-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

An Extensible Framework for Data Cleaning

Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon

» To cite this version:

Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon. An Extensible Framework for Data
Cleaning. [Research Report] RR-3742, INRIA. 1999. inria-00072922

HAL 1d: inria-00072922
https://hal.inria.fr /inria-00072922
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50451869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072922
https://hal.archives-ouvertes.fr

An Extensible Framework for Data Cleaning

S paires es impaires

RR n~° 3742

ISSN 0249-6399

%I 1N RIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

An Extensible Framework for Data Cleaning

Helena Galhardas - Daniela Florescu - Dennis Shasha - Eric Simon

N°® 3742
Juillet 1999

THEME 3

apport
derecherche

% INRIA

ROCQUENCOURT

An Extensible Framework for Data Cleaning

Helena Galhardas* - Daniela Florescu! - Dennis Shasha! - Eric Simon?

Theme 3 — Interaction homme-machine,
images, données, connaissances

Projet Caravel

Rapport de recherche n° 3742 — Juillet 1999 — 44 pages

Abstract: Data integration solutions dealing with large amounts of data have been
strongly required in the last few years. Besides the traditional data integration problems
(e.g. schema integration, local to global schema mappings), three additional data problems
have to be dealt with: (1) the absence of universal keys across different databases that is
known as the object identity problem, (2) the existence of keyborad errors in the data, and
(3) the presence of inconsistencies in data coming from multiple sources. Dealing with these
problems is globally called the data cleaning process. In this work, we propose a framework
which offers the fundamental services required by this process: data transformation, dupli-
cate elimination and multi-table matching. These services are implemented using a set of
purposely designed macro-operators. Moreover, we propose an SQL extension for specify-
ing each of the macro-operators. One important feature of the framework is the ability of
explicitly including the human interaction in the process. The main novelty of the work is
that the framework permits the following performance optimizations which are tailored for
data cleaning applications: mixed evaluation, neighborhood hash join, decision push-down
and short-circuited computation. We measure the benefits of each.

Key-words: data integration, data cleaning, query language, query optimization, ap-
proximate join, data transformation

(Résumé : tsup)

* INRIA Rocquencourt, France Helena.Galhardas@inria.fr

T INRIA Rocquencourt, France Daniela.Florescu@inria.fr

¥ New York University and INRIA Rocquencourt, France shasha@cs.nyu.edu
§ INRIA Rocquencourt, France Eric.Simon@inria.fr

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
Téléphone : 01 39 6355 11 - International : +33 1 39 63 55 11
Teélécopie : (33) 01 39 63 53 30 - International : +33 1 39 63 53 30

Un Environnement Logiciel Extensible pour le
Nettoyage de Données

Résumé : La demande en solutions d’intégration de grands volumes de données est
fortement présente aujourd’hui. En plus des problémes traditionnels d’intégration de schéma,
trois autres problémes doivent &étre pris en compte: (1) I'absence de clés universelles pour
différentes sources de données, connu sous le nom de probleme d’identification d’objets,
(2) lexistence d’erreurs de frappe dans les données et (3) la présence d’incohérences dans
les données qui proviennent de sources différentes. Le traitement de ces problemes est en
général appelé nettoyage de données. Nous proposons un environnement logiciel qui offre
les principaux services nécessaires & un processus de nettoyage de données, a savoir: la
transformation de données, le dédoublonnage de données et la mise en correspondance entre
plusieurs tables, encore appelée jointure approximée. L’implémentation de ces services est
supportée par un ensemble de macro-operateurs spécifiables 4 ’aide d’une extension de SQL.
Une caractéristique tres importante de ’environnement proposé est ’inclusion explicite de
P’utilisateur dans le processus de nettoyage. Une contribution originale de notre travail est
un ensemble de techniques d’optimisation adaptées aux applications de nettoyage de données
telles que ’évaluation mixte ou le neighborhood hash join.

Mots-clé : intégration de données, nettoyage de données, langage et optimisation de
requétes, jointure approximée, transformation de données

An Extensible Framework for Data Cleaning 3

1 Introduction

In the last few years, there has been a big demand for data integration solutions that deal
with large amounts of data. Besides the problems that have been traditionally addressed in
the past, like schema integration, local to global schema mapping and query decomposition,
data integration applications have to cope with three additional problems:

1. Data coming from different origins may have been created at different times, by different
people and using different conventions. In this context, the question of deciding which
data refers to the same real object becomes crucial. A company may have information
about its clients stored in several tables, because each client buys different services that
are managed by distinct departments. Once it is decided to build a unified repository
of all the company clients, the same customer may be referred to in different tables by
slightly different but correct names: “John Smith”, “Smith John” or “J. Smith”. This
kind of mismatching is called the Object Identity problem in [8]'.

2. There may be errors in data. Usually due to mistyping (“John Smith” and “Joh Smith”),
errors also result in the object identity problem once data is being integrated, since the
same object may be referred to by more than one data record and some may be erroneous.
Nevertheless, the algorithms used to detect that fields with data entry errors refer to the
same object are not the same as the ones used to recognize that fields written in a different
format are correct alternatives.

3. There may be inconsistencies. Even though different records may have been recognized to
store information about the same object (because the name fields are similar, for example),
they may carry contradictory information (for instance, two different birth dates for the
same person object).

In this paper, we are interested in the case where the contents of multiple autonomous
data sources are combined and reconciliated, with the purpose of building a materialized,
error free, unified view of them. Following the data warehouse terminology [3], we shall call
data cleaning the process of eliminating the three above problems during the construction
of the materialized view.

1.1 Statement of the Data Cleaning Problem

To illustrate some of the major steps followed by a data cleaning process, we use a concrete
example. In the case illustrated in figure 1, we want to gather into a materialized view,
named CLIENT, some information that tells us which clients (identified by an Id, a name,
an address, a user name, and a job), have a cellular phone, a phone line or an Internet
connection at home. This information is a priori disseminated into the three source tables:

1This problem is sometimes called Instance Identification problem, or duplicate elimination or record
linkage problem in the case of a single source.

RR n“ 3742

4 H. Galhardas, D. Florescu, D. Shasha € E. Simon

GSM-CLIENT, HOME-CLIENT, and INTERNET-CLIENT. This example requires a data
cleaning process since there is no common client key in the three source tables and some
data entry errors may have been introduced when filling in the fields of each table.

The first step is to determine the client records (each taken from a different source table)
that correspond to the same client in the real life (object identity problem). Henceforth,
such records are called matching records. One may express that records are matching records
if their name and address values are equal, or if their name values have a high degree of
similarity using some notion of similarity. A more complex criteria could specify that two
records are matching records if their name values are similar and one record comes from the
GSM-CLIENT table while the other comes from the HOME-CLIENT table. Before compa-
ring records, some conversions of individual table fields may be needed since data formats
may vary. For instance, names can be normalized using the format <lower_Case(name)>.

Once matching records are found, a second important step is to inspect the matching
records and determine which ones are valid or not. This is necessary because a single
tuple, say of HOME-CLIENT, may a priori match with several records in GSM-CLIENT
or INTERNET-CLIENT due to the approximation performed by the matching criteria.
One possibility is to ask the user to inspect all matching records, possibly entailing the
examination of a huge number of records. Another possibility is to keep the matching
records that have the highest similarity value(e.g., wrt a threshold), provided that such
value is kept with each matching record.

The last phase is to integrate the remaining matching records and generate tuples for the
materialized view. Several possible rules for integration can be envisioned. For instance, the
name value of CLIENT records can be taken from the GSM-CLIENT matching records while
the address value is taken from the HOME-CLIENT matching records. The job value of
CLIENT records can be obtained by concatenating the two job values of matching records
from GSM-CLIENT and HOME-CLIENT. These choices can be specified in advance or
interactively performed by the user during the cleaning process.

As a general goal, the cleaning process must assure a good quality of the data generated
in the materialized view, in the natural sense: (i) client records that correspond to the same
client, and only those, should be found as matching records, and (ii) integrated matching
records should be error-free. To satisfy this quality goal, the cleaning process must have
two major features. First, it should be iterative and interactive. Indeed, during a first
iteration, matching records are found based on initial matching criteria. After inspection
of the result, errors may be found (e.g., some matching records should not match). As a
consequence, new matching criteria are defined and a new matching phase is started again.
Similarly, the integration phase can also be iterated to refine the integration criteria after
manually controlling the first generated results. The involvement of a human being (usually,
an expert) in the different stages of the cleaning process is necessary because many errors and
inconsistencies cannot be resolved automatically. As a second feature, the cleaning process
must be expressive and extensible. It should be possible to express a rich variety of criteria
for matching records, eliminating erroneous matches, and integrate remaining matching
records. Furthermore, it should be easy to incorporate domain specific data normalization,

INRIA

An Extensible Framework for Data Cleaning 5

CLIENT (clientld, name, address, gsm-nb, phone-nb, user-name, job)

T

—_—
DATA CLEANING AND INTEGRATION

@/ é \@ -

GsM Home Phone Internet
i 4)

GSM-CLIENT(gsmid, name, address, gsm-nb, job) | INTERNET-CLIENT internetld, name, address, user-name)
HOME-CLIENT(homeld, name, address, phone-nb, job)

Figure 1: Integrated view of Telecom customers

matching, and integration algorithms in the cleaning process. For instance, the algorithms
used in practice to compare person names or addresses may not be the same. Extensibility
allows both to be invoked during the cleaning process.

However, specifying and implementing a cleaning process with good quality result raises
three main difficulties. First, the volume of data involved in a cleaning process is usually
large, which makes the matching phase quite expensive. Optimization techniques are nee-
ded to keep this cost reasonably acceptable, knowing that this phase can be iterated over
several times, while at the same time avoiding to miss some pertinent matching records (i.e.,
some comparisons). Second, because humans are an expensive resource, it is important to
automate as much work as possible before the user interferes in the cleaning process, and
give to the user the maximal amount of information so that well founded decisions can be
taken (e.g., to eliminate erroneous matching records). Typically, one wants to minimize the
amount of data that needs to be inspected manually. Third, due to the iterative nature of
the cleaning process, it is essential to be able to easily modify the whole specification and
implementation of the cleaning process. Note that the two first points merely reflect the
tradeoff that exists between quality and efficiency.

1.2 Existing Solutions for Data Cleaning

A first obvious solution is to write a dedicated application program (e.g., a C program),
that implements the whole data cleaning process after extracting the source data from some
databases and storing them into files. Such a program could call external procedures to
compare record fields during the matching phase. However, this solution is not appropriate
for the following reasons. First, this solution is not flexible enough to support the iterative
process of data cleaning explained earlier since modifying parts of the process would mean
rewriting large amounts of code. Second, this solution does not take advantage of the data
processing capabilities offered by current database systems to implement some costly data

RR n“ 3742

6 H. Galhardas, D. Florescu, D. Shasha € E. Simon

intensive operations (e.g., joins) during the matching phase. Last, optimizations are left to
the programmer and hand-wired in the code.

The Squirrel system [37] provides an automatic way to generate integration mediators
from a declarative specification in a language called ISL. Using ISL, it is possible to specify
a rich variety of matching criteria to produce matching records from several input tables.
However, the semantics enforced by the system is limited so that a given record in a table
can only match with exactly one record in another table. Hence, when a record is matching
with a second record, a conflict is raised and the user is called to resolve it. This is not
suitable both for performance reasons and because the user has to take decisions locally
without having a global view of all possible conflicts.

A related work in [4] proposes a formalism based on annotated non-recursive Datalog for
specifying inter-schema correspondences (conversion, matching and reconciliation) between
relational tables to integrate. Each correspondence is specified by a set of conditions under
which it is applicable and a program that implements the correspondence. Unlike Squirrel,
a tuple in a table can match with several records in another table. However, no means
are provided to support the analysis of the matching records (as in the second step of our
example), before the generation of the materialized view. This may sacrifice the quality of
the cleaning process because either the user may have to inspect too many matching records,
or as a shortcut all matching records can be kept and consequently errors can be introduced
in the view.

The WHIRL system[7, 8] provides a powerful way to generate approximate matching re-
cords using SQL queries enhanced with a special join operator that uses a similarity compa-
rison function based on the vector-space model commonly adopted in statistical information
retrieval. Matching records are sorted according to their similarity value. However, as it is
targeted to integrate data coming from different Web sites, WHIRL does not provide any
means to support the subsequent phases required by a data cleaning process, such as the
second and third steps of our example. Furthermore, the proposed solution does not work
when duplicates exist in the source tables. Last, the process is by nature not interactive
since all decisions are left to the vector-space metrics.

In [13], a method, called Multi-Pass Neighborhood Method, is proposed to detect the
maximum number of exact or approximate duplicate records (due to errors or to the lack of
field standardization) in the smallest amount of time. The method? consists of repeating the
two following steps after having concatenated all the records to be cleaned into a single file:
1) choose a key (consisting of one or several attributes, or substrings within the attributes)
for each record and sort records accordingly; 2) compare those records that are close to each
other within a fixed, usually small, sized window. The criteria for comparing records in order
to find out duplicated ones is defined through a set of matching rules encoded in a proprietary
programming language (for instance, “C”) [14]. Each execution of the two previous steps
(each time with a different key) produces a set of pairs of matching records. A final transitive
closure is then applied to those pairs of records, yielding a union of all pairs generated by all

2which is now available as the Informix DataCleanser data blade [10].

INRIA

An Extensible Framework for Data Cleaning 7

independent executions, plus all those pairs that can be inferred by transitivity of equality.
The main drawback of the method is that, besides being a knowledge and time intensive task
(since it implies several passes on the data), finding the suitable key for putting together
similar records may be quite hard, or even impossible. If the field values to be compared
by the matching criteria are not standardizable (e.g. client names or European addresses),
they may be written in slightly different and yet similar ways in distinct records which
will not be put close to each other by any sorting key. In an extreme case, those records
eventually become neighbors after many passes of execution using different keys, but this is
not guaranteed to happen in a reasonable period of time. As another drawback, the support
for cleaning rules offered in [13], but also in [23], [16] and some commercial data cleaning
tools, allow matching rules to be applied only to pairs of neighbor records in the same file.
Therefore, no distinction of sources is done since the records are concatenated in a single
file before being compared, and the schema of the individual source tuples is supposed to
be the same.

Other relevant related work has been done. The YAT [6] and the TranScm [22] systems
as well as commercial tools as Oracle’s SQL*Loader utility [24] propose solutions for data
conversion. The prototype described in [29] proposes a Name-Address standardizer that aims
at solving the object identity problem for a specific domain. The SERF system [5] offers a
set of reusable and extensible primitives to deal with schema evolution and transform data
accordingly, but do not consider the above mentioned data problems. Some work has been
done focusing on data fusioning as [25] and [9]. And finally, a description of some commercial
tools for data cleaning can be found in [26], [36] and [17].

1.3 Proposed Solution

In this paper we propose a new framework, in which a data cleaning application is modeled as
a directed acyclic flow of transformations applied to the source data. The framework consists
of a free and open system platform that offers three main services. A Data Transformation
service is offered to perform data schema conversion and standardization of attribute values.
The Multi- Table Matching service, also called Approzimate Join, enables to produce a single
unified table from a set of input tables after solving the object identity problem. This service
consists of a sequence of matching and merging phases. Finally, the Duplicate Elimination
service enables to remove exact and approximate duplicates from a single data source through
a sequence of matching, clustering, and merging phases. A notable feature of our framework
is that the user can be explicitly involved in the Multi-Table Matching and Duplicate-
Elimination services, for eliminating errors and inconsistencies in the matching records, and
merging matching records. A second feature is the extensibility of the framework, which is
a crucial requirement because it is likely that our framework will not cover all possible data
cleaning applications. Each service is supported by a few macro-operators, shared by all
services, that can be used to specify the behavior of the service for a given application (e.g.,
how duplicates should be eliminated). Our framework can be customized to the needs of a
particular cleaning application in the following ways: (i) the proposed macro-operators can

RR n° 3742

8 H. Galhardas, D. Florescu, D. Shasha € E. Simon

invoke external domain specific functions (for normalization and matching, for instance) that
can be added to a pre-defined library of functions; (i) operators can be combined with SQL
statements in order to obtain complex data cleaning programs, (iii) the set of algorithms
proposed for certain operators (as clustering and decision) can be extended as needed. In
addition to the proposition of an open and extensible framework, this paper makes two
technical contributions:

1. The SQL-like command language we propose for expressing each of our macro-operators
is both expressive and flexible. In particular, our language is more expressive than the
WHIRL SQL-like language in the sense that duplicates are allowed in the sources, richer
similarity functions can be used, and more operators can be expressed, e.g., to support the
merging of matching records. Finally, the semantics of our macro-operator for matching
is more expressive than the windowing approach of [13]. Indeed, with our matching
operator, each record is compared with every other record through a Cartesian product-
based algorithm. As a result, every set of matching records that can be produced by the
windowing approach is computable by our operator whereas the reverse is not true. The
flexibility of our language is achieved by the declarativeness of our macro-operators, itself
inherited from the SQL-like flavor of the language which is not the case with the special
operators offered by commercial tools such as Integrity [35]. This property guarantees
easy deployment and maintenance of data cleaning programs.

2. We provide several techniques to make the execution of our macro-operators efficient.
First, the execution of our operators is partially supported by both a regular SQL query
engine and an external home-grown execution engine. This dual architecture enables us
to exploit the computing capabilities offered by relational database systems, as well as
particular optimization techniques which are tailored to the specificities of our operators,
such as the support for similarity functions. Second, we present optimization techniques
that render our Cartesian product-based semantics of the matching macro-operator still
feasible, even for large amounts of data.

This paper does not address all the issues involved in data cleaning. For instance, we do
not provide any mechanism to help the user discovering the integration and cleaning criteria
which are most appropriate for a certain application. This relies mainly on the knowledge
and experience accumulated by experts working in the application domain, and dealing
daily with anomalies in their data. Also, we do not cover algorithms for the incremental
maintenance of materialized views when data sources are updated.

Apart from this introduction, the paper is organized as follows. Section 2 presents our
general framework and describe our macro-operators. Section 3 describes our novel opti-
mizations techniques and motivate their design by means of examples. Some experimental
results that demonstrate the value of our approach are presented in the fourth section.
Finally, Section 5 concludes.

INRIA

An Extensible Framework for Data Cleaning 9

2 Framework

In this section we first give an overview of the data cleaning process enabled by our frame-
work through its functional decomposition into services. Then, we describe the semantics
and syntax of the macro-operators that support those services. Each macro-operator is
implemented by a physical operator. Some physical operators are already known as map
for supporting the mapping macro-operator. Finally, we describe the metadata required to
document a data cleaning and integration process so that back tracing is possible.

2.1 Overview of Framework’s Services

In our framework, a data cleaning process accepts as input a set of possibly erroneous
and inconsistent base tables and returns a consistent error-free set of tables composing the
integrated view. A basic assumption of our work is that tuples within a single table are
uniquely identified by a key attribute. Furthermore, we consider that the integrated view
of a join between a table R and a table S models a 1:1 relationship, i.e. in the resulting
view, each tuple from R will match with at most one tuple from S, and symmetrically, each
tuple from S can match with at most one tuple from R3. The complete transformation from
the input data to the output view is decomposed into a sequence of steps, each of which
corresponds to the use of a service provided by our framework.

Before describing in detail the framework, we would like to emphasize once again that
its purpose is to cover the more frequent requirements of data cleaning and integration
applications. Nevertheless, we believe that it is able to encompass a large family of such
applications due to its extensibility. We now successively describe each one of the services
provided by our framework.

1. The Data Transformation service applies external functions to either transform the values
of certain attributes, for the purpose of simplification and standardization, or convert
data from one schema to another so that further comparison is possible. This service is
supported by a mapping macro-operator, which takes n tables as input and produces m
tables as output.

2. The Multi-Table Matching or Approximate Join service performs three different tasks on
a set of input tables. The first task is to produce a set of matching records. This task
is supported by a matching macro-operator, which performs a generalized join operation
over n input tables. In the case of two tables, it associates a similarity value between 0
and 1 to every pair of tuples in the Cartesian product of the two tables. Then follows the
task that analyzes the matching records and finds out which are the valid matches. This
task is supported by a decision macro-operator. Finally, the last task is to generate an
error-free table with unique records. This is supported by a mapping macro-operator as
the one used by the Data Transformation service.

3Being able to treat 1:n relationships requires a non-trivial extension of the algorithm presented in this
paper, and we will concentrate our attention on this important case in future work.

RR n”’ 3742

10 H. Galhardas, D. Florescu, D. Shasha € E. Simon

[CLIENT

=

Services "
C Mappin
Hrranstormat Duplicate | Multi-table N
rensoMmALON Elimination | Matching A Decisio
DE MM =
@Chl ng
- MM -
ge\cis'on
~—
_ Clean-GSM-CLIENT T Clean-HOME-CLIENT
. —
— C Mappin C Mappin
— Z Z
@aippmg H Decisiol H Decisio
—

M acro-operators) %_ %.
Clustering Clustering
Z 7
W;tchi ng [ﬁ;ehi ng
DE DE

N N
e e
" ~

GSM-CLIENT HOME-CLIENT

4
-4

Figure 2: Framework and a data cleaning process for the Telecom example

3. The Duplicate-Elimination service performs four distinct tasks on a given input table. The
first one is also supported by the matching macro-operator that is applied to one input
table and aims at finding exact or approximate duplicate records. The next task is to
group matching records into clusters of potentially similar objects. This task is supported
by a clustering macro-operator, which takes as input a table and produces as output a
set of clusters. The third task is performed by the decision operator using a different
algorithm that analyzes the clusters and finds out which are the unique records. And
finally the mapping operator is also applied in order to construct integrated and cleaned
tuples.

Figure 2 shows the three services and the macro-operators that support them on the left
side. The right side of the figure depicts the successive phases of a partial cleaning process
for the Telecom example and highlights the use of the macro-operators in each phase. Note
that some are noted as “automatic” (A Decision) while others are noted as “human” (H De-
cision), meaning that the user is interactively involved in the operation. C mapping stands
for construction mapping that corresponds to the instantiation of the mapping operator for
constructing integrated tuples. Source tables GSM-CLIENT and HOME-CLIENT are in
a same relational format and fields have to be appropriately normalized through a trans-
formation process. Then, a duplicate-elimination step is applied to both GSM-CLIENT
and HOME-CLIENT if they have approximate duplicate records. And, finally a multi-table
matching step is applied to the result of these two steps.

INRIA

An Extensible Framework for Data Cleaning 11

2.2 Macro-Operators

In this section we present the syntax and semantics of the macro-operators provided by our
framework. Each operator corresponds to an SQL-like command. To make the presentation
more illustrative, we present each one of the tasks that constitutes the services introduced
before, and show how it is supported by a macro-operator.

2.2.1 Data Mapping
An example of a command requesting a data transformation is the following:

CREATE MAPPING MP1
SELECT g.gsmld, lowerName, street, number, pob, city, g.gsm-phone, newjob
FROM GSM-CLIENT g
LET lowerName = lowerCase(g.name)
[street, number, pob, city] = extractAddressComponents(g.address)
newjob = IF (g.job != null) THEN RETURN g.job ELSE RETURN “unknown”

The string MP1 that follows the keywords CREATE MAPPING indicates the name of
the output table. This convention extends to all macro-operators. In this example the client
names of the GSM-CLIENT table are converted to lower case, address fields are decomposed
into four fields (street, number, post office box and city) and null values of the job field are
replaced by the string “unknown”. The specification of the data transformations applied to
each tuple of the GSM-CLIENT table is done using the LET clause. This clause consists
of a sequence of variable declarations of the form: <war_name> = <expression>. Variable
declarations define expressions, used to compute the value of the corresponding variables,
that are evaluated for each element in the Cartesian product of the tables in the FROM
clause. Expressions include calls to external functions, which can be either given by the
user or predefined in the system platform. Moreover, an if-then-else construction enables to
express complex expressions as shown in the example. Expressions can refer to any variable
defined in the LET clause, or to some attributes of the input tables. Finally, the SELECT
clause can project the value of any attribute of a relation appearing in the FROM clause,
or variable specified in the LET clause.

More generally, a mapping operator can create multiple tables from the same set of
operand tables. In this case, multiple SELECT clauses can be specified, and each of them
explicitly states the output tables, using an INTO < table > additional specification. Let us
imagine that we want to produce two tables as output of the previous mapping: one of the
normalized GSM clients called NORM-GSM-CLIENT and a second one JOBS that stores
the correspondences between existing jobs and client identifiers. Both tables were created
before. In this case, MP1 does not represent anymore the output table, since the output is
explicitly specified by the INTO clauses. This is represented by:

CREATE MAPPING MP1
SELECT g.gsmld, lowerName, street, number, pob, city, g.gsm-phone, newjob INTO NORM-GSM-CLIENT

RR n“ 3742

12 H. Galhardas, D. Florescu, D. Shasha € E. Simon

SELECT g.gsmld, newjob INTO JOBS
FROM GSM-CLIENT g
LET lowerName = lowerCase(g.name)
[street, number, pob, city] = extractAddressComponents(g.address)
newjob = IF (g.job != null) THEN RETURN g.job ELSE RETURN “unknown”

2.2.2 Data Matching

A matching operator is specified by means of a specific MATCH command, of which an
example is given below.

CREATE MATCH M1
FROM GSM-CLIENT g, HOME-CLIENT h
LET siml = nameSimF(g.name, h.name)
sim2 = addressSimF(g.address, h.address)
SIMILARITY = IF (siml > 0.8 and sim2 > 0.9) THEN RETURN min(sim1, sim2)
ELSE IF (siml > 0.8) THEN RETURN sim2
ELSE IF (sim2 > 0.9) THEN RETURN sim1
ELSE RETURN 0;
WHERE h.phone-nb LIKE '01%’
THRESHOLD SIMILARITY >= 0.6;

Given a set of input relations specified in the FROM clause, the MATCH command
produces as result a relation whose schema includes a key attribute for each input relation,
and an extra attribute named similarity whose domain is a real number between 0 and 1.
In the example, the projected keys are automatically named key! and key2 corresponding
respectively to gsmId and homeld.

An important point to note about the matching operator is that the computation of
the similarity variable in the LET clause is mandatory. In our example the similarity is
calculated using a complex formula, based on the value of the variable simI (that stores
the similarity between the client names) and the value of the variable sim2 (that stores the
similarity between the corresponding addresses). Functions nameSimF() and addressSimF()
used for this purpose are external functions that compute the closeness between names
and addresses, respectively. A class of functions commonly used for comparing strings
are edit distance functions. They compute and return the distance between two strings.
Let us thus consider that the relationship between similarity and edit distance is given by
similarity = 1 — distance/1000 where 1000 is an arbitrary constant defined for convenience.
A simple example is the Hamming distance function [] that aligns the two input strings and
returns the number of characters that are different among them. Two more complex edit
distance functions are the Smith-Waterman algorithm [33] and the Ukkonen algorithm [34].
Such functions are written in a programming language, and they are either included in the
framework’s pre-defined library of functions, or are added by the user.

The THRESHOLD clause specifies an optional acceptance or matching similarity thre-
shold value. In the presence of such a clause, the tuples in the Cartesian product whose

INRIA

An Extensible Framework for Data Cleaning 13

similarity value is below the threshold value will be discarded from the result. The semantics
of the THRESHOLD clause is similar to the SQL WHERE clause except that it imposes a
condition on the value of an internal variable rather than on an input table attribute value.

Finally, a simple example of a matching operator for finding duplicates in table GSM-
CLIENT is the following:

CREATE MATCH M2

FROM GSM-CLIENT g1, GSM-CLIENT g2
LET SIMILARITY = simf(gl.name, g2.name)
WHERE gl.gsmld != g2.gsmld
THRESHOLD SIMILARITY > 0.5

where simf stands for a similarity function in general and the WHERE clause avoids a
match of each record with itself.

To summarize, the semantics of the matching operator is that of a Cartesian product with
external function calls. The tables involved in the Cartesian product are the ones specified
in the FROM clause and the external functions are called in the LET clause.

2.2.3 Data Clustering for Duplicate Elimination

The clustering phase is only needed when removing duplicates. In the case of the approxi-
mate joins, the validation of the matching information is performed directly on the result
of the matching phase. In order to perform duplicate elimination, tuples that have been
considered similar in the matching phase have to be grouped into sets, each of which may
represent a unique object in the real world [15]. The clustering command enables to call
the clustering algorithms: by transitive closure and by diameter, provided by the framework
function library or others supplied by the user.

e by transitive closure: a similarity value above the threshold value specified in the mat-
ching operator induces a symmetric relationship between tuples in the input table. The
transitive closure of this relationship fragments the table content into disjoint partitions.
FEach partition will give birth to a cluster; clusters produced in this manner can be either
treated automatically, or by a human.

e by diameter: the clustering by diameter will return all sets of tuples S which satisfy
the following two conditions: (a) for each pair (¢1, t2) of tuples in S, the similarity value
between t; and t5 is above the threshold specified in the matching operator and (b) S
is a maximal set with the property (a). As it can be immediately observed, clustering
by diameter will not fragment the set of tuples into disjoint partitions. Instead, it will
produce potentially overlapping sets of tuples with high degree of connectivity. Therefore,
this kind of clustering is targeted only for human consumption.

In both cases, for each constructed cluster a unique key is generated. The result of this
operation is a binary table (cluster K ey, tuple Key) which associates tuples in the input table
to clusters. The command used to specify the clustering by diameter is:

RR n“ 3742

14 H. Galhardas, D. Florescu, D. Shasha € E. Simon

CREATE CLUSTER C1
FROM M2
BY diameter

The name of the function implementing the clustering algorithm to be invoked is speci-
fied in the BY clause (if a clustering by transitive closure was required, the keyword BY
would be followed by the name transitiveClosure). In both cases, a global cluster similarity
value, identified by keyword GSIMILARITY, may be associated to each constructed cluster,
representing the global similarity of the cluster and computed from the similarities of its
members using an aggregate function (e.g. min, max, avg) or a combination of aggregate
functions. Introducing the cluster similarity could modify C1 as follows:

CREATE CLUSTER C2

FROM M2

BY diameter

LET GSIMILARITY = min(SIMILARITY)
THRESHOLD GSIMILARITY > 0.7

where the LET clause specifies the value of each cluster similarity as the minimum of all
similarities among members of that cluster. Each returned tuple contains then an additional
field which is the cluster similarity. In this case the presence of the THRESHOLD clause
indicates that an additional filtering is performed, and all the clusters whose global similarity
is not above 0.7 are not included in the result. The semantics of the THRESHOLD clause
is analogous to an SQL HAVING clause.

2.2.4 Data Decision

The data decision judges the correctness of the matching information that has been produced
in the matching phase. The algorithms to be used in this operation vary according to the
type of application (i.e. duplicate elimination and approximate joins) and they can be
written by the user or may be chosen among the ones provided by the framework’s library
of functions. Both in duplicate elimination and approximate join, the decision can be done
in three ways: (a) automatically, (b) manually or (c) semi-automatically.

Decision for duplicate elimination

o Automatic decision of the duplicate tuples can only be taken after a clustering phase by
transitive closure, since the clustering by diameter does not induce a disjoint partitioning
of the set of tuples of the relation. In this case, we use the framework’s library cluster
cohesion algorithm, which declares that all the matching tuples that belong to a cluster
are duplicates.

e Semi-automatic decision of duplicate tuples performs as in the previous case, with an
additional THRESHOLD limit that distinguishes the clusters which are automatically de-
tected as sets of duplicates (by cluster cohesion). The clusters whose global similarity is

INRIA

An Extensible Framework for Data Cleaning 15

under the given threshold will be analyzed manually and the decision is taken appropria-
tely. Asin the previous case, the semi-automatic decision is only possible if the clustering
method applied previously was transitive closure. In order to be able to apply the thre-
shold filter, a global similarity of the cluster has to be defined*. This decisional mode is
expressed in our language as:

CREATE DECISION D1

FROM C1

BY clusterCohesion

THRESHOLD GSIMILARITY > 0.9

e Manual decision of duplicate tuples can be applied after a clustering phase by either
transitive closure, or by diameter. In this case, a human has to inspect each cluster
and extract what she believes are unique tuples. However, the clustering phase is still
necessary in order to minimize the user’s effort, and to guarantee that her decisions are
taken based on a maximal knowledge of potential duplicates.

Decision for multi-table matching

e Automatic decision of the final pairs of matching tuples may be taken as follows. Given
the result of the match phase, which computes the set of potentially matching tuples,
as well as their similarity, the automatic decision phase chooses all the matching pairs
(r,s) such that there is no other matching pair of the form (r’';s) or (r,s') such that
similarity(r',s) > similarity(r,s) or similarity(r,s') > similarity(r,s). We will call
such a pair (r,s) a best match [32]. This semantics can be implemented by the best
match first algorithm® that is provided as default by the framework:

1. Let L= the list of matching pairs of tuples, sorted in descending order of similarity value
2. Iterate over the list L

2.1. let (r,s) be the current pair from L

2.2. declare automatically that the tuples r and s do join

2.3. remove from the rest of the list L all pairs referring to either r or s

(which have already been declared to match)

We will refer to the step 2.3. in this algorithm as the decision purge. There are two
exceptional situations for this algorithm where the user may want to be called. The first
one arises when there are at least two pairs of matching records (r, s) and (r, s') with equal
similarity - we call them ties. The second case is highlighted by the following example:
(r,s,simq), (1,8, sims) and (r', s', sims) and sim; > simy > sims. In these situations,
the decision purge is not performed as described. Those tuples are shown to the user and
only afterwards a decision purging can be executed. If the best match first algorithm is
used, the syntax of the decision operation is the following:

4Recall that global similarities values are optional for clusters.
5Remark that this algorithm is only valid if we assume that the matches between R and S are 1:1.
Extensions for 1:m and m:n are presented in section 3

RR n’ 3742

16 H. Galhardas, D. Florescu, D. Shasha € E. Simon

CREATE DECISION D2
FROM M1
BY bestMatchFirst

where bestMatchFirst in the BY clause stands for the name of the function implementing
this algorithm. If the user wants to provide another automatic decision algorithm, she
replaces bestMatchFirst by the name of the new function to be invoked.

e Semi-automatic decision follows a similar approach, with the main difference that the
decision is most likely to be done automatically when the similarity of the considered
pair of matching tuples is above a certain specified threshold decision threshold, while as
soon as the similarity value falls under this threshold, the pairs of matching tuples have
to wait for manual validation. This would be translated in a simple modification of step
2.2. in the best match first algorithm; the automatic decision is replaced by a request
for user validation when the similarity is inferior to the decision threshold. In both cases,
once a pair of matched tuples is declared to be valid, a decision purge is performed. This
decisional mode is expressed in our language as:

CREATE DECISION D3

FROM M1

BY bestMatchFirst

THRESHOLD SIMILARITY > 0.9

e Manual decision is a simple version of the semi-automatic case, for which all the po-
tentially matching tuples are validated by human interaction. Again, a decision purge
is needed after each positive decision. The previous decision operation would then be
transformed into the following:

CREATE DECISION D4
FROM M1
BY userCall

We notice that the threshold value refers to slightly different notions in the decision phase,
depending on whether we are talking about a duplicate elimination or a 1:1 approximate
join. In the first case, the threshold value refers to a global similarity value of a cluster
and helps distinguishing the clusters to be treated automatically from the clusters to be
analyzed by the user, while in the second case it refers to a simple similarity value and helps
distinguishing the pairs of matching tuples with probability of being treated automatically
from pairs that must be analyzed by the user.

In all the previous discussion, while talking about an approximate join between two tables
R and S, the result of the decision phase will only contain tuples (r, s) which have been
decided to match. Very often in the data integration process, for example in the case of data
consolidation, we are interested in outer-join semantics, i.e. we are interested in keeping in

INRIA

An Extensible Framework for Data Cleaning 17

the integrated view not only pairs of tuples who do match, but also the tuples from R (or
from S, or from both) which do not match with any other tuple in the other relation. Such
a semantics can be easily obtained by applying a projection followed by a difference and a
union, after the decision of the real matches is taken. This is expressible in native SQL, and
this is why we ignore it in the process.

Finally, we would like to remark that data clustering and decision are fundamental bricks
in our framework since they introduce the notion of human interaction for deciding on
tuples that are not automatically chosen. Thus, we would like to summarize the possible
ways to combine these two operations using the algorithms previously described. As it was
already pointed out, for the case of duplicate removal, automatic decision by cluster cohesion
always follows a clustering operation by transitive closure. Clustering by diameter is only
performed for display purposes and is always followed by manual decision. The underlying
re-organization only intends to help the user on deciding. Finally, decision by best match
first is applied to 1:1 approximate joins and is performed directly on matching results.

2.2.5 Construction Mapping

After an approximate join operation, a construction operation needs to be specified in order
to automatically build tuples in materialized tables that constitute the target integrated
view. This is assured by the following mapping operation that constructs automatically
CLIENT tuples from each matching tuple obtained as result of decision D2:

CREATE MAPPING MP2
SELECT key, name, address, d2.keyl.gsm-nb, d2.key2.phone-nb, job INTO CLIENT
FROM D2 d2
LET key = keyCreation(d2.keyl, d2.key2)
siml = simf(d2.keyl.name, d2.key2.name)
sim2 = simf(d2.keyl .street, d2.key2.street)
SIMILARITY = min(sim1, sim2)
name = IF (siml > 0.9) THEN
RETURN d2.key2.name
street = IF (sim2 > 0.9) THEN
RETURN d2.keyl .street
number = first(d2.keyl.number, d2.key2.number)
pob = first(d2.keyl.pob, d2.key2.pob)
city = first(d2.keyl.city, d2.key2.city)
address = concat (number, street, pob, city)
job = concat(d2.keyl.job, d2.key2.job)
THRESHOLD SIMILARITY > 0.9

where D2 attributes are accessed by an implicit scan of the base tables using their keys. For
example, the expression d2.keyl.name represents the access to the attribute name of the
GSM-CLIENT table. The correlation between the attribute key! and its original relation
GSM-CLIENT is obtained from the metadata information stored during the entire process
of data transformation.

RR n“ 3742

18 H. Galhardas, D. Florescu, D. Shasha € E. Simon

Key attributes are generated using a unique identifier generation function; the value for
the name field is obtained from the GSM-CLIENT database; the address is concatenated
from the partial available information on street, number, POB and city; and job is obtained
from the concatenation of the corresponding base fields. The function that concatenates the
address components must be able to deal with null arguments (e.g. number or POB). The
external first function returns the first argument which has a non-null value.

We note that such a construction operation is meant to be applied only after an approxi-
mate join operation, and not after an operation of duplicate removal. The construction of
the result in the latter case can only be done manually in the current status of our frame-
work. In fact, it seems unreasonable to choose automatically values for the attributes of the
tuple which is meant to represent a entire cluster of duplicates in the resulting duplicate-free
view. Since there is no way to distinguish tuples within a cluster, the only way in which
the construction could be done is by choosing random values, and this procedure makes no
sense. On the contrary, it makes absolute sense to construct automatically the tuples in the
integrated view after an approximate join. The difference is that in this case, tuples from
different sources, with different levels of trustworthiness, are merged in order to produce
a unique resulting tuple. However, even for the case of approximate join it is possible to
request human interaction in the extreme cases where the level of inconsistencies between
certain fields is too high. As in the previous phases, a degree of consistency between the
tuples that have to be merged can be calculated within the LET clause. Then, user interac-
tion can be requested if this level is under a certain threshold. For example, the construction
operator given above specifies that if the similarity of the names and addresses of a client in
the two databases is under 0.9, the user has be called to choose the good name and address
values.

2.3 Metadata Requirements

One of the important requirements for a data cleaning application is the possibility of ex-
plaining the data transformation process. The work published in [28] and [31] shows the
fundamental role played by metadata to describe multiple integration efforts. Metadata
describes attributes and the changes they undergo during integration. Reference [30] ex-
plains the use of metadata applied to the relational model where it takes the form of meta-
attributes attached to relations and is stored in a metadata repository that may also be
called a metadatabase or dictionary. The big advantages of such additional information are
the incremental support of the integration process, the possibility of information reuse by
exploiting common metadata, and the possibility of tracing the integration process [1].

In data conversions, the transformed attributes are enhanced with meta-attributes that
describe their meaning and representation (e.g. units specification, data format). In general,
the metadata information for each phase of a cleaning and integration process encloses the
source and target schema description and a library of the transformation functions applied
(for example: normalization functions for mapping operations and similarity functions for
matching). To support the traceability of the process, we need also to store tuple-level

INRIA

An Extensible Framework for Data Cleaning 19

metadata. This may include the date when the information was produced, the person
producing it, etc. Each attribute value must be documented with the identification of
the operation that produced it. Finally, standard attribute-value pairs may be produced
during the cleaning and integration and need to be also stored as reference metadata in the
metadatabase.

3 Optimization Techniques

For data quality reasons, our framework is Cartesian product-based since the matching
operator involves the comparison of all tuples from the source tables. We believe this is the
only way to guarantee that all potential errors and matches are captured®. However, while
doing so, a performance penalty is incurred since the Cartesian product-based semantics
enhanced with external function calls is evaluated by DBMS engines through a nested loop
join algorithm with external function calls. Matching is thus the most expensive operation
of the framework, once a considerable amount of data is involved and taking into account
the iterative behavior required by a data cleaning process.

The optimization of the matching operator will then be the main focus of the techniques
shortly described below and presented with detail in the following sub-sections.

1 Mixed Evaluation: A part of the match operation is executed inside the RDBMS and
another part is executed outside the RDBMS. For example, Cartesian products calling
external functions are executed completely outside the RDMBS by functions that mani-
pulate data files, because current relational databases perform this operation too slowly.
This implies the need for dumping operations that create files from tuples and loading
that create tables from files.

2 Operation re-ordering: Early evaluation of selective operations have been traditionally
used to reduce the tuple cardinality. In this context, early selection can also be used to
reduce the number of tuples that have to be handled during a matching. Thus, we are
able to lower the cost of the underlying nested loop join with external function calls.

3 Neighborhood Hash Join: The nested loop evaluation can be converted into a more
efficient hash based algorithm. This is the case when we have some additional knowledge
of the semantics of the similarity function, provided as metadata attached to the function
signature. For example, if the edit distance between two strings s; and s, is at least
| length(s1) — length(sz) |, strings that differ by more than k in length need not be com-
pared, where k is the maximum acceptable distance. This means we hash by overlapping
distance lengths and compare only certain length groups.

4 Decision Push-Down: The similarity threshold value specified in the decision phase
may be moved down in order to speed up the matching operation. In some cases, this

6Under the assumption that correct matching and construction criteria are given.

RR n~° 3742

20 H. Galhardas, D. Florescu, D. Shasha € E. Simon

eliminates the need for doing certain computations. For example, Ukkonen’s algorithm
[34] for edit distance returns distance infinity if the difference of the lengths of the input
strings is larger than k, where k is a parameter of the algorithm that corresponds to the
maximum acceptable distance. The cost of the algorithm is proportional to kn where n
is the length of the strings. Therefore, any information that can reduce the value of k can
reduce the cost of the expensive edit operation.

5 Short-Circuited Computation: One way to eliminate external function calls altogether
is by noticing what is going to be done with the results of those computations. For
example, if the goal of a computation is to determine whether a triple (z,y,) is pair-wise
similar above a threshold T'hs, then the triple can be rejected if z and y by themselves do
not reach the threshold. This eliminates the need to compare y and z as well as z and z.
Analogously, the work by Levy and Mumick [21] presents a framework for reasoning with
aggregation constraints, namely they infer predicates that can be pushed down through
aggregation.

6 Cached Computation: It is helpful to avoid unnecessary calls to external functions,
because they are often expensive. For example, if an external function is deterministic,
then two calls to that function having the same arguments will yield the same result.
Therefore, we cache the arguments and results of each external function call as in [11].
When preparing to call a function, we could first check whether we had already computed
the answer.

7 Parallel computation: The parallelization technique used for hash joins can also be
used to parallelize the execution of the matching operator, if the neighborhood hash join
execution optimization described above has been applied. Even if our edit function does
not permit the use of hash joins, parallelism will help using the obvious technique of
partitioning one of the source tables and replicating the other tables across the sites. The
results obtained are then merged to produce the final matching result.

We describe optimizations 1, 3, 4, and 5 in this section, since these are unique to our
problem and are partly novel. We would like to remark that optimizations like Neighborhood
Hash Join or Decision Push-Down exploit particular characteristics of often used similarity
functions [20].

3.1 Mixed Evaluation

Our optimization approach takes advantage of the optimizations supported by the underlying
SQL execution engine. However, some DBMSs perform very badly in the presence of a nested
loop join with external function calls. For example, executing the entire matching operation
inside the DBMS might be prohibitively expensive since the cost of calling an external
function from an SQL statement that performs a Cartesian product can be very high (e.g.
Oracle 8 calling external C functions implies a call to a PL/SQL function that then calls

INRIA

An Extensible Framework for Data Cleaning 21

|

load(key1l, key2, similarity) f
DBMS i load(key1, key2, similarity)
write() N T
! oEVS —
NLJoin[similarity = simf(namel, name2) > 0.5] similarity = min(sim1, sim2)
N, :
read() read() sim1= smf(ljamel‘ name2) >= 0.6
DBMS |
dump() dump() ¢ sim2 = simf(streetl, street2) >= 0.6
pBMS PR
project(g.gsmid, g.name) project(h.homeld, h.name) dump() dump() l
project(g.gsmid, g-name, g.street) project(h.homeld, h.name, h.street)
scan() scan()
scan() scan()
GSM-CLIENT g HOME-CLIENT h GSM-CLIENT g HOME-CLIENT h

Figure 3: Left: Mixed evaluation, Right: Partial evaluation of similarity functions

Input: £k (the maximum acceptable distance)
{
let S1 be the smaller of the two sets of strings (in number of bytes)
and let S> be the larger of the two sets
if S fits into memory them {
partition (in memory) the set S1 according to the length of strings
compare each element sy € S with each element in the partitions of S; of length [
where |length(s2) —1|<k
else}{
partition S; according to the length of strings
partition S2 according to the length of strings
for ¢ = smallest length of S; to largest length of S; {
read the partitions of Sy containing strings of length ¢ —k,...,¢,...,i+k
that are not already in memory
compare each element in S; of length ¢ with each element in the above partitions
}
}

Figure 4: Generalized neighborhood hash join algorithm

the C function”). Hence, only part of the execution is done inside the DBMS. The nested
loop join with external function calls is completely executed outside the DBMS by programs
that handle data files. The left side of figure 3 represents one possible query execution plan
implementing the matching operation between GSM-CLIENT and HOME-CLIENT tables..

7To illustrate the magnitude of response times obtained in Oracle, version 8 takes 0.68 seconds to execute
a simple external C function that compares two strings. This test was done on a Sun UltraSPARC with 143
MHz, 384M of physical memory, 1.2G of virtual memory and running SunOS release 5.5. Other DBMSs
may have a better behavior, however we believe that the overhead of calling external functions remains a
bottleneck.

RR n° 3742

22 H. Galhardas, D. Florescu, D. Shasha € E. Simon

3.2 Neighborhood Hash Join

Often we use a distance metric as a measure of similarity. The lower the distance, the
greater the similarity. Further, we are often uninterested in strings whose distance is greater
than a certain threshold ¢. In the case where some additional knowledge about the distance
metric used is provided, the nested loop evaluation can be replaced by a special form of
approximate hash join called a neighborhood hash join.

Suppose that the distance function obeys the following property: there exists a function
f() such that for every pair (s1,s2), the following inequality holds: Distance(sy,s2) >|
f(s1) — f(s2) |- For example, f(s1) may be the length of s;. Then, the two input sets of
strings can be hashed according to the result of the application of function f(). In that case,
bucket x consists of those strings s such that f(s) = . In a neighborhood hash, the strings
in bucket x need only be compared to buckets y where (x —t) <=y <= (z +t). When f
is the length as it is for the edit distance[33], neighborhood hashing entails bucketing the
input strings by their length. Suppose that an application is interested in edit distance with
a threshold ¢ = 1. Then strings of length 10 may potentially match strings of length 9, 10,
or 11. Similarly, strings of length 9 may potentially match strings of length 8, 9, or 10.
Another example of a function f() for which this property also holds for an edit distance
function is the one that returns the number of occurrences of a particular character within
a string.

The Neighborhood Hash Join algorithm is presented in figure 4. When big input files
of strings have to be handled, only the partitions to be compared are loaded into memory.
Note that the second for loop economizes on input/output because one partition of Sy may
be used for 2k partitions of S7.

Finally, we note that the standard hash join between a table 77 and a table T can
replace the nested loop evaluation in classical situations, such as when the WHERE clause
explicitly includes a predicate of the form f(t;.attribute) = f(t2.attribute). We claim that
in data cleaning applications, this kind of predicate appear frequently, since they correspond
to intuitive heuristics in comparing strings. For example, a filter predicate comparing the
first letter of the two strings is used frequently in practice, justified by the fact that data
entry errors in the first letter are quite uncommon.

3.3 Decision Push-Down

When a semi-automatic decision by “best match first” follows a matching operation, the
corresponding decision threshold may be pushed down to the matching. The optimization
of the pairwise best match first algorithm takes place as follows.

Taking into account the relationship between similarity and distance previously given in
section 2, suppose we have two table sources 77 and T3 with tuples tuple; and tuples, respec-
tively. The function that compares the two tuples, distFunc(tupley,tuples, thresholdDist)
returns the edit distance between string fields s; € tuple; and sy € tuples if

INRIA

An Extensible Framework for Data Cleaning 23

editDistance(s1, s2) < thresholdDist and oo, otherwise. Assume that the time to com-
pute distFunct() is monotonically increasing with thresholdDist, e.g. min(] s1 |,| s2 |
).(2thresholdDist + 1) as it is for the Ukkonen algorithm [34]. Suppose that matchDist is
the maximum distance for acceptance in matching (corresponds to the matching similarity
threshold) and decisionDist is the maximum allowed distance for decision (corresponds to
the decision similarity threshold). Assume also that decisionDist < matchDist.

The algorithm given in figure 5 describes one way to evaluate the decision phase concur-
rently with the match phase, such that the total time of the two phases is minimized. To
explain this precisely, we require a few definitions:

e Let t correspond to a matching tuple with tuple components identified by #[j]. Let also
t[j].str correspond to the field str of the jth component tuple of the matching tuple ¢.

e Define an edge between two pairs of matching tuples ¢; and t3 as: E = {(t1,t2) | t1[1] =
ta[1] V t1[2] = t2[2]}, where t;[j] stands for the identifier of the jth tuple component of
the matching tuple 4. If t; E to, then ¢; and t2 are said to be match neighbors.

e Two matching tuples are said to be tied if there is an edge among them and if their dis-
tances are equal: tied = {(t1,t2) | t1 E to A distFunc(t1[1].str, t1[2].str, thresholdDist) =
dist Func(ta[1).str, ta[2).str, thresholdDist)}®. A matching tuple that is in some tied pair
is called a tie.

e An equivalence class of ties is the transitive closure of the ties and is formally represented
by: eqtie = {(tl, tz) | (tie(tl,tg)) \% (3t3, eqtie(tg, tz) A tie(tl,t3))}.

e When it is decided that a matching tuple represents a valid match, then the tuple com-
ponents of the matching tuples are said to be married. If the allowed marriages are 1:1,
they are said to be monogamous marriages; if 1:n, then polygamous marriages; and if m:n
then group marriages.

We begin by allowing only monogamous marriages. This is appropriate when each input
database has no duplicates. The algorithm has two steps. In the first step we calculate three
sets whose intuitive meaning is the following:

e The set Good contains the matching tuples with distance below decisionDist and thus
most likely to lead to marriage;

e The set NotGoodEnough consists of matching tuples that are neighbors to elements in
Good but are less likely to be married;

e And the set Accept are matching tuples that have to be analyzed by the user because their
distance is between the decision and the match thresholds and they have no neighbors in
Good.

8For the sake of the exposition, the distance between two component tuples is based on the comparison
of a single field str. In a general case, it can involve the comparison of more than one field.

RR n”’ 3742

24 H. Galhardas, D. Florescu, D. Shasha € E. Simon
Input: 0 < dectstonDist < matchDist
Output: monogamous marriages
{
Step 1:
1 Good={}
2 Accept={}
3 for each ¢: (¢[1],¢[2]) € T1 x T that could be within matchDist {
/* find all occurrences of t' in Good s.t. t and t' have an edge between them */
4 AlreadyGood = {t' : (t'[1],t'[2],dist) € Good |t E t'}
5 if AlreadyGood # {}, then {
6 minDistAlready = min({dist | t' : (¢'[1],t'[2],dist) € AlreadyGood})
/* calculate the distance between #[1] and ¢[2], with a new
constraint minDistAlready which always satisfies minDistAlready < decisionDist */
7 newDist = distFunc(t[1].str,t[2].str, minDist Already)
8 if newDist < minDistAlready then add (t[1],t[2], newDist) to Good
9 else add (t[1],¢[2]) to NotGoodEnough
10 else {
11 newDist = distFunc(t[1].str,t[2].str, matchDist)
12 if newDist < decisionDist then add (t[1],t[2],newDist) to Good
13 else if decisionDist < newDist < matchDist then add (t[1],t[2],newDist) to Accept
}
}
Step 2:
14 sort Good and Accept by increasing distance
15 within each distance, cluster the tuples that belong to the same equivalence class within eq7ies
16 iterate over Good list {
17 let t: (¢[1],¢[2],dist) be the current matching record in Good declared to be married
18 optionally show to the user the following for validation:
19 purge from Good, Accept and NotGoodEmnough all tuples p s.t. p E t
20 for each purged tuple p from Good do
21 bringBackNotGoodEnough(p)
}
22 iterate over Accept list {
23 let t¢: (¢[1],¢[2],dist) be the current matching record
24 user analyses (t[1],¢[2], dist)
25 if the user marries t then remove from Accept all matching records a st a E t
}
26 bringBackNotGoodEnough(p) {
27 if NotGoodEnough # {}, then {
28 for each e in NotGoodEnough such that e E p do {
29 if not (e E g¢) with g in Good then {
30 newDist = distFunc(e[1].str, e[2].str, matchDist))
31 if newDist < decisionDist then add (e[l],e[2],newDist) to Good
32 else if decisionDist < newDist < matchDist then add (e[l],e[2],newDist) to Accept
33 re-sort Good and Accept by increasing distance
}
}
}
}
}

Figure 5: Optimization of best match first algorithm by pushing down the decision threshold

INRIA

An Extensible Framework for Data Cleaning 25

These sets may change in the course of executing step 2. The following tasks constitute
step 2:

1. Ties among the Good tuples are shown to the user. Other Good tuples are married
automatically.

2. After each marriage of a matching tuple m, the following tuples are removed from Good:
{t |t E mAtin Good}. Also, the following are removed from Accept: {t |t E m A
t in Accept}. (The user may optionally be shown the result of this deletion operation and
validate it.)

3. A tuple t in NotGoodEnough may be moved into Good. This will occur when all Good
neighbors of ¢ that had higher scores have been deleted and no neighbor of ¢ is married.
Notice that finding neighbors can be done efficiently with hash indexes on Good (and
similarly for NotGoodEnough) such that hashFunction: component tuple — matching
tuple id in Good. Such a data structure enables us to discover neighbors in expected
constant time.

This algorithm would have to be extended if the user wants to be called to analyze
sets of matching tuples that have an edge between them and whose similarities fall into
a certain neighborhood interval. In such a case, ties are extended to be those tuples
obeying: tieNeighborhood(t1,t2) = {(t1,t2) | t1 EtaA | dist(t1[1],t1[2]) — dist(t2[1],t2[2]) |<
neighborhood}. In addition, the test in line 8 of the algorithm is replaced by: if newDist <
minDistAlready + neighborhood then add (t[1],[2], newDist) to Good.

Example 3.1: The following example is based on tables GSM-CLIENT and HOME-
CLIENT. The matching operation involves the comparison of names from both tables. The
acceptance distance is 3 and the decision distance is 2. Assume the input to the match phase
is constituted by the following tuples (we are just mentioning the key and name attributes):

GSM-CLIENT
(1, “smith j")
(2, “mitch”)
HOME-CLIENT
(1248, “mitcheli")
(1247, " smith”)
(1245, “smith jr")
(1246, " mitch jr")

Executing step 1 of the algorithm results in the following;:

i) pair (1, 1248): AlreadyGood is empty. distFunc(”smith j”, “mitcheli”, 3) is evaluated with the
acceptance distance and returns oo (its actual distance is 6, but we don’t care). Pair (1,1248) is discarded.

ii) pair (1, 1247): AlreadyGood is empty. distFunc(”smith j”7, ”smith”, 3) = 2 which is equal to the
decision distance. So, tuple (1,1247,2) is inserted into Good.

iii) pair (1, 1245): since tuple 1 already belongs to AlreadyGood, AlreadyGood is not empty and min-
DistAlready equals 2. The edit distance for a maximum decision distance of 2 is computed: distFunc(”smith

RR n° 3742

26 H. Galhardas, D. Florescu, D. Shasha € E. Simon

592

j”, “smith jr”, 2). It returns a distance equal to 1. Since 1 is less than or equal to minDistAlready, tuple
(1,1245,1) is inserted into Good.

iv) pair (1, 1246): tuple 1 already belongs to Good, so only check the edit distance for a decision
distance of 1 (minDistAlready). Compute: distFunc(”smith j”, "mitch jr”, 1) which returns oo (3 is the real
distance, but we don’t calculate it). MinDistAlready equals 1, so tuple (1,1246) is put into NotGoodEnough.

v) pair (2, 1248): neither tuple 2 nor tuple 1248 belong to the Good table, so compute the distance
function distFunc(“mitch”, “mitcheli”, 3). The distance returned is 3 which is greater than the decision
distance but equals the acceptance distance. Tuple (2, 1248, 3) is inserted into the Accept table.

vi) pair (2, 1247): tuple 1247 belongs to the Good table. MinDistAlready is 2, so compute the distance
function distFunc(“mitch”, “smith”, 2). The distance returned is 2 that equals minDistAlready. Tuple
(2,1247,2) is inserted into table Good.

vii) pair (2, 1245): tuple 1245 already belongs to the Good table and minDistAlready equals 1. So,
we compute the distance function as distFunc(“mitch”, ”smith jr”, 1). It returns oo that is superior to
minDistAlready. It is then added to it NotGoodEnough.

viii) pair (2, 1246): tuple 2 belongs to Good. MinDistAlready is 2. So, compute the distance function
as: distFunc(“mitch”, “mitch jr”, 2), using the initial decision distance. It returns oo which is superior to
minDistAlready and tuple (2,1246) is put into NotGoodEnough.

The following table summarizes the distances obtained and the table (Good or Accept to
which they belong after step 1 of the algorithm:

GSM-CLIENT | HOME-CLIENT | distance table
1 1248 6 -
1 1247 2 Good
1 1245 1 Good
1 1246 9] NotGoodEnough
2 1248 3 Accept
2 1247 2 Good
2 1245 00 NotGoodEnough
2 1246 9] NotGoodEnough

According to the step 2 of the algorithm, the following is executed:

1. The table Good is ordered by increasing distance, as follows.

(1, 1245, 1)
(1, 1247, 2)
(2, 1247, 2)

First, matching record (1,1245,1) is married. As a result, the record (1,1247,2) is purged from table
Good and the table NotGoodEnough is checked. Tuple (1, 1246) could be brought back but it is not since
there exists an edge between it and the married tuple: (1,1245,1). Next, tuple (2,1247,2) from Good is
declared a best match and and record (2,1248, 2) is purged from the table Accept.

2. No tuples are shown to the user.

The main benefit of this optimization is that it decreases the distance threshold for some
distance calculations. As a result, the edit distance function becomes less expensive in many
cases. The following approximate analysis presents a brief study of the computation times
involved in the decision push-down optimization.

INRIA

An Extensible Framework for Data Cleaning 27

3.3.1 Approximate Analysis of the Decision Push-Down Optimization

We use the following additional notation: L is the size of the string fields being compared,
making the pessimistic assumption that they all have the same length; N is the number of
tuples put in NotGoodEnough.

1 Step 1: The computation saved during the first step of the decision push-down optimiza-
tion is at least:

N -2 (matchDist — decisionDist) - L.

We may end up by saving more than this since: (i) we also save time for tuples that
are put into Good and already have neighbors in Good, (i) it may be possible to invoke
the edit distance function with a maximum allowed distance less than decisionDist as
parameter, when minDistAlready < decisionDist .

2 Step 2: In the worst case, all NotEnoughGood matching tuples are brought back and
their distance is re-computed. If this is the case, the extra time consumed is: N -2 -
(matchDist + 1) - L. The overhead of using this optimization, when comparing with 1.
would then be: N -2 - (decisionDist+1)- L.

According to point 2, a very bad scenario for which the decision push-down optimization
would not work well is the following. Suppose a Good matching tuple ¢ : (¢[1],¢[2]) is married.
The Good table contains all matching tuples g : (g[1], g[2]) where g[1] = ¢[1] and g[2] can
take all possible values of T» and g : (g[1],¢[2]) where g[2] = ¢[2] and g¢[1] can take all
possible values of 77, i.e. all the neighbors of t. These ones are purged once ¢ is married.
As a consequence, all matching tuples e in NotGood Enough such that e EE g but not e E t,
for all values of e[1] in T} and e[2] in T», are brought back and the edit distance function is
re-invoked.

This is unlikely to happen since in a realistic situation we do not expect too many Good
matches that are neighbors. Therefore, purging does not affect a large number of Good
tuples and the tuples in NotGoodEnough are seldom brought back.

3.3.2 Polygamous and Group Marriages of Matching Tuples

The above algorithm applies for monogamous marriages, i.e. one tuple from a first table
should be married to at most with one tuple from a second table. Some modifications
have to be introduced when a semantics of 1:m is allowed for best match first decision
(polygamy), which means that a tuple from one table can match more than one tuple from
the other but the inverse does not happen. Reconsidering the example of the Telecom
company, such a match semantics corresponds to the situation where one HOME-CLIENT
may have several cellular phones but one cellular phone number corresponds at most to
a single home phone number. In this case, an edge between two tuples #; and ty is less
restrictive than before and we call it polygamous edge. The formal definition is the following:

RR n“ 3742

28 H. Galhardas, D. Florescu, D. Shasha € E. Simon

PE = {(t1,t2) | t1[é] = t2[f]} where i identifies the table whose tuples can marry only one
other component tuple (the women in a polygamous society; the men in a polyandrous
society). The definitions of AlreadyGood and minDistAlready remain the same except
that each reference to edge is replaced by polygamous edge.

There is no need of a NotGood Enough set but we still need an Accept table. The purging
phase in step 2 changes and the modified algorithm for decision push-down optimization is
shown in figure 6. Note that ties are still possible and the equivalence classes of polygamous
ties are defined according to polygamous edges.

Group marriages may arise when a tuple from any of the tables is allowed to marry
multiple tuples of the other table. For instance, one internet client may marry to several
cellular phone records and vice-versa. The algorithm in this case does not take into account
the existence of ties since every equally strong enough marriage is accepted. There is no
need for the NotGoodEnoughTable and we cannot take advantage of decreasing decision
thresholds for computing less expensive edit distance functions. Consequently, there is no
optimization. The algorithm works as represented in figure 7.

3.4 Short-Circuited Computation

Compilers use short-circuiting to stop the evaluation of a boolean expression after its out-
come is known. For example, if the boolean consists of a conjunctive expression, then as soon
as one conjunct is discovered to be false, further evaluation can be halted. The optimizations
described here are closely related to short-circuiting.

3.4.1 Short-Circuiting Based on Multi-Way Similarity

Consider the following example of a matching operator:

MATCH M3
FROM GSM-CLIENT g, HOME-CLIENT h
LET siml = simf(g.name, h.name),
sim2 = simf(g.street, h.street)
SIMILARITY = min(sim1, sim2)
THRESHOLD SIMILARITY >= 0.6

If the similarity threshold (0.6) is considered when computing sim1 and sim2, it is enough
that one of these variables is assigned a value smaller than 0.6 to eliminate the corresponding
tuple. Those tuples will never belong to the matches returned by M3 because they do not
satisfy the condition on the minimum allowed similarity. The execution plan for M3 is
represented on the right of figure 3. Ounly those pairs of tuples from GSM-CLIENT and
HOME-CLIENT that satisfy the condition sim1l > 0.6 A sim2 > 0.6 give rise to matches.
The optimization based on this fact is to bypass one of the partial similarity function calls
(that assigns a value to sim! or to sim2) once the other one returns a value less than 0.6.

INRIA

An Extensible Framework for Data Cleaning 29

Input: 0 < decisionDist < matchDist
Output: polygamous marriages
{
Step 1:
Good={}
Accept={}
for each t: ([1],¢[2]) € T1 X T» that could be within matchDist {
/* find all occurrences of t' in Good s.t. t and t' have a polygamous edge between them */
AlreadyGood = {t' : (t'[1],¢'[2],dist) € Good |t PE t'}
if AlreadyGood # {}, then {
minDistAlready = min({dist | t' : (¢'[1],t'[2], dist) € AlreadyGood})
/* calculate the distance between ¢[1] and ¢[2], with a new comnstraint minDistAlready
which always satisfies minDistAlready < decisionDist */
newDist = distFunc(t[1].str, t[2].str, minDistAlready)
if newDist < minDistAlready then add (t[1],t[2], newDist) to Good
else {
newDist = distFunc(t[1].str, t[2].str, matchDist)
if newDist < decisionDist then add (t[1],t[2],newDist) to Good
else if decisionDist < newDist < matchDist then add (t[1],¢[2],newDist) to Accept

}
Step 2:
sort Good and Accept by increasing distance
within each distance, cluster the tuples that belong to the same equivalence class within eqPolygamousTies
iterate over Good list {
let t:(t[1],¢[2],dist) be the current matching record in Good declared to be married
optionally show to the user the following for validationm:
purge from Good and Accept all tuples p s.t. p PE ¢
}
iterate over Accept list {
let t:(t[1],[2],dist) be the current matching record
user analyses (¢[1],¢[2], dist)
if the user marries ¢ then remove from Accept all matching records a s.t. a PE t

Figure 6: Optimization of best match first algorithm by pushing down the decision threshold for
polygamous marriages

In general, once the total similarity of a matching is obtained by applying the min, max,
or by computing the product of the partial similarities, the appearance threshold can be
pushed down to the computation of partial similarities thus avoiding some of them.

3.4.2 Short-Circuiting Based on Clustering Threshold

A similar observation works for clustering. Assume the following matching operator, followed
by a clustering by diameter.

RR n“ 3742

30

H. Galhardas, D. Florescu, D. Shasha € E. Simon

Input: 0 < decistonDist < matchDist
Output: group marriages

Step 1:
Good={}
Accept={}
for each t:(t[1],¢[2]) € T1 x T» that could be within matchDist {
newDist = distFunc(t[1].str, t[2].str, matchDist)
if newDist < decisionDist then add (t[1],t[2], newDist) to Good
else if decisionDist < newDist < matchDist then add (t[1],t[2], newDist) to Accept
}
Step 2:
sort Good and Accept by increasing distance
iterate over Good list{
let t¢:(t[1],¢[2],dist) be the current matching record in Good declared to be married

iterate over Accept list {
let t¢: (¢[1],¢[2],dist) be the current matching record
user analyses (t[1],¢[2], dist)

Figure 7: Best match first algorithm by pushing down the decision threshold for group marriages

MATCH M4
FROM GSM-CLIENT g1, GSM-CLIENT g2
LET siml = simf(g.name, g.name),
sim2 = simf(g.street, g.street)
SIMILARITY = min(sim1, sim2)
THRESHOLD SIMILARITY > 0.6

CLUSTERING C3

FROM M4

LET GSIMILARITY = min(similarity)
BY diameter

THRESHOLD GSIMILARITY > 0.7

The clustering option by diameter and the cluster threshold similarity require that all

matching tuples resulting from M4 to have a similarity value greater than 0.7 in order to

be
on

clustered. Assuming again that the similarity functions applied among tuples are based
edit distance, the triangle inequality [19] guarantees that for three matching tuples t1, to

and t3 with pairwise distance given by di2, d23 and di3, di3 < di2 + dos.

Let us consider the relationship between similarity and distance defined before. By

performing the corresponding substitutions, the following inequality is verified: simqi3 >
simqs + simez — 1. Applying this result to the sequence of operations M5 and C3, let us

INRIA

An Extensible Framework for Data Cleaning 31

suppose that two matching tuples returned by M5 are: (gKeyl, gKey2, similarity;) and
(9K ey2, gKey3, similaritys). If similarity, + similaritys — 1 is superior to 0.7, the simi-
larity between tuple gKeyl and gKey3 is guaranteed to be also superior to 0.7. So, tuples
identified by gKeyl and gKey3 need not be compared and all three gKeyl, gKey2 and
gKey3 are put into the same cluster.

4 Experimental Results

This section presents the results of a set of experiments whose goal was to evaluate some of
the optimization techniques proposed in the last section. In these experiments we used one
of the databases created for the validation of the WHIRL system [7]. It consists of two tables
T and T3, both containing information about existing companies (e.g. name, url, industry).
The operation we tried to optimize is an approximate join between the two tables, followed
by a decision operation by best match first. The similarity between tuples is computed by
an edit distance function, which is implemented using the Smith-Waterman and Ukkonen
algorithms. In order to obtain a large volume of data we replicated the original database a
certain number of times. Then, a randomized error was introduced in each handled field in
order to avoid exact duplicates. We tested our evaluation strategies with three scale factors:
1,000, 10,000 and 100,000 tuples in each table. The size of the resulting files is 50K, 500K
and 5M respectively .

Since the overhead of calling an external function from Oracle is extremely high, we
did not consider the evaluation of the match operator within the DBMS as an interesting
alternative. Hence, we ignored the DBMS and in all the experiments we manipulated files
using C programs. For each experiment we measured the execution time of the program
without taking into account the time for dumping the Oracle database into files?, loading
the data from files into tables, reading data from a file, or the time for writing the results
into a file. Our experiments have been done on an INTEL Pentium IT with 400Mhz and
128MBytes running Linux RedHat 6.0. We used Oracle version 8.

Our optimization target is the evaluation of a match and a decision between tables T}
and T3, specified in our language by the following sequence of operators:

MATCH M

FROM T t1, Ts to

LET SIMILARITY = 1 - editDist(t;.company,t>.company) /1000
THRESHOLD SIMILARITY >= matchThreshold,

DECISION D

FROM M

BY bestMatchFirst

THRESHOLD SIMILARITY >= decisionThreshold

9The time to dump 100 000 tuples composed by (key, field) from Oracle to files is around 1 min. The
time spent for loading the file back into Oracle is 2 min.

RR n”° 3742

32 H. Galhardas, D. Florescu, D. Shasha € E. Simon

matchThs =3 matchThs =6

100000 1000000

100000 -
10000 -

10000 -
1000 4 [

m Nested Loop

1000 4 ®| Neighborhood
Hash Join
100 ~

Execution time (sec)
Execution time (sec)

100 4

10 —
10 o

14 : :
10000 100000 10000 100000
Nb. of tuples per table Nb. of tuples per source table

Figure 8: Nested Loop vs Neighborhood Hash Join Left: matchThs = 3, Right: matchThs
=6

The naive way of evaluating this sequence is to perform a nested loop, and compute, for
each tuple in the Cartesian product the similarity value; then to execute the decision phase
by iterating over the result of the match and deciding which are the correct matches.

As said earlier, there is a list of possible optimizations that we can apply in order to
improve the performance of this naive evaluation. We observe that there are two dimensions
associated with the execution of this sequence: first, the method used to find the matching
records, and second, whether we execute the matching and decision phases separately or
merge them. According to the first dimension, we have the choice between a nested loop
evaluation and a neighborhood hash join, as explained in section 3.2. According to the
second dimension, we have the choice between either executing the decision after the entire
matching phase has finished (Naive best match first) as defined by the semantics, or merge
the decision phase with the matching phase (Decision push-down), as described in section
3.3. By varying the possibilities along these two dimensions we obtain four evaluation
strategies: (1) Nested Loop (NL), (2) Nested Loop and Decision Push Down (NL + DPD),
(3) Neighborhood Hash Join (NHJ), and (4) Neighborhood Hash Join and Decision Push
Down (NHJ + DPD).

The execution times for strategies (1) and (3) are presented in figure 8 (with a logarithmic
scale for the y axis), where the company names are hashed by their length in the neighbo-
rhood hash join algorithm. As expected, the matching performance is improved when the
hash join is applied. Note that the gain for a match threshold of 3 (around 80%) is greater
than the gain for a match threshold of 6 (on average 55%). This is due to the fact that the
number of partitions to be compared is smaller.

Figure 9 shows the results obtained when the four strategies are considered. We measu-
red the execution time for step 1 of the decision push-down optimization for 1:1 marriage

INRIA

An Extensible Framework for Data Cleaning 33

matchThs = 6 decisionThs =3 matchThs = 6 decisionThs =3

140000

120000 -

100000 -

ENC 80000
= NL + DPD
mNHJ

EINHJ + DPD

60000 NHJ + DPD

Execution time (sec)
Execution time (sec)

40000

20000 -

i o4 E:
1000 1000
Nb of tuples per table Nb of tuples per table

Figure 9: Naive Best Match First versus Decision Push-Down Left: 10,000 tuples, Right:
100,000 tuples

semantics. As in the previous case, the gain obtained when hashing is applied is still signi-
ficant. However, the improvement achieved by the application of the decision push-down
optimization is not significant for 10,000 tuples, match threshold of 6 and decision threshold
of 3. The reason is the following. This optimization is advantageous when the Good table
(see the description of the algorithm in 3.3) is filled in early in the process. This implies that
the distance of some latter pairs of strings can be evaluated through a less expensive edit
distance function. In this particular case, the number of tuples is not large enough to raise
this situation. When considering 100,000 tuples and the same thresholds, gains of 6% and
11% are obtained. We should remark that the gain obtained with this optimization depends
largely on the data itself and on the threshold values. Figure 10 shows the four dimensions
for a match threshold of 3 and a decision threshold of 1. Even though the number of tuples is
100,000, no gain is obtained by using the decision push-down optimization in this case. This
is expected since the decision threshold of 1 does not permit the execution of the algorithm
to take advantage of calling a less expensive edit distance function.

We would like to remark that an additional improvement of the decision push-down
optimization can be obtained when the neighborhood hash join is used. This can be achieved
by comparing the partitions following a specific order. First, the buckets that correspond to
strings with equal length are compared, then those with a difference of lengths equal to one
and so forth. This way, the probability of finding first those matches that are more similar
is higher. The net result is that the Good table is filled in as early as possible. Furthermore,
once a match with distance d is found where d is equal to the difference of lengths of the
current partitions, then there is no need to continue comparing buckets with a difference
of lengths greater than d. The gains obtained when comparing with neighborhood hash

RR n“ 3742

34 H. Galhardas, D. Florescu, D. Shasha € E. Simon

matchThs = 3 decisionThs = 1

80000

70000

60000

50000

E NL

B NL +~ DPD
B NHJ
EINHJ + DPD

40000

Execution time (sec)

30000

20000

10000

100000
Nb of tuples per table

Figure 10: Naive Best Match First versus Decision Push-Down with matchThs = 3 and
decisionThs =1

join with decision optimization were around 13% for a match threshold of 6 and decision
threshold of 3.

A second set of experiments was done using real data. We used the INRIA suppliers
database in particular the table of supplier organizations that contains approximate and
exact duplicates. The total number of tuples is 3,500. The goal was to apply a matching
operator to this table in order to find pairs of duplicates. We measured the execution time as
well as the quality of results obtained for two evaluation startegies of the matching operator:
(i) when using hashing on the first letter of organization names as described in 3.2 and (ii)
when using a nested loop algorithm. The matching operation with a predicate specifying
the first letter filter is described as follows:

MATCH M

FROM Organizations o1, Organizations o2

LET SIMILARITY = 1 - editDist(o1.nomOrg,02.nomOrg) /1000
WHERE firstLetter(o1.nomOrg) = firstLetter(o2.nomOrg)
THRESHOLD SIMILARITY >= matchThreshold,

When using the filter, organization names are hashed according to the first letter and only
partitions that correspond to the same first letter are compared through the edit distance

INRIA

An Extensible Framework for Data Cleaning 35

function. The time of execution obtained was 8 sec for this case. The naive nested loop
evaluation was 10 times longer (81 sec). The percentage of matches lost by the first letter
filter evaluation was around 3%.

The success of the application of this kind of filter depends of course of the domain of
application. In fact, some of the matches found by the naive approach and lost by the filter
can indeed be false matches and do not correspond to the same object.

5 Conclusions and On-going Work

In this paper, we addressed the problem of data cleaning, which entails three major pro-
blems: object identity problem, data entry errors, and data inconsistencies across overlap-
ping autonomous databases. We proposed a new framework that consists of an open and
extensible system platform, in which a data cleaning application is specified as a directed
acyclic graph of data transformation phases. Each phase is specified by means of one of the
three data cleaning services offered by the system platform: data transformation, duplicate-
elimination, and multi-table matching. Each service is supported by a shared kernel of four
macro-operators consisting of high-level SQL-like commands. The system platform is open
in the sense that new macro-operators can be defined and added to the kernel, and new
services can also be added based on the set of macro-operators.

The language composed of our four macro-operators has several features. First, it is
more expressive than previously proposed languages for multi-table matching, or duplicate-
elimination. In particular, the Cartesian product-based semantics of the matching macro-
operator, contributes significantly to the expressiveness of the language, by guaranteeing
that all potential errors and correct matches are captured. Second, it enables to specify
all the steps required by a data cleaning process in a high-level manner. For instance, the
Telecom example was coded using around 100 lines of code in our language as is presented
in annex. We also experienced this fact with three larger applications: removing duplicates
from the list of Inria suppliers, removing duplicates in biological bibliography references of
the Pasteur Institute, and consolidation of a bibtex file using the DBLP database. Last, our
language is extensible through the use of external functions coded in conventional program-
ming languages.

An extension of SQL was proposed rather than using an existing language as SQL/PSM
[18], as proposed by the Cohera database federation system [12]. First, it allows a compact
specification of each cleaning process. As we showed, there is a syntax for each macro-
operator that encloses its main functionalities like the if-then-else constructs for expressing
decision trees and the THRESHOLD clause for imposing conditions on values of internal
variables. Second, we obtained a uniform specification for all operators and introduced new
ones as decision and clustering. And lastly, some of the language primitives permit the
application of optimization techniques as pushing down thresholds.

We proposed novel optimization techniques to efficiently execute matching operations. A
first technique is to execute macro-operators using both a relational database system and a

RR n° 3742

36 H. Galhardas, D. Florescu, D. Shasha € E. Simon

specifically tailored execution engine. A second technique is to exploit semantic knowledge of
similarity functions, combined with hash join algorithms to dramatically reduce the number
of records that have to be compared in approximate joins. Last is the push-down of decision
operations within matching operations to avoid unnecessary accesses to matching records.
First experiments conducted on a test database of varying size showed that these three
optimization techniques bring a substantial performance improvement as the database gets
large.

Work in progress encloses the study of classical edit distance functions in order to come
up with properties that can be used for optimization purposes. We are doing some research
on signature functions and n-grams algorithms. A more detailed study on the metadata to
be stored in the process of cleaning is being done based on the notion of propagation rules
[27]. Finally, our approach should be intensively experimented with real data that needs to
be cleaned.

References

[1] P. Bernstein and T. Bergstraesser. Meta-data support for data transformations using
Microsoft Repository. IEEE Data Engineering Bulletin, 22(1), March 1999.

[2] D. Bonachea, K. Fisher, and A. Rogers. Hancock: A language for describing signatures.
In USENIX, 1999.

[3] M. Bouzeghoub, F. Fabret, H. Galhardas, M. Matulovic, J. Pereira, and E. Simon.
Fundamentals of Data Warehousing, chapter Data Warehouse Refreshment. Springer-
Verlag, 1999.

[4] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled
approach to data integration and reconciliation in data warehousing. submitted to
publication, 1999.

[5] K. Claypool and E. Rundensteiner. Flexible database transformations: the SERF
approach. IEEE Data Engineering Bulletin, 22(1), March 1999.

[6] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your Mediators Need Data Conversion.
In Proc. of ACM SIGMOD Conf. on Data Management, 1998.

[7] W. Cohen. Integration of heterogeneous databases without common domains using que-
ries based on textual similarity. In Proc. of ACM SIGMOD Conf. on Data Management,
1998.

[8] W. Cohen. Some practical observations on integration of Web information. In
WebDB’99 Workshop in conj. with ACM SIGMOD, 1999.

[9] U. Dayal. Processing queries over generalization hierarchies in a multidatabase system.
In Proc. of the Int. Conf. on Very Large Databases, 1983.

INRIA

An Extensible Framework for Data Cleaning 37

[10] EDD. Home page of Data Cleanser tool. http://www.npsa.com/edd/.

[11] J. M. Hellerstein. Optimization techniques for queries with expensive methods. ACM
Trans. on Database Systems, 23(2):113-157, 1998.

[12] J. M. Hellerstein, M. Stonebraker, and R. Caccia. Independent, open enterprise data
integration. IEEE Data Engineering Bulletin, 22(1), March 1999.

[13] M. A. Hernandez and S. J. Stolfo. The Merge/Purge problem for large databases. In
Proc. of ACM SIGMOD Conf. on Data Management, 1995.

[14] M. A. Hernandez and S. J. Stolfo. Real-world data is dirty: Data Cleansing and the
Merge/Purge problem. Journal of Data Mining and Knowledge Discovery, 2(1):9-37,
1998.

[15] A. Hinneburg and D. A. Keim. Tutorial on cluster Discovery Methods for Large Bases.
In Proc. of ACM SIGMOD Conf. on Data Management, 1999.

[16] J. Hylton. Identifying and merging related bibliographic records. Master’s thesis,
Massachusetts Institute of Technology, June 1996.

[17] E. T. International. Home Page of ETI Data Cleanse. http://www.evtech.com.

[18] ISO. Database Language SQL - Part 4: Persistent Stored Modules (SQL/PSM).
http://www.npsa.com/edd/.

[19] J. L. Kelley. General Topology. D. Van Nostrand Company, Inc., Princeton, New Jersey,
1955.

[20] K. Kukich. Techniques for automatically correcting words in text. ACM Computing
Surveys, 24(4), 1992.

[21] A.Y. Levy and I. S. Mumick. Reasoning with Aggregation Constraints. In Proc. of the
Int. Conf. on Ext. Database Technology, 1996.

[22] T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data transla-
tion. In Proc. of the Int. Conf. on Very Large Databases, New York, 1998.

[23] A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Workshop on Research Issues on Data
Mining and Knowledge Discovery in conj. with ACM SIGMOD, 1997.

[24] Oracle. Oracle8 Server Utilities Manual, 1997.

[25] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. MedMaker: A Mediation
System Based on Declarative Specifications. In ICDFE, 1996.

[26] I. Qualitative Marketing Software. ~Home page of Centrus Merge/Purge tool.
http://http://www.qmsoft.com/.

RR n”° 3742

38 H. Galhardas, D. Florescu, D. Shasha € E. Simon

[27] A. Rosenthal and E. Sciore. Metadata Propagation in Large, Multi-tier Database Sys-
tems. submitted to publication, 1999.

[28] A. Rosenthal and L. J. Seligman. Data integration in the large: the challenge of reuse.
In Proc. of the Int. Conf. on Very Large Databases, Santiago, Chile, 1994.

[29] A. Roychoudhury, I. Ramakrishnan, and T. Swift. Rule-based data standardizer for
enterprise data bases. In Int. Conf. on Practical Applications of Prolog, 1997.

[30] E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate interopera-
bility among heterogeneous information systems. ACM Trans. on Database Systems,
19(2):254-290, 1994.

[31] L. Seligman and A. Rosenthal. A metadata resource to promote data integration. In
Proc. of IEEE Metadata Conference, Silver Spring, MD, 1996.

[32] D. Shasha and T.-L. Wang. New Techniques for Best-Match Retrieval. In ACM Tran-
sactions on Information Systems, volume 8. Apr. 1990.

[33] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Theory, 147:195-197, 1981.

[34] E. Ukkonen. Finding approximate pattern in strings. J. Algorithms, 6(1):132-137, 1985.
[35] Vality. Home page of Integrity tool. http://www.vality.com/html/prod-int.html.
[36] WizSoft. Home page of WizRule tool. http://www.wizsoft.com.

[37] G. Zhou, R. Hull, and R. King. Generating data integration mediators that use mate-
rialization. Journal of Intelligent Information Systems, 6(2/3):199-221, 1996.

INRIA

An Extensible Framework for Data Cleaning 39

A Cleaning and integration program for the Telecom
Example

Let us consider the motivating example of section 1. A possible set of tuples is:
GSM-CLIENT

(1, “Smith J.”, “Domaine de Voluceau BP 45", “096-11287", “Manager”)
(2, “itch, J.", “17, rue Vasco da Gama”, “096-76890", “Informatics”)

(3, “itch, J.”, “Domaine de Voluceau BP 45", “096-1128", “Manager”)
(4, “Rabinovitch”, “87, rue Gama””, “096-76800", “Bank Employee”)

(5, “Smith J.”, “D. Voluceau BP 45", “096-11287", “Manager”)

(6, “Hans Oliver”, “Champ de Mars”, “096-15678", “writer”)

HOME-CLIENT

(1245, “smith”, “Domaine de Voluceau Rocquencourt”, “01 39 63 56 32", “Director”)
(1306, “J. Mitch”, “r Vasco Gama 17 BP 20", “01 54 67 87 98", “Informaticien”)
(1409, “ans oliverti”, “Champ de Mars”, “01 45 67 45 34’, null)

INTERNET-CLIENT

(54, “John Smith”, “Domaine de Voluceau, BP 45 Rocquencourt”, “Smith”)
(55, “J. Smitch’, “rue Vasco Gama Paris”, “Mitch”)

(56, “smith”, “Rocquencourt France”, null)

(57, “Hanna Oliver”, “23, Champ de Mars Paris”, null, "Hanna Oliver")

The first step for cleaning and integrating these three tables is composed by the data and
schema mapping operation represented below:

CREATE MAPPING MP1
SELECT gsmld, lowerName name, street, number, pob, city, gsm-phone, job
FROM GSM-CLIENT
LET lowerName = lowerCase(name)
[street, number, pob, city] = extractAddressComponents(address)

The transformed MP1 tuples are:

(1, “smith, j.”, “Domaine de Voluceau”, null, “BP 45", null, “096-11287", “Manager”)

(2, “mitch, j.", “rue Vasco da Gama”, “17”, null, null, “096-76890", “Informatics”)

(3, “itch, j.”, “Domaine de Voluceau”, null, “ BP 45", null, “096-1128", “Manager”)

(4, “rabinovitch”, “rue da La Fontaine Bordeaux”, “87", null, null, “096-76800", “Bank Employee”)
(5, “smith j.", “D. Voluceau”, null, “BP 45", null, “096-11287", “Manager”)

(6, “hans oliver”, “Champ de Mars”, null, null, null, “096-15678", “writer”)

Analogous data and schema operations for HOME-CLIENT and INTERNET-CLIENT
are:

RR n° 3742

40 H. Galhardas, D. Florescu, D. Shasha € E. Simon

CREATE MAPPING MP2
SELECT homeld, lowerName name, street, number, pob, city, home-phone, job
FROM HOME-CLIENT
LET lowerName = lowerCase(name)
[street, number, pob, city] = extractAddressComponents(address)

CREATE MAPPING MP3
SELECT internetld, lowerName name, street, number, pob, city, username
FROM INTERNET-CLIENT
LET lowerName = lowerCase(name)
[street, number, pob, city] = extractAddressComponents(address)

The next step consists in removing the duplicates from the GSM-CLIENT table. This is
expressed by the sequence of operations matching, clustering, decision and construction as
follows:

CREATE MATCH M1

FROM MP1 gl, MP1 g2

LET siml = simf(gl.name, g2.name)
sim2 = simf(gl.street, g2.street)
SIMILARITY = min(sim1, sim2)

WHERE G1.gsmld != G2.gsmld

THRESHOLD SIMILARITY > 0.6.

that outputs the following tuples:

(1, 3, 0.95)
(1,5,009)
(3, 5, 0.85)
(2, 4,0.7)

Clustering by transitive closure after finding duplicates is specified by the operation:

CREATE CLUSTER C1

FROM M1

BY transitiveClosure

LET GSIMILARITY = min(SIMILARITY)
THRESHOLD GSIMILARITY >= 0.7

which returns the following sets of tuples with schema (clustld, Key, clusterSim):

(“clusterl”, 1, 0.85)
(“clusterl”, 3, 0.85)
(“clusterl”, 5, 0.85)
(“cluster2”, 2, 0.7)
(“cluster2”, 4, 0.7)

The decision applied after partitioning operation C1 is represented by:

INRIA

An Extensible Framework for Data Cleaning 41

CREATE DECISION D1

FROM C1

BY clusterCohesion

THRESHOLD GSIMILARITY > 0.8

that decides automatically that 1, 3 and 5 are duplicates since the cluster clusterl simi-
larity is superior to 0.8. Cluster cluster2 is analyzed by hand since its similarity is below
the decision threshold. If the user validates it as a valid cohesive cluster as well then 2 and
4 are also duplicates

An entirely manual construction operation (MP4) specifies that the user must be called
to build the CLEAN-GSM-CLIENT tuples.

CREATE MAPPING MP4

SELECT gsmld, name, street, number, pob, city, gsm-nb, job INTO CLEAN-GSM-CLIENT
FROM D1

BY userCall

The following set of tuples is decided by the user as being free of duplicates (keys are
generated automatically according to the keys of the base table GSM-CLIENT):

(7, "J. Smith”, " Domaine de Voluceau”, null, “BP 45", null, "096-11287",
“Manager-Director”)
(8, "J. Rabinovitch”, "rue Vasco da Gama”, “17", null, null, " 096-76890",
"Bank Informatics”)

An SQL view could be defined to gather the no-matching tuples of GSM-CLIENT (tuple
6) with the CLEAN-GSM-CLIENT tuples. This is defined as:

CREATE VIEW V1 AS
SELECT *
FROM GSM-CLIENT g
WHERE g.gsmKey NOT IN
(SELECT keyl FROM M1)
UNION
SELECT *
FROM CLEAN-GSM-CLIENT

The resulting tuples are then:

(7, "J. Smith”, " Domaine de Voluceau”, null, “BP 45", null, "096-11287",
“Manager-Director”)

(8, " J. Rabinovitch”, "rue Vasco da Gama”, “17”, null, null, " 096-76890",
"Bank Informatics”)

(6, “Hans Oliver”, “Champ de Mars”, “096-15678", “writer”)

RR n”’ 3742

42 H. Galhardas, D. Florescu, D. Shasha € E. Simon

HOME-CLIENT does not need to undergo a process of duplicate elimination. Let us
now consider the following matching operation between the result of V1 and the normalized
HOME-CLIENT table:

CREATE MATCH M2
FROM V1 g, MP2 h
LET siml = simf(g.name, h.name)
sim2 = simf(g.street, h.street)
SIMILARITY = IF (sim1 > 0.8 and sim2 > 0.9) THEN RETURN min(sim1, sim2)
ELSE IF (siml > 0.8) THEN RETURN sim2
ELSE IF (sim2 > 0.9) THEN RETURN siml
ELSE RETURN 0;
WHERE h.phone-nb LIKE '01%’
THRESHOLD SIMILARITY >= 0.6;

The resulting table has the schema (key:, keys, similarity) and the resulting matching
tuples are:

(7, 1245, 0.95)
(8, 1306, 0.8)
(6. 1409, 0.7)

A duplicate elimination process applied to INTERNET-CLIENT (similar to the one ap-
plied on GSM-CLIENT) transforms tuples 54 and 56 in a new tuple as follows:

(58, "John Smith”, "Domaine de Voluceau BP 45 Rocquencourt France”, “Smith”)

The resulting table, called CLEAN-INTERNET-CLIENT is then transformed through
a view V2 similar to V1 and composed of the initial tuples 55, 57 and the new 58. The
matching operation between HOME-CLIENT and V2 is specified by:

CREATE MATCH M3
FROM MP2 h, V2 i
LET siml = simf(h.name, i.name)
sim2 = simf(h.street, i.street)
SIMILARITY = IF (siml > 0.8 and sim2 > 0.9) THEN RETURN min(sim1, sim2)
ELSE IF (siml > 0.8) THEN RETURN sim2
ELSE IF (sim2 > 0.9) THEN RETURN siml
ELSE RETURN O0;
WHERE h.phone-nb LIKE '01%’
THRESHOLD SIMILARITY >= 0.6;

and returns the tuples:

(1245, 58, 0.85)
(1306, 55, 0.82)
(1409, 57, 0.65)

INRIA

An Extensible Framework for Data Cleaning 43

The results of M2 and M3 can be gathered through an SQL view V3 that executes the join
between the two resulting tables. V3 outputs the triples (g, h,4) that semantically represent
the approximate join between the three tables.

CREATE VIEW V3 AS
SELECT M2.keyl keyl, M2.key2 key2, M3.key2 key3, min(M2.similarity, M3.similarity) similarity
FROM M2, M3
WHERE M2 key2 = M3 keyl

The resulting tuples are:

(7, 1245, 58, 0.85)
(8, 1306, 55, 0.8)
(6, 1409, 57, 0.65)

A decision executed after the view V3 is represented by:

CREATE DECISION D2

FROM V3

BY bestMatchFirst

THRESHOLD SIMILARITY > 0.7

Tuples (7,1245, 58) and (8, 1306, 55,0.8) are decided automatically as best matches. Tuple
(6,1409, 57,0.65) is decided by the user since its similarity is below the decision threshold.

The following construction mapping operation is applied after decision D2 and intends
to build tuples of the integrated view table CLIENT. D2 tuples whose construction simila-
rity is below the threshold of 0.9 are manually constructed. The others are automatically
constructed. The construction threshold states that if the three names or street names are
not sufficiently similar then the user is called to construct by hand the CLIENT tuples.

CREATE MAPPING MP5
SELECT key, name, address, gsmNb, homeNb, username, job INTO CLIENT
FROM D2
LETkey = keyCreation(D2.keyl, D2.key2, D2.key3)
siml = simf(D2.keyl.name, D2.key2.name, D2.key3.name)
name = IF (siml > 0.9) THEN
return D2.key2.name
sim2 = simf(D2.keyl.street, D2.key2.street, D2.key3.street)
street = IF (siml > 0.9) THEN
return first(D2.keyl.street, D2.key2.street, D2.key3.street)
number = first(D2.keyl.number, D2.key2.number, D2.key3.number)
pob = first(D2.keyl.pob, D2.key2.pob, D2.key3.pob)
city = first(D2.keyl.city, D2.key2.city, D2.key3.city)
address = concat (number, street, pob, city)
gsmNb = IF (keyl != null) THEN return(D2.keyl.gsm-nb)
ELSE return(null)
homeNb = IF (key2 != null) THEN return(D2.key2.phone-nb)
ELSE return(null)

RR n“ 3742

44 H. Galhardas, D. Florescu, D. Shasha € E. Simon

username = |F (key3 != null) THEN return(D2.key3.username)
ELSE return(null)
job = concat(D2.keyl.job, D2.key2.job)
SIMILARITY = min(sim1, sim2)
THRESHOLD SIMILARITY > 0.9

The resulting CLIENT tuples are:

(C1, "J. Smith”, "Domaine de Voluceau BP 45 Rocquencourt”, "096-11287",
"01 39 63 56 32", “Smith”, "Manager-Director”)

(C2, "J. Mitch”, "17, rue Vasco da Gama BP 20 Paris”, "096-76890",

"01 54 67 87 98", “Mitch”, " Informatics”)

(C3, "Hanna and Hans Oliver”, "23, Champ de Mars Paris”, ”096-15678",
"01 45 67 89 76", “Hanna Oliver”, " writer")

INRIA

/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

