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Abstract: The new method is proposed for the numerical solution of a class of shape inverse problems.
The size and the location of a small opening in the domain of integration of an elliptic equation is
identified on the basis of a observation. The observation includes the finite number of shape functionals.
The approximation of the shape functionals by using the so-called topological derivatives is used to
perform the learning process of an artificial neural network. The results of computations for 2D
examples show that the method allows to determine an approximation of the global solution to the
inverse problem, sufficiently closed to the exact solution. The proposed method can be extended to
the problems with an opening of general shape and to the identification problems of small inclusions.
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La méthode de la dérivée topologique et des réseaux de neurones
dans la recherche de solutions numériques de problémes inverses

Résumé : On propose cette nouvelle méthode afin de déterminer la solution numérique d’une classe
de problémes inverses. La taille et la position d’une petite ouverture dans le domaine d’intégration
d’une équation elliptique sont identifiées sur la base d’une observation comportant un nombre fini de
fonctionnelles. L’approximation des fonctionnelles, au moyen des dérivées topologiques, est utilisée
pour engager le processus d’apprentissage d’un réseau de neurones. Les résultats de calculs pour des
exemples 2D montrent que la méthode permet de déterminer une approximation de la solution globale
du probléme inverse, suffisamment proche de la solution exacte. La méthode proposée peut étre étendue
4 des problémes avec une ouverture de forme quelconque et & des problémes d’identification de petites
inclusions.

Mots-clé : dérivée topologique, réseau de neurones, probléme inverse
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1 Introduction

The topological derivative, denoted by TaJ = Tq, of a shape functional [J(f2) is introduced in [14]
in order to characterize the infinitesimal variation of J(2) with respect to the infinitesimal variation
of the topology of the domain ). The topological derivative allows us to derive the new optimality
condition for the shape optimization problem:

T =inf 7 () .

Let us recall that an optimal domain Q* is characterized by the first order necessary optimality
conditions [13] defined on the boundary of the optimal domain Q*,

dJ(Q*;V) >0

for all admissible vector fields V used in the speed method, and in addition by the following new
optimality condition defined in the interior of the domain Q*,

Ta-(y) >0 foryeQ*.

The other use of the topological derivative is connected with approximating the influence of the
openings (holes) in the domain € on the values of integral functionals depending on solutions to elliptic
equations defined in perturbed domains (2, see the definition below, what allows us to solve a class of
shape inverse problems.

Let us consider the following model problem. Suppose, that the shape functionals have the form

Ji(Qy) = / Fi(x,uZ(x),Vu;(w))dx i=1,...,N,
2

where Q, = Q\ B,(y), Q@ C R? is a given domain, B,(y) is a ball with centre y €  and of a sufficiently
small radius p > 0.
Let the functions uz € H'(Q,) satisfy the following boundary value problems:

Aui =f in Q (1)
ui —=g' on T¢ (2)

‘9“2 i i

% = h on FQ (3)

Buf,

a—n =0 on Fp = (9Bp(y) (4:)

We want to identify the location and the size of a small inclusion B,(y) C €. To this end we use
the approximation of the mapping

G: B> (p,y) = {F1(Q), -, In(Q)} € RY

of the form )

Gilp,y) = T + 5 T3W),

where m(y) denotes the topological derivative of the shape functional J;(£2) evaluated at y € Q.

The inverse mapping G ', which is difficult to calculate from the mathematical relations, is modelled
using artificial neural networks. Feedforward multilayer perceptron networks are applied to solve this
mapping problem. Numerical computations that are based on the topological derivative have provided
RR n~°3739
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data both for network training and testing procedures. The latter one is required for validation of the
network true generalization capabilities. The standard backpropagation error correcting rule is used
for network training in which the sum square error cost function is minimized. Results will be provided
that demonstrate the validity of employing artificial neural network for this complex nonlinear mapping
problem.

The topological derivatives 7}’2(y) are determined by numerical solutions of an auxiliary system of
partial differential equations [14], [16]. Therefore the approximation of G is relatively easily obtained,
making preparation of training data possible. The results of computations for numerical solution of
the inverse problem under consideration are provided.

The identification of small openings using classical Newton method is considered in [10].

2 Topological derivatives of shape functionals

We recall the definition and some properties of the topological derivatives of shape functionals. We
refer the reader to [14] for the detailed study of topological derivatives for elliptic equations in 2D.
Let us consider the shape functional

J(Q,) = A F(z,up(z), Vu,(z))dz,

where Q, = Q\ B,(y). For simplicity we assume that F(z,u,q) = F(u) + G(g), but the analysis can
be carried on in the general case as well. Therefore, the shape functional J(2,) = I(p) written as a
function of small parameter p > 0 takes on the form

I@=Awmwﬂwmy

The equations for u, € H'({2,) are given by (1)—(4), hence the weak solution u, € Hgl(Qp) satisfies
the following integral identity

Vu, - VédQ = / h¢dS — | fedQ, V¢ € H (Q,), (5)

Qp Ty Qp

where we use the standard notation for the Sobolev spaces,
H;(Qp) ={y ¢ Hl(Qp) |=¢g on I},

HE (Q,) ={p € H(Q,) |9 =0 on Ty},

and the convention that the restriction to €2, of a function ¢ € H%I(Q) is denoted also by ¢.
We are interested in asymptotic expansion of the functional I(p) at the point p = 0T of the form

1
I(p) = I(07) + pI'(0%) + 5p°I"(0F) + 0(p”) -
We are going to show that for the problems under considerations I'(0%") = 0 and the topological

derivative of J(f2) is defined by

i 4 (p)
Tad () =lim 35 o

and in our case ToJ = 27I”(0"). It is important for applications that the topological derivative Tq
can be determined by solving the equation for u and the equation for an appropriate adjoint state v
only once, in the unperturbed domain €.

INRIA
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It is well known [13], that the solution u, is differentiable with respect to p, for p > 0 and p small
enough, so the ball B,(y) C . The shape derivative denoted by wuj, satisfies the following integral
identity [13],

Ou, 0
uy, € HE (9,) Vu, - Vb dQ — a—: o s = fods, (6)
Qp Fp FP
for all test functions ¢ € HL ()N H 2(Q,), g—f denotes the tangential component of the gradient
V¢ = aT + a¢n on the boundary ['y. In our notation % is a vector function, the normal derivative

on the boundary aﬁ is a scalar function, and n = (n1,n2) is the unit normal vector on the boundary

of the domain of integration (2,,.

In the first step we need the forms of the first and second order derivatives of the shape functional
J(£2,) with respect to p. It means that we evaluate the derivatives of the function I(p) for sufficiently
small p > 0. It can be shown, that the function I(p) is smooth. Using the general formulae [13] for
shape derivatives of integral functionals we have

'(p) = /Q p [Fu(up)tt,y + Go(Vuy) - Vil ] — / [F(u,,)—l—G(%)] . (7)

Tp

Next we introduce the adjoint state v, € H%l (€2,), which solves the following integral identity,
- [ (90, e a2 = | [Fufuy)é+ Co(Vu)- V4] d0 ®)
p p

Here F,(u) = OF (u)/0u, G4(q) = 0G(q)/0q. From (6), with the test function ¢ replaced by v,, and
using (8) with the test function ¢ replaced by u;,, it follows that the first order shape derivative of
I'(p) takes on the form

ou Ou, Ov
I'(p) = — F G : .21 dS. 9
0= [ |Fow 0 (G2) s GG )
In order to obtain the form of the second order shape derivative I"(p) we need the form of the

shape derivative v;) € H%l(Qp) of the adjoint state v,, which solves the integral identity,

ov ¢
- Q —L. Fuu ' $dQ
Q,, o Vod +/ o By ds = (up)u,gd (10)

Ou, \ Ou 8¢
—/ s [ (%) % s
/ G(V,)(Vid, - V) dY

/qu Vu,)(Vu, - Vu,)(Vu, - V) dQ

for all test functions ¢ € HE (Q,) N H?(9,).
Since all integrands in (9) are bounded, we have the following asymptotic behaviour of the first
order derivative:

I —_—
p1_1>r(1)1+I (p)=0. (11)

RR n"3739
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Using the known formulae for the second order shape derivatives of shape functionals [13], it follows
that the second order derivative of the function I(p) is given by the following formula

Py = [ [P O B 0 (01 0)] 4

Ou, Ov
B , p . 9%
/Fp |:Fu(up)up + GQ(VU’P) VU + f’U + ( or or ) :| ds

- /[Fu,, +G((9 >+f 4+ Qe 9% 4o

or or Ot
= Li(p) + L2(p) + Is(p). (12)
Observe, that % = —% on I',, where r is the polar coordinate. The first and the second terms in (12)

vanish in the limit,

lim [y (p) + I2(p)] =0 .
p—0+
There remains to evaluate the limit of the last term for p — 07.

2.1 Asymptotic expansion

In order to perform the passage to the limit p — 0T in the expression

we use the following asymptotic expansion for the solution u, to the elliptic equation in the domain
Q,, p > 0. We refer the reader to the forthcoming paper [15] for a simple proof of the asymptotic
expansions given below.
Let
Vu(y) = [a,b]"

denote the point value of the gradient of the solution to the elliptic equation in €2, and consider the
polar coordinate system with the centre at y, which coincides with the centre of the ball B,(y).

The solution u, as a function of polar coordinates (r,) in the neighbourhood p < r < 2p of the
ball B,(y), for p sufficiently small, can be expressed for r > p as follows:

P’ p*
Up = U+ a—cosf +b—sinf + R
T T

where
R = [0(5) +1(p,1),

and I(p,r) may contain finite powers of In p,Inr. Hence R = O(p?>~¢) for any € > 0. Therefore, in the
ring p < r < 2p, taking into account the regularity of u = ug in the neighbourhood of y € Q and
using the Taylor expansion for u, we have the following expansion for u,,

2 2
up:u(y)+a(p +7‘)cos0+b( +7)sinf + O(p*~°),

where u(y) denotes the value at y of the solution to the elliptic equation in the domain €2, ie., in the
full domain without hole.

INRIA
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The above formulae are given in the polar coordinate system with the centre at y, which coincides
with the centre of the ball. In particular, from the above expansion it follows that, we refer the reader
to [14] for a proof, the norm of the tangential derivative can be determined from the following formula

% _ 10u,

5 = ;Wh:p = 2(—asinf + bcos ) + O(p' ™).

Using these expansions, we obtain the following result:
Theorem 2.1 The topological derivative of the functional J(Q) = [o[F(u) + G(Vu)] is given by the

following formula

TTaly) = —%[%F (u(y)) + 9(Vu(y)) + 27 f(y)v(y) + 47Vu(y) - Vo(y)] ,

where

2m ou ou 2m
9(Vu(y)) = —/ G (—28—(y) sin0,26—(y) cos 0) do = — G (—2asin6,2bcos 0) d6.
0 0

Z1 Z2

3 The first eigenvalue

We complete the results on the topological differentiability of shape functionals with the formula for
the topological derivative of the first eigenvalue. We refer to [9] for the asymptotic expansions of the
first eigenvalue of the second order elliptic problems defined in the domains with small openings.

Let us consider consider the following eigenvalue problem, where A\, denotes the first eigenvalue
and u, corresponding eigenfunction. For p = 0 we denote the eigenvalue and eigenfunction by A,u,
respectively.

Au, 4+ Au, =0 in €, (13)
up=0 on T, (14)

ou
8—75 =0 on T,=0B,(y). (15)

The following result is easily obtained from the asymptotic expansions for the first eigenvalue
derived in [9].

Theorem 3.1 The topological derivative A of the first eigenvalue is given by the following formula
Aw) = mAfu(@)]? — m|Vu(@)? |
where m = —2m.

Remark 3.1 For an arbitrary inclusion of the form w, = {z | % Ew}, 0€wn, with Q, =Q\w, it
follows that the topological derivative takes on the form

A0) = Mu(0)?|w| — Vau(0) - M(w) - Va(0) .

The matriz M(w) is the so-called mass matriz associated with the domain w [11]. In the formula given
by the theorem, M = —2xl, I denotes the identity matriz.

RR n"3739
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»
Ll

0 X, 1 X

Figure 1: The parameters describing opening (inclusion).

4 Numerical example of shape functionals

We consider the following test examples.
We consider four boundary value problems defined in the same domain Q = (0,1) x (0,1). It means,
that for 1 =1,2,3,4

Aui =0 in Q.
These problems differ with respect to the boundary conditions. For ¢ = 1 they have the form
12 0
up =1 on {0} x (5, §) i ur =0 on {1} x(0,1); % =0 otherwise.
For 7 = 2, 3,4 they are obtained from the above conditions applying the succesive rotation by the angle

/2.
The shape functionals J; = J;(f2) are defined as follows: for j =1,...,12, i =1,2,3,4.

Oui \* oui \ 2
¢ i
Ji1+3-1)} :/Quzza J2+3(i-1)} Z/Q(am) . J3+3i-1)) :/g)(a_@)

In the domain Q, = Q\ B,(y), ¥y = (y1,¥2), we add the homogenous Neumann boundary conditions
on the boundary I, of the ball B,(y).
For any fixed ¢ =1, ...,4, and u = u;, we denote by Jg(p), k = 1,2, the shape functionals depending

on the partial derivatives 2%
ou \?
J, = — k=1,2.
)= [ (o) o k=1,

oxy?
The topological derivatives of these shape functionals are obtained from Theorem 2.1 by direct com-
putation of the function g:

[ 0%)] () = —n [g (5) +3 () +aon Wl)] v

[I0%)] ) = E () 3 (i) e V”)] v

8.’[,‘2

where v ,k = 1,2, is the associated adjoint state.
INRIA
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5 Artificial neural networks

Work on artificial neural networks has been motivated by the recognition that the brain computes in
a different way from the conventional digital computer. The brain has the capability of organising
neurons so as to perform certain computations many times faster than the fastest digital computer in
existence today.

In general form an artificial neural network is a machine that is designed to model the way in which
the brain performs a particular task or function of interest. The network is usually implemented using
electronic components or simulated in software on a digital computer. More precisely an artificial
neural network is a massively parallel distributed processor that has a natural property for storing
experimental knowledge and making it available. It resembles the brain in two respects [3]:

e knowledge is acquired by the network through a learning process;

e network structure and interneuron connection strengths known as synaptic weights are used to
store the knowledge.

The procedure used to perform the learning process is called a learning algorithm, the function of
which is to modify the synaptic weights of the network in an orderly fashion so as to attain a desired
design objective.

Artificial neurons are the basic elements of artificial neural networks. An example [4] of an artificial
neuron’s model is shown in Fig.2.

X0™— -1 Wi
ko Activation
X1 W1 function
nputs L
———— Vi Output
x fo L2
Wiy neuron
XN
Synaptic
weights

Figure 2: Model of an artificial neuron.

It has a set of inputs z1, z9, ..., 2N, denoted as the input vector X. Each input signal number £k is
multiplied by an associated weight wgi, wg2, ..., wgn, before it is applied to the summation block >°.
Each weight corresponds to the "strength" of a single biological synaptic connection. The summation
block, corresponding roughly to the biological cell body, adds all of the weighted inputs algebraically
and produces a net signal v, which is further processed by an activation function f(-) to obtain the
neuron’s output signal yi, given by the equation [4]:

N
ye = f(ue) = 1O wym)- (16)
=0

Activation function f(-) may be a simple linear function or a non-linear function, that more accurately
simulates the non-linear transfer characteristics of the biological neuron and permits more general
network functions. The most commonly used activation functions are threshold function, sigmoidal

RR n"3739
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function, hyperbolic tangent function and radial basis function. Sigmoidal function is mathematically
expressed as [2, 3]:

_ 1
Cl4e

f(2) (17)
An artificial neuron with the sigmoidal activation function is called perceptron.

A single neuron can perform only certain simple functions. The power of neural computations
comes from connecting neurons into networks. Structure and size of the designed neural network
depends on the complexity of the problem, which has to be solved by the network. A great variety of
network structures is known [3].

The Multi-Layer Perceptron (MLP) is the most commonly used network structure, which was
also applied in the presented approach. An example of MLP network is shown in Fig. 3. MLP network

output layer v,
y
W
i0
wY
ik
-1
hidden layer v
\ P «
w -
%] w
Kj
-1
input layer y

Figure 3: A structure of multilayer perceptron network with one hidden layer.

is built from perceptrons grouped in layers [3]. This is a feedforward network and input signals applied
to the network are transmitted in one direction from the network input nodes to the output layer. The
middle perceptron layers are called hidden layers. The network presented in Fig. 3 has an input layer
and two perceptron layers: the hidden layer and the output layer and is called a two-layer perceptron
network. The signal of the i-th network output is given by the equation [3]:

M M N
Y= flw) = O wihVe) = O wl O whay)), (18)
k=0 k=0 j=0

wheret=1,...P, k=1,...M, j=1,...N.
It has been proved, that feedforward multilayer perceptron networks are universal approximators [6]
and therefore this network structure was chosen to solve the problem presented in this paper.

5.1 Application of artificial neural networks for inverse problem solving

Application of Artificial Neural Networks (ANN), instead of analytical calculations, offers a novel and
powerful tool for inverse problem solving. The inverse mapping G !, which allows for identification of
inclusion presented in Fig. 1, is difficult to calculate from the mathematical relations and therefore was
modelled using artificial neural networks. Similarly as in the classical approach, the inverse mapping
G, shown in Fig. 4, may be determined unambiguously only when the transformation G has the
property, that each input vector X, Yy, Ry is transformed into a different values output vector Ji, ... J,
(one to one mapping). ANN-based inverse model is built on the basis of relations between the network
input and output vectors. The knowledge about the inverse mapping is saved within the network

INRIA
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X, —] Jo.J, 1 X
v— G | G' v
Ry=—= —> R,

Figure 4: An inverse mapping problem.

structure and network connection weights. Feedforward multilayer perceptron networks, which are
universal approximators [6], were used for inverse problem mapping. Twelve values of functionals
J1,...J12, which ensure the unicity solution had been calculated by the use of topological derivative
method for the square with the inclusion and introduced to the network input. The inclusion’s radius
Ry and position Xy, Yy were approximated at the network output. An unknown mapping of the input
vector to the output vector was approximated in an iterative procedure known as neural network
training [3].

The objective of the learning algorithm is to adjust the weights of the used ANN on the basis of
a given set of input-output pairs for a given cost function to be minimised [3]. The most frequently
used sum square error cost function was applied:

N
Bw) = 5 3 foslw) — il (19)
k=1

where: w - vector of network weights, yi(w) - network output signal for k-th learning sample, dj -
estimator of the output signal for k-th sample calculated by the use of topological derivative method,
N - number of samples.

For the considered identification problem the backpropagation error correcting rule with Levenberg
- Marquardt optimisation algorithm described bellow was used to minimize the cost function defined
in (19).

The change of cost function in neighbourhood of existing weights w may be approximated by the
use of Taylor series expansion, as follows [3]:

1
AE(w) = E(w + Aw) — E(w) = ¢© - Aw + iAwT - H - Aw,

where g is the gradient vector and H is the Hessian matrix. Differentiating with respect to Aw, the
change AFE(w) is minimized when
g+ H - -Aw =0,

which yields the optimum value of Aw to be
Aw=—-H'.g,

where H™1! is the inverse of the Hessian matrix. Then the solution is obtained by
w=wy— H -l g

and is the basis of the Newton’s method [3].

The Levenberg - Marquardt algorithm approaches second order training speed without having to
compute the Hessian matrix [2]. For the cost functoin given in (19) the Hessian can be approximated
as

H=J".J
and the gradient is computed as

g = JT =)
RR n°3739
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where J is the Jacobian matrix, which contains first derivatives of the network errors with the respect
to the weights, and e is a vector of network errors. The Jacobian matrix can be computed through a
standard backpropagation technique [2] that is much less complex than computing the Hessian matrix.
The Levenberg - Marquardt algorithm uses approximated solution, given by

wppr = wg — [JT - T +pl)7H- T e, (20)

where the scalar u is a regularisation parameter. When p equals zero this algorithm is just a Newton’s
method, using the approximate Hessian matrix. When g is large, this becomes gradient descent method
with a small step size. Newton’s method is faster and more accurate near an error minimum, so y
is decreased after each successful step and is increased only when a tentative step would increase
the performance function. The Levenberg - Marquardt algorithm allows to train the neural networks
with the rate 10 to 100 times faster than the standard gradient descent backpropagation method and
is recommended for the MLP networks with the great number of neurons [2]. This algorithm was
implemented by the MATLAB calculating packet and applied for the neural network training for the
considered inverse problem.

In our particular problem different feedforward network structures with a single hidden layer were
tested. Optimal network structure was chosen on the base of error analysis and networks computer
simulations. Finally chosen network structure (12-24-3) i.e.: twelve inputs, twenty four processing
units with a sigmoidal transfer function in the network hidden layer and three linear unit in the output
layer, had 387 weights. Numerical computations that were based on the topological derivative have
provided data both for network training and testing procedures. The training and testing data were
computed for different inclusion radius values, which were changed from 0,05 to 0,2 and corresponding
them position values, which were changed in the way to built the uniform discretisation grid and fulfil
the conditions:

2R; < X; <1—-2R;,

2R; <Y; <1-2R;.

Than the corresponding values of functionals Jy, J1, Jo for four configurations described earlier were
calculated by the use of topological derivative method for each set of inputs. From the whole number
of data sets 1285 were selected for the network training and 205 for the network testing. The latter
ones were required for validation of the network true generalization capabilities.

Fig. 5-13 present the result of network testing and the error distribution for the inclusion identifi-
cation calculated for each of inclusion parameters X;, Y;, R;. Three cases are shown.

In the first, the radius of the inclusion was r = 0.075. The figures 5-7 depict the absolute errors of
the identified parameters. For radius they are below 5% , for position also about 5% .

In the second, the radius of the inclusion was r = 0.1. The figures 8-10 depict the absolute errors
of the identified parameters. For radius they are below 5% , for position about 3% .

In the third, the radius of the inclusion was r = 0.18. The figures 11-13 depict the absolute errors
of the identified parameters. For radius they are below 5% , for position about 2% .

First experiments seem to indicate, that the approach based on using topological derivative for
producing training data for neural networks, gives promising results.

References

[1] D. GOHDE, Singuldre Stérung von Randvertproblemen durch ein kleines Loch im Gebiet,
Zeitschrift fiir Analysis und ihre Anvendungen Vol.4(5)(1985), pp. 467-477.

[2] HAGAN, M., MENHAJ M., Training feedforward networks with the Marquardt algorithm, IEEE
Trans. on Neural Networks, Vol. 5, No. 6, pp.989-993,1994.

INRIA



1'he topoltogical derivative method and artificial neurat networks for shape inverse prootems

R Error for R=0.075
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Figure 5:

X Error for R=0.075
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