
����� ��� ! � �
� � �"� #
� $ % 	 ����� ��� ! � �
� � �)� #
� $ % 	

9 add %r1,4,%r1 ���������� ��� ��� 	 , ���&'(����� #
� $ 	 ���������� ��� ��� 	 , ���&'(����� #
� $ 	
��������� ! ����� ����� � % 	 ��������� ! ����� ���� � % 	
����� ��� ! � �
� � �"� #
� $ % 	 ����� ��� ! � �
� � �)� #
� $ % 	

10 ble .LL11 �������������� ��� 	 , ���&'(������#
� $ 	 �������������� ��� 	 , ���&'(������#
� $ 	
��������� ! ����� ����� � % 	 ��������� ! ����� ���� � % 	
����� ��� ! ��
� ���"�#
� $&% 	 ����� ��� ! ��
� ��)�#
� $&% 	

11 retl �������������� ��� 	 , ���&'(������#
� $ 	 �������������� ��� 	 , ���&'(������#
� $ 	
��������� ! ����� ����� � % 	 ��������� ! ����� ���� � % 	
����� ��� ! ��
� ���"�#
� $&% 	 ����� ��� ! ��
� ��)�#
� $&% 	

Figure 3: Symbolic value set propagation involving a loop. Registers � � that are not

mentioned have the value { ���	� * }.

��������� � �� �!� �+*�� ���	� � � , statement � may write to all registers in ������ �� � � �
��������� � �� �!  �+*'� � �	� � � , statement � may read from any register in ��������� � � �
��� � ��
�! � �� �!  

, symbol , is defined by statement
��� �

,
�

As mentioned before, ��������� and � ������� can be derived directly from the semantics of

the instruction set of the supposed target processor.
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14 W. Amme, P. Braun, E. Zehendner, F. Thomasset

5.3 Detecting non-invariant registers

A non-invariant register of a loop < , is a register � � used in < , , the contents of which can

change. There are several well-known algorithms for the determination of non-invariant

registers of a loop. We use a technique that is based on a simple iterative algorithm [1].

Let < , be a loop and S a statement inside < , . A statement � is called loop invariant

if the destination register ��� is defined with the same value in each loop iteration. The

determination of loop invariant statements of < , can be performed in two steps:

1. Mark all statements as loop invariant, which only use constants as operands or

operands defined outside of < , .

2. Iteratively, mark all untagged statements of < , as loop invariant which only use ope-

rands that are defined only by a loop invariant statement. The algorithm terminates

if no further statement can be marked.

By using the concept of loop invariants we can determine the non-invariant registers of

a loop < , in a simple way. For this, a register � � is a non-invariant register in < , iff � � is

defined by a statement in < , that is not a loop invariant statement in < , .

5.4 Symbolic value propagation

To represent functional relations between register contents and certain initial values repre-

sented by symbols from
��
�!

, we use polynomials that are linear in the symbols. Each

such polynomial can be described formally as a mapping from the symbols to the integers.

For representing a constant additive term we introduce + as an artificial symbol:��
�! � ��
�! � � + �
Then, the space

���
of all formal linear polynomials in the symbols with coefficients

from the integers can be described as follows:��� ��� ��
 ! �����
A more familiar representation of such a polynomial is as a formal sum:

	 � $�
��� $
���

,

�
with

$ � $
� � � � ,

� � ��
�!
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Free symbols We describe the set of symbols with nonzero coefficients in a polynomial—

the so-called free symbols—by a function ����  :
����  � ��� �+*'� ��
�! � � 	��� �

,
� ��
�! � 	 � , ���� 	 �

We write 	 � $ as a shortcut when ����  � 	 � ��� and 	 � + � � $ .
Operations Since we want to stay within the space of linear polynomials, only some of

the known operations on polynomials are feasible. These are:

# 	 ��� � ��� � , � ��
�! � � 		� � �7� , � � 	 � , � 
 � � , �
# 	 �
� � ��� � , � ��
 ! � � 	�� � �7� , � � 	 � , � �� � , �

# 	 � ��� � , � ��
 ! � � ��	 �7� , � � � 	 � , �
# 	 � ��� � , � ��
 ! � � � �:� � ��� 	 ��� , � � � 	 � � �7� , � � �

� 	 � , �
For representing unknown or approximated values, we use

��� � ��� � � + � .
A bounded semi-lattice Since we abstract from the predicates of conditionals, we must

work with sets of values from
���

. For doing an effective analysis each such set should

contain only a small number of elements. An appropriate “bounding concept” is introdu-

ced via the space
��� �

:��� � � � � � ��� ���
�

���
�
�

where � is some predetermined natural. The size of � influences the precision of the

analysis and should be chosen carefully to fit the demands. Furthermore, since + stands

for any value, we can restrict in this respect to a single set containing + alone:��� � � ��� � � � � + � �
We use

� + � instead of + to have the opportunity to enumerate sets from
��� �

or to

build cartesian products from them.

On
��� �

we can define a meet operator � ����� � ��� ��� ��� � � ��� �
:

� � ������� �
�� � � � � if � � � � ��� �

and
�
� � � ���

� ,� + � else

Remark:
� ����� ��� ����� � is a bounded semi-lattice with zero element

� + � and “one”

element � .
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Approximation of the values in registers What we are now looking for is an approxi-

mation of the values that the registers may contain when reaching a certain statement.

This approximation must be safe, in the sense that not every value found during the ana-

lysis necessarily appears during runtime but all values that do in fact show up have to be

included in the approximating set.

�������� � � � �� �!  � � � �	� � � ����� �
,� ��� 	 � � �������� � � � � ��� register � may contain value 	 when read by statement �

We calculate �������� � � by the following MDFS:

Data flow information set4: � ��� � � ���	� � � ��� � �
One element: �
Meet operator ��� ��� � � ��� � � ��� � � ��� :

# � � � �	� � � � � ��� ���
	 ��� � � � �3� � � � ����� 	 � � �
Semantic functions:

8 67���:� � ��������� � � � � �����
< 67���:� � � � � ��� ��� � 	 � � � � � ������ � � ���

� � � � � ��������� � � �9� (abbreviation: � 	 ��� � � � ������� � � ��� � � )
where the functions 	 � depend on the instruction performed, and

� � � � 	 � � � � ������ � � � �
� � � ����� ���	 � 	 � ������ � 	�� � � � � ����� 	 
 � � � �

with
�	 � 	 �������� � 	�� � � � 	 � 	 �������� � 	�� �&�

in the sequel (although you may think of more general situations).

Semantic functions have to be defined for any instruction. The most important cases

then are:

mov a,ri � $ � � � with
$ ��� � $

mov rj,ri � � ��� � 
 � � with
� � � 	 � � 	

init ri � ������������� � � � with ������������� ��� � � �	� 6 � ��
 !
ld [mem],ri � �������������!� � �
entry � ������������� � � � for all registers ���

4Actually, the information at each program point is a function from the registers, but we found it conve-

nient to define it as a relation, so as to simplify the definition of the semantic functions.
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call � ������������� � � � for a suitable subset of the registers

add rj,rk,ri ��� � ��� � 
 � � � � � with � � � � 	 ��� � �
�� � + if 	 � + or � � +	�� � else

sub rj,rk,ri � ��� � � � 
�� � � � � with ��� � � 	 ��� � �
�� � + if 	 � + or � � +	�� � else

mul rj,rk,ri ��� � � � � 
 � � � � � with � � � � 	 ��� � �
�������� �������
	 if 	 � 	 or � � 	
����� if 	 � � � � and � �� +	 � � if 	 �� + and � � � � �
+ else

div rj,rk,ri � � � � � � 
 � � � � � with � � � � 	 ��� � �
����� ����
	 if � �����	 if 	 �� + and � � ���
+ else

Remark: For division, we can only handle trivial cases since we are reasoning in�
(we can reduce coefficients modulo ��� , but can not for symbols) whereas the machine

is calculating in
� 
	� , the ring of residues modulo � � . For addition, subtraction, and

multiplication, there appear no essential problems because these operations provide ring

homomorphisms between
�

and
� 
	� . Division is more critical in this sense, as shows the

following example:

Let �	��� ����
 � and � 
� 	 ������� � � . After the statement sequence

mul r1,r2,r3

div r3,r2,r1

���	� �	��
 � in
�

but �	�	� 	 in
� 
	� .

There are variants of these instructions with integer constants used instead of ope-

rand registers; these are treated analogously, one of the polynomials degenerating to the

constant additive term.

We have
�������6 � �����6

if ��������� � � � ��� .

For all other instructions not treated so far we could set � � ����� ��� � � � for all registers � �
with � � � ��������� � � � , where

� ����� ��� � � � + .
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Of course, most of these functions could be modelled a bit more precisely—e.g. shift-

left like mul, shiftright like div, exact handling of boolean operators—but we are not sure

that it would be worth the effort.

Remark: The assumption that all calculations be modulo � � is essential for addi-

tion, subtraction, and other instructions. Should the processor trap with overflow, func-

tions like � � � must be defined in a much more restrictive way than above to get a safe

approximation. For instance, we could set

� � � � 	 ��� � �
�������� �������
	�� � if 	 ��� �� + and 		� � ��� � � ,
� if 	 � 	 ,	 if � � 	 ,
+ else

and

��� � � 	 ��� � �
�� � 		� � if 	 ��� �� + and 	�� � ��� � � ,
+ else

where
� � � is the set of integers representable in a register.

+ here also models possible overflow situations that could terminate the execution of

the instruction with an exception.

Remark: The reader might doubt that a symbol propagated in the different registers

to an add instruction that uses both registers as operands has the same meaning in the

polynomials and thus can be added. The feasibility of this operation follows from the fact

that initialization points introduce new incarnations of symbols in each iteration for all

such registers.

5.5 Evaluating address expressions

The results of our symbolic value propagation have to be substituted into the address ex-

pressions of all memory instructions to get a safe approximation of the addresses accessed

by these instructions. To perform this substitution we have to touch each instruction only

once. We assume that the only instructions involving memory are loads, stores, and calls.

The set of addresses possibly accessed by an instruction is calculated as follows:

� � � � � �� �!� � �����
,	 � � � � � � � ��� 	 may be the address of a memory cell accessed in statement �
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� � � � � � � �

�������� �������
� � �������� � � � � � � $   � $ ��� � � � 
 � if [rj+a] is the address expression
� � �������� � � � � � � $   � � 
�� � � � if [rj+rk] is the address expression� + � if � is a call instruction

� else
Now, we have to distinguish whether an instruction reads from memory or writes to

it. Thus, we derive functions ���� �  � and � �� �  � from � � � � .
���� �  � � �� �!� � �����

,	 � ���� �  � � � ��� statement � possibly writes to address 	
���� �  � � � � �

�� � � � � � � � � if � is a store or call instruction

� else

� �� �  � � �� �!  � ��� �
,	 � � �� �  � � � ��� statement � possibly reads from address 	

� �� �  � � � � �
�� � � � � � � � � if � is a load or call instruction

� else
The handling of call instructions here is as approximative as could be when staying

conservative in the analysis, and could possibly be improved by distinguishing certain

storage areas with specific bottom symbols.

5.6 Reaching definitions and uses of memory

We are now ready for setting up reaching definitions and uses of memory. We formulate

this pass as a MDFS that propagates a set of possible reaching definitions (resp. uses) to

the successors of a statement. In order to keep the reaching sets as small as possible—and

thus the analysis as precise as could be—we use a special form of must alias analysis

where we check if the memory effect of a previous statement � is completely invisible to

the successors of a statement � . To assure this, ���� �  � � � � must be an alias of � � � � � � � ;
we formulate this by a predicate � ��� ���� .

Function for reaching definitions: � � �  � � �� �!� �+*�� �� �!� �
,

� � � � �  � � � ��� statement � can possibly observe a storage contents

written by statement �
Function for reaching uses: �����  � � �� �!  � *'� �� �!  �

,

� � �����  � � � � � statement � can possibly observe a storage contents

read by statement �
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Data flow information set for reaching definitions and uses:
�� �!  

One element: �
Meet operator � ������� � �� �!� � �� �!  � �� �!  

: � � ������� � � � � �
Semantic functions for reaching definitions:

< 6�� �:� �
�� � � � � if � is a store or call instruction

� else

8 67���:� � � � � � � � ��� ���� � � � ���� �  � � � � � ��� ���� �  � � � �@�&�
Semantic functions for reaching uses:

< 67����� �
�� � � � � if � is a load or call instruction

� else

8 67����� � � � � � � � ��� ���� � � � ���� �  � � � � � ��� � �� �  � � � �@�&�
For the must alias relation, we find the following situation:

An address set
�

can only cover another address set � if each element in � is covered

by each element in
�

.

� ��� ���� � � � � � ����� � � �

!
	 � � %�������
� ��� ������ � � � $ � ��� % �

The unknown address + can never cover any address, and can never be covered by

any address.

� ��� ������ � ��� $ � ���&% � �
�� � � � � �� if

$ � + or %0� +
� ��� ������ � � � $ � ���&% � else

The predicate �� � (formally introduced later) describes the situation where symbols

to be compared can never be generated both in one run of the analyzed code. Cases where

such symbols appear together in comparisons are spurious; they are due to the abstraction

of control flow where the predicates of conditionals are not used in deciding on paths to

be taken.

� ��� �� ��� � � � $ � ���&% � �
����� ����
� ���  if �� � � , ��� �

for some ,
� ����  � $ � ��� � ����  � % �

� ��� �� ��� � � � $ � ��� % � $ � else
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When comparing two addresses for coverage we have to form the difference between

them. This difference is itself a polynomial, and when it contains a free symbol then we

might find a valuation of the symbols where this difference is large in magnitude and thus

coverage is not assured. Thus, � ��� ������ never has the value � ���  when there are any free

symbols in the difference polynomial.

� ��� �� ��� � � � $ � ����� � �
�� � � � � �� if ����  � � ���� �

� ��� ������ � � � $ � ����� � else

Moreover, eliminating free symbols from both argument polynomials by assuming

equality is only feasible when such a symbol has the same meaning in both contexts. To

delete a statement � from the reaches (resp. uses) set arriving at statement � , we have to

be sure that (i) the memory contents addressed in statement � is overwritten every time

the control flow passes statement � , and that (ii) there is no way to bypass statement �
between the use of a symbol , in statement � and its redefinition. The latter is checked

with a function ����� � � � � � ��� , explained below5.

Finally, we check whether the memory block of � ���  � � � bytes starting at address
$

completely covers the memory block of � ���  � � � bytes starting at address % 6.

� ��� ������ � � � $ � ����� � �
����� ����
� � � �� if

� ����� � � ����� � � � � � ��� � ��� � , �@�
for some ,

� ���   � $ �� � � � ���  � � � � � ���  � � �@� else

The function � ���  � �� �!  ���
reflects the number of bytes accessed in memory.

Symbols defined on a common path: predicate �� �

�� � � ��
 ! � ��
�!
�
, ��� � � �� � � the symbols , and � are not defined on a common path

�� � can be derived from a function �� � �	�  � , describing which statements reach a

statement.
5Function 
 � ?� C has been introduced on page 13.
6If the number of bytes read or written by a memory instruction is always the same, the formula ���

� 
���� ?��&C�� � 
���� ?�� C in ����� �"! �"# simplifies to � � �
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�� � � , ��� ��� ��� �
,
���� ��� � � ��� ��� �

,
���� �� � �	�  � � ��� � � �;��� ��� � � ���� �� � �	�  � � ��� � , �;�

�� � �	�  � � �� �!  � *'� �� �!  �
,

� � �� � �	�  � � � ��� there is a path from statement � to statement �
We calculate �� � �	�  � by the following MDFS:

Data flow information set:
�� �!  

One element: �
Meet operator � � �� �!  � �� �!  � �� �!  

: � � � � � � �
Semantic functions:

8 6�� �:� ���
< 67���:� � � � �

Predicate ����� � � � � � ���

����� � � � � � ��� � �� �!  �+*'� �� �!  � �� �!� �
� ����� � � ����� � � � � � ��� � � � *', there is a path from statement � to statement �

not passing statement �

To calculate ����� � � � � � ��� with a MDFS:

Data flow information set:
*'� �� �!  � �� �!� �

One element: �
Meet operator: � � � � � � �
Semantic functions:

8 67����� � � � ����� � � � �
< 6�� �:� � � � ��� � � � � � �� � �	�  � � � �9�

or equivalently in our case: < 67���:� � � � � � � � � � � �� � �	�  � � � �&� .

5.7 Determination of memory based data dependences

To derive memory based data dependences from reaching definitions (resp. uses) for

memory, we have to check whether the memory cells accessed in one statement may

intersect with the memory cells accessed in another statement. The intersection is checked

using the ��� � predicate. Given this, the data dependences are as follows:

� is flow dependent on � � � � � � �  � � � �
�

����� � � ���  � � � � ���� �  � � � � � � ���  � � � � ���� �  � � � �;�
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� is anti dependent on � � � � ��� �  � � � �
�

����� � � ���  � � � � � �� �  � � � � � � ���  � � � � ���� �  � � � �;�
� is output dependent on � � � � � � �  � � � �

�
����� � � ���  � � � � ���� �  � � � � � � ���  � � � ������ �  � � � �@�

An intersection between sets of addresses can only be excluded when there is defini-

tely no intersection for any pair of addresses.

����� � ����� � ��������� � � �
!
	 � � % ��� ���

��� � � � ��� � $ �������&% �

An unknown address + may intersect with any address.

����� � � ��� � $ �������&% � �
�� � � ���  if

$ � + or %0� +
����� � � ��� � $ �������&% � else

If addresses contain symbols that are incompatible they can never appear together.

����� � � ��� � $ �������&% � �
�� � � � � �� if �� � � , ��� � for some ,

� ����  � $ � ��� � ����  � % �
����� � � ��� � $ �������&% � else

Now, we have to form a difference polynomial for the final intersection test. A com-

mon free symbol from the polynomials
$

and % might take different values in both poly-

nomials. For correctly setting up the difference polynomial we have to substitute a new

symbol for the common one into one of the polynomials if its value is not fixed. The latter

property is checked by the predicate ��� � � ��� � .

����� � � ��� � $ �������&% � � ��� ��� � ����� $ , �������&% �
with

$ , � $ � � � � � , � � , � for all ,
� ����  � $ ��� ����  � % � such that ��� � � ��� � � , � �

In this formula,
$ � � � � � , � � , ���� � means that we substitute a new symbol for each

conflicting old one, all at the same time. The function � � � has to provide unique du-

plicates for the symbols appearing in the semantic functions without interfering with the

latter. An easy way to achieve this would be the following definition (assuming that sta-

tements are counted up from 0):

� � � � ��
�! � ��
�! � � �	� 6 �� � �	� 

6

 �
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We define ��� � � ��� � � , � � ��� �
,
� � �� � �	�  � � ��� � , �@� . However, in special contexts like

loop body analysis, we might want to be more precise.

����� � � ����� $ , �������&% � � ��� � � ��� � �� � ��� ��� � � � �� � �

where �0� � � + � �
�'� $ , � %��
and

� ���
	 ��� ��� ���
	 �� ��������� !�� % � � � , �9���
We refer to the appendix (section 9) for the derivation of this formula. This imple-

ments what can be considered as an extension of the GCD test—the best we can do in the

current situation7.

6 Implementation and Results

The method for determining data dependences in assembly code presented in the last

sections was implemented as a user function in SALTO on a Sun SPARC 10 workstation

running Solaris 2.5, with the following simplifications:

� ��� 	 � � � � � ����� $ � ����� % � � ��� 	 � � � � � ����� $ � ����� % � $ �

� ��� 	 � � ��� � ����� $ � ����� � � �
����� ����
� � � �� if variant(x)

for some ,
�

free(a)� � � ����� � � � � � � �!� � � � �@� else

� � � � � � ����� $ � ����� % � � � � � � � ����� $ � ����� % �

Presently, only the assembly code for the SPARC V7 processor can be analyzed, but

an extension to other processors will require minimal technical effort. Results of our

analysis can be used by other tools in SALTO. For evaluation of our method we have

taken a closer look at two aspects:

7As shown in the appendix, the test amounts to asking that an integer multiple of " be comprised between

the numbers ?$# � � �&%;C and ?�� �'# �(%;C ; so it amounts to the classical GCD test, applied to all values in this

interval.
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1. Comparison of the number of data dependences using our method against the me-

thod implemented in SALTO; this shows the difference between address-based and

value-based dependence analysis concerning register accesses.

2. Comparison between the number of data dependences using address-based and

value-based dependence analysis for memory accesses.

As a sample we chose 160 procedures out of the sixth public release of the Independent

JPEG Group’s free JPEG software, a package for compression and decompression of

JPEG images. We distinguish between the following four levels of accuracy: in level 1

we determine address-based dependences between register accesses, memory is modeled

as one cell, so that every pair of memory accesses is assumed to introduce a data depen-

dence. Level 2 models the memory the same way as in level 1, and does value-based

dependence analysis for register accesses. From level 3 on, register accesses are determi-

ned the same way as in level 2, and we analyze memory accesses with our symbolic value

set propagation, but in level 3 the derivation of dependence is address-based. In level 4

we perform value-based dependence analysis. Level 1 analysis is performed by SALTO

[20], but SALTO does not even consider control flow. Two instructions are assumed to be

data dependent, even if they cannot be executed one after another. Level 2 is a common

technique used by today’s instruction schedulers, e.g. the one in gcc [25] or the one used

by Larus et. al. [21]. Systems that do some kind of value propagation, but only determine

address-based dependences, are classified as level 3. In section 7 we will have a closer

look at other techniques for value propagation. Our method is classified as level 4. As yet,

we know of no other method which also determines value-based dependences. The table 2

only contains those 39 procedures in which an improvement, i.e., less dependences, was

noticeable from level 3 to level 4. It shows the number of dependences (sum of true,

anti-, and output dependences), where we distinguish different levels of accuracy, as well

as register and memory accesses. Table 2 also shows in the two rightmost columns the

effect of a value-based analysis against an address-based analysis. For every procedure it

is clear to see the proportion of data dependences that our method disproves.
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Procedure Name LOC Level 1 Level 2 Level 3 Level 4 Improvement

Reg. Mem. Reg. Mem. Reg. Mem. Reg. Mem. Reg. Mem.

keymatch 59 643 81 149 81 149 58 149 47 77% 19%

test3function 15 24 29 15 29 15 16 15 13 38% 19%

is_shifting_signed 33 178 38 87 38 87 31 87 22 51% 29%

jpeg_CreateCompress 126 4273 1945 423 1945 423 1664 423 1619 90% 3%

jpeg_suppress_tables 74 1127 396 143 396 143 229 143 184 87% 20%

jpeg_finish_compress 144 10432 2333 1121 2333 1121 2210 1121 2197 89% 1%

emit_byte 42 433 214 119 214 119 189 119 184 73% 3%

emit_dqt 125 4794 1097 575 1097 575 771 575 726 88% 6%

emit_dht 134 5219 1461 589 1461 589 980 589 870 89% 11%

emit_sof 100 6389 1282 661 1282 661 1087 661 1077 90% 1%

emit_sos 100 5252 1285 574 1285 574 873 574 840 89% 4%

write_any_marker 41 561 175 184 175 184 110 184 106 67% 4%

write_frame_header 142 4309 1368 679 1368 679 870 679 744 84% 14%

write_scan_header 86 3656 626 934 626 934 486 934 459 74% 6%

write_tables_only 83 2495 390 716 390 716 324 716 267 71% 18%

jpeg_abort 38 268 84 93 84 93 67 93 63 65% 6%

jpeg_CreateDecompress 124 4878 1972 507 1972 507 1716 507 1659 90% 3 %

jpeg_start_decompress 135 4097 902 674 902 674 860 674 856 84% 1%

post_process_2pass 111 2583 1385 278 1385 278 907 278 878 89% 3%

jpeg_read_coefficients 113 3783 897 538 897 538 853 538 851 86% 1%

select_file_name 104 5631 1146 473 1146 473 714 473 644 92% 10%

jround_up 20 80 29 30 29 30 20 30 15 62% 25%

jcopy_sample_rows 46 354 197 115 197 115 89 115 64 68% 28%

read_1_byte 48 653 84 186 84 186 70 186 67 72% 4%

read_2_bytes 93 3115 360 555 360 555 297 555 285 82% 4%

next_marker 42 567 137 305 137 305 112 305 98 46% 12%

first_marker 84 1989 259 360 259 360 197 360 187 82% 5%

skip_variable 33 533 83 258 83 258 83 258 73 52% 12%

process_COM 107 6901 979 1147 979 1147 697 1147 592 83% 15%

process_SOFn 75 4545 729 670 729 670 601 670 598 85% 1%

scan_JPEG_header 34 804 82 306 82 306 78 306 77 62% 1%

keymatch 59 643 81 149 81 149 58 149 47 77% 19%

read_byte 43 415 105 129 105 129 102 129 97 69% 5%

read_colormap 67 2221 668 305 668 305 583 305 568 86% 3%

read_non_rle_pixel 40 368 93 125 93 125 84 125 83 66% 1%

read_rle_pixel 80 976 289 268 289 268 280 268 279 73% 1%

jcopy_sample_rows 46 354 197 115 197 115 89 115 64 68% 28%

flush_packet 44 468 187 131 187 131 187 131 182 72% 3%

start_output_tga 215 12870 3272 974 3272 974 2937 974 2876 92% 2%

Table 2: Number of dependences (sum of true, anti-, and output dependences) found in

four levels of accuracy. The results are divided into register-based and memory-based

dependences. The two rightmost columns show the improvement of a value-based depen-

dence analysis on an address-based dependence analysis.
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7 Related Work

So far, only limited amount of work has been done in the field of memory reference di-

sambiguation. Ellis [8] presented a method to derive symbolic expressions for memory

addresses by chasing back all reaching definitions of a symbolic register, the expression

is simplified using rules of algebra, and two expressions are compared using the GCD

test. The method is implemented in the Bulldog compiler, but it works on an intermediate

level close to high-level language. Other authors were inspired by Ellis, e.g. Lowney et.

al. [14], Böckle [4], and Ebcioğlu et. al. [16]. The latter approach is implemented in the

Chameleon compiler [17] and works on assembly code. First, a procedure is transfor-

med into SSA form [5], and loops are normalized. For gathering possible register values

the same technique as in the Bulldog compiler is used. If a register has multiple defi-

nitions, the algorithm described in [16] can chase all reaching definitions, whereas the

concrete implementation in the Chameleon compiler seems to not support this. Compa-

ring memory addresses makes use of the GCD test and the Banerjee inequalities [2, 28].

The results of their method are alias information. Debray et. al. [7] present an approach

close to ours. They use address descriptors to represent abstract addresses, i.e., addresses

containing symbolic registers. An address descriptor is a pair ��� ��� � where � is an

instruction and � is a set of � �  ��� residues. � denotes a set of offsets relative to

the register defined in instruction � . Note that an address descriptor only depends on one

symbolic register. A data flow system is used to propagate values through the control

flow graph. � �  �	� sets are used as a bounded semi-lattice is needed (in the tests it is

� ��
�� ). However this leads to an approximation of address representation that makes

it impossible to derive must-alias information. The second drawback is that definitions

of the same register in different control flow paths are not joined in a set, but mapped

to + . Comparing address descriptors can be reduced to a comparison of � �  ��� sets,

using some dominator information to handle loops correctly. They do not derive data

dependence information.
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8 Conclusions

In this paper we presented a new method to detect data dependences in assembly code. It

works in two steps: First we perform a symbolic value set propagation using a monotone

data flow system. Then we compute reaching definitions and reaching uses for memory

access, and derive value-based data dependences. For comparing memory references we

use a modification of the GCD test. All known approaches for memory reference disam-

biguation do not propagate values through memory cells. Remember that loading from

memory causes the destination register to have a symbolic value. When we compare two

memory references we must have in mind that registers defined in different instructions

may have different values, even if they were loaded from the same memory address. To

handle this situation we plan to extend our method to propagate values through memory

cells.

Software pipelining will be one major application of the present work in the near

future; this family of techniques overlaps the execution of different iterations from an

original loop, and therefore requires a very precise dependence analysis with additional

information about the distance of the dependence. Development of this work entails in

particular discovering induction variables, which is possible as a post-pass, as soon as

loop invariants are known. Then coupling with known dependence tests, such as Banerjee

test or Omega test [19] can be considered.

Finally, extending our method to interprocedural analysis would lead to a more ac-

curate dependence analysis. Presently we have to assume that the contents of almost all

registers and all memory cells may have changed after the evaluation of a procedure call.

9 Appendix : derivation of formula ���
���

See section 5.7 for the use of this predicate and notations. Note that
�

is always positive,

as it is the gcd of several quantities including � � .
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����� � � ��� � $ , �������&% ��� ��� ��� � � ��� ��� � � * � � � ��� ��� � ��� �$ , 
 � 
��
�
���/� % 
 � 
 �

�
���

�
��� ��� � � ��� ��� � � * � � � ��� ��� � ��� �

� 
 � � ��� �
�
� � � ���	�

with �'� $ , � %
�

��� �
� � � ��� � � � � * � � � ��� ��� � ��� �� � � � � 
 � � ��� �
�
� � � ����� � �

with �0� � � + �
�
�� � � ��� ��� � � * � � � ��� ��� � ��� �

� � � ����� � �
with

� � �
	 ��� ��� ���
	 � � ��� � ��� ! � % � � � , �&����
�� � �:�

� ��� 
 � � 
� � 
 � � ��� � �

Hence the conclusion :

������� � ��� � $ , �������&% � � � � � ��� � �� � ��� ��� � � � �� �

10 Appendix : What is a loop

Let < � ��� ��� ��� � be a control flow graph. Let <-,�� ��� , ���-, � ��, � denote a subflowgraph

of < , i.e.,
�

,
���

and � , � � �)���
, � �

,
�
. < , is a loop with entry point � , � �# � / �
/ ,

� � � � / , � � , , / , � � ,�� / � � , and for every pair of nodes / ��/ , � � , there

are non-trivial paths from n to n’ and vice versa.

In Fig. 4 we show the well-known algorithm for the determination of all nodes asso-

ciated with loop < , with entry point � , and the backward edge
� / , � � , � , which can be found

by using the dominance relation [28, 1]. In the algorithm, � � �� � $ � stands for the set of all

predecessors of node a. At the end, set � contains all nodes of the loop.
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procedure insert(x)

if x
��
L then

L := L
�

{x};

stack.push(x);

end if

end procedure

procedure main

L :=
�
s’

�
;

insert( n’ );

while stack.notempty() do

a := stack.pop();

foreach b
�
pred(a) do insert(b) end

end

end procedure

Figure 4: Algorithm for the determination of all nodes of a loop.
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Unit é de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,

615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY
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Unit é de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex
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