-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Towards Optimization of Cyclic Production Systems
Fabrice Chauvet, Jeffrey W. Herrmann, Jean-Marie Proth

» To cite this version:

Fabrice Chauvet, Jeffrey W. Herrmann, Jean-Marie Proth. Towards Optimization of Cyclic Produc-
tion Systems. [Research Report] RR-3721, INRIA. 1999, pp.18. inria-00072943

HAL 1d: inria-00072943
https://hal.inria.fr /inria-00072943
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50451848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00072943
https://hal.archives-ouvertes.fr

>y

Y

R

%I NRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Towards Optimization of Cyclic
Production Systems

Fabrice Chauvet - Jeffrey W. Herrmann
Jean-Marie Proth

N° 3721
Juin 1999

THEME 4

apport
de recherche

Les rapports de recherche de 'IINRIA
sont disponibles en format postscript sous
ftp.inria.fr (192.93.2.54)

si vous n'avez pas d'acces ftp

la forme papier peut étre commandée par mail :
e-mail : dif.gesdif@inria.fr

(n'oubliez pas de mentionner votre adresse postale).

par courrier :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

INRIA research reports
are available in postscript format
ftp.inria.fr (192.93.2.54)

if you haven't access by ftp

we recommend ordering them by e-mail :
e-mail : dif.gesdif@inria.fr

(don't forget to mention your postal address).

by mail :

Centre de Diffusion

INRIA

BP 105 - 78153 Le Chesnay Cedex (FRANCE)

-

e |

[

-

«ll

o

-’

VERS L’ OPTIMISATION DES SYSTEMES DE PRODUCTION CYCLIQUES
FABRICE CHAUVET', JEFFREY W. HERRMANN’ and .
JEAN MARIE PROTH?

RESUME

Dans ce papier, 1’expression ’systeéme de production” désigne des lignes de fabrication, des
ateliers, des systémes d’assemblage, des systémes KANBAN et, plus généralement‘ tout systéme a
évenements discrets (SED) qui transforme de la matiere premiere et/ou des composants en produits
finis et/ou composants. Un tel systéme est qualifié de cyclique lorsqu’il fabrique indéfiniment la méme
séquence de produits. L’ordonnancement d’un systeme de production cyclique est défini d&s que ’on

connait I’instant de début de chaque opération sur la ressource correspondante. Il a été démontré que,

quel que soit ’ordonnancement admissible choisi; il est toujours possible d’utiliser la ressource goulot
sans interruption. En d’autres termes, il est toujours possible de maximiser la productivité d’un tel
syst¢me. En conséquence, noir: objectif est de trouver I’ordonnancement qui permet d’atteindre la
productivit¢ maximale avec un en-cours aussi faible que possible. Nous proposons une heuristique
basée sur les réseaux de Petri pour obtenir une solution proche de I’optimum. Nous fournissons
également une condition suffisante d’optimalité. ‘

' INRIA-Lorraine, 4 rue Marconi, 57070 Metz, FRANCE
? Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
2 INRIA-Lorraine, 4 rue Marconi, 57070 Metz, France and Institute for Systems Research, University of Maryland,
College Park, MD 20742, USA N

o

TOWARDS OPTIMIZATION OF CYCLIC PRODUCTION
SYSTEMS

FABRICE CHAUVETI, JEFFREY W. HERRMANN? and
JEAN-MARIE PROTH?-

ABSTRACT , ,

In this paper, the expression "production systems" refers to flow-shops, job-shops,
assembly systems, Kanban systems and, in general, to any Discrete Event System (DES) which
transforms raw material and/or components into products and/or components. Such a system is
said to be cyclic if it provides indefinitely the same sequence of products. A schedule of a cyclic
production system is defined as soon as the starting time of each operation on the related resource
is known. It has been showed that, whatever the feasible schedule applied to the cyclic production
system, it is always possible to fully utilize the bottleneck resource. In other words, it is always
possible to maximize the productivity of such a system. As a consequence, we aim at finding the
schedule which permits to maximize the productivity with a Work-In-Process (WIP) as small as
possible. We propose a heuristic approach based on Petri nets to find a near-optimal, if not
optimal, solution. We also give a sufficient condition for a solution to be optimal.

KEY WORDS: Petri nets, scheduling, cyclic pfo_duction systems, event graphs, WIP

1. INTRODUCTION : _

A cyclic production system manufactures a set of products at a constant frequency. That
is, each resource repeatedly performs a certain set of tasks, and the system produces a certain set
of items each cycle. Careful scheduling is required to coordinate the resources so that the system
produces items at the highest poss1b1e frequency and with the minimal amount of work-in-process
inventory (WIP).

EXAMPLE. , . _

This paper considers the scheduling of cyclic production systems and describes a new
approach that uses Petri nets. The problem is to determine the time at which each task should
begin during the cycle. We assume that the set of tasks does not change, the tasks are non-
preemptive, the task processing times are deterministic, and the resources are always available.

Section 2 discusses Petri nets and event graphs. In Section 3, we show that it is always
possible to fully utilize the bottleneck machine and achieve maximum throughput, although the
WIP depends upon the particular schedule. A sufficient condition for a feasible solution to be
optimal is proposed in Section4. Section 5 presents a powerful heuristic algorithm. This
algorithm generates a near-optimal solution. Section 6 concludes the paper. '

INRIA-Lorrame 4 rue Marconi, 57070 Metz, FRANCE

Instltute for Systems Research, University of Maryland, College Park, MD 20742, USA

INRIA-Lorxame 4 rue Marconi, 57070 Met7 France and Institute for Systems Research, University of
Maryland, College Park, MD 20742, USA g

2. PETRINETS AND EVENT GRAPHS ,
Petri nets are a powerful modeling tool for discrete event systems. Event graphs are a
special type of Petri net.

2.1. Petri nets

We restrict ourselves to the elementary Petri nets, also called black-and-white nets.

A Petri net PN is a 5-tuple (P, T, A, W, Mp) with the following components:
P={p,py - Pq } is the set of places,

T={t,t,, ..t }isthe set of transitions,
Ac(PxT)u(TxP)is a set of arcs,
W:A - {1,2, .. }isaweight function,
Mp: P — { 1,2, ...} is the initial marking.
In this paper, transitions represent operations, places represent either buffers for products
or storage facilities for information, arcs model the flows of products or information, and tokens
represent products or pieces of information.
Places are represented by circles, transitions by bars, and each place contains a number of
tokens (represented by dots) equal to its marking. _
In Figure 1, we present a Petri net with marking My, = < 21,420 >, where the i-th
component of M is the number of tokens in place p;.
When no weight is mentioned, the arc has a weight of 1.

Figure 1: A Petri net

Given a marking M, a transition is said to be enabled if and only if M(p) = W(p,t) for all
p € °t., where °t represents the set of input places of transition t. ‘
A transition with no input places is called a source transition. A source transition is always
enabled. . '
For instance, ts is enabled since p; contains four tokens, which is equal to the weight of arc
(p3, ts), while t3 is not enabled since p, contains only one token, which is less than the weight of
arc (p,, t3). Transitions t; and t, are both enabled since they are source transitions.

Firing a transition consists of two parts:

(1) removing W(p,t) tokens from each p € °t, and

(i1) adding W(t,p) tokens to each p € t°, where t° is the set of output places of t.

For instance, the markmg of the' net in Figure 1 becomes M = < 2,1,4,0,1 > after firing tq.
Firing a source transition t adds W(t,p) tokens to each p e t°. For instance, firing t, adds two
tokens to place p; while firing t, adds one token to p,. A transition with no output place is called a
sink transition. Firing a sink transition t removes W(p,t) tokens from each p € “t.

An enabled transition may, or may not, be fired. o

A timed Petri net is a Petri net for which duration, or firing time (which is deterministic or
stochastic), is associated to each transition. In this paper, only deterministic firing times are
considered. ‘ '

The duration associated with" a transition represents the time between the instant the

- tokens disappear from the input places and the instant the tokens appear in the output places.

Usually, we consider that tokens continue to belong to the input places of a transition t until the
firing of t ends. From a productlon point of view, this duration represents the time required to
perform the operation.
The incidence matrix of a Petn net, say U = [ujj}, 1= 1,2,...,q, j = 1,2,...,n, is defined as
follows: : ‘
W(tjx, pi)if t; €°p;
u; =4-W(p,, t;)if t, e p,°
0 otherwise

where Op (resp. p©) is the set of input (output) transitions of p.

Note that the incidence matrix reflects the structure of the Petri net provided that the net
does not contain self-loops (i.e. loops composed by only one place and one transition).

Let M, be an initial marking and G a sequence of transitions fired starting from M, We
denote by M the marking obtained after firing the last transmon of 6. We define the firing count

vector Vg related to the sequence O as:
Vo= (V1,V2,..‘ Vn) «
where v; (i = ..,) is the number of tlmes transition t; appears in ©, and n is the total

- number of transi_tions

The state equationis as follows:

M' =M, +U.V, ' 1)

where A' denotes the transpose of A.

Note that if a sequence s of transitions satisfies (1), it is not guaranteed that s is feasible
(i.e. that it is possible to fire the sequence of transitions s).

A vector Z is a p-invariant if:

() ZU =0, . ()

(ii) Z is a q-vector whose components are non- -negative integers, and

(iii) at least one of the components of Z is strictly positive.

Let R(M,) be the set of markings reachable from M.. One can easily show that, if Z is a p-
invariant, then for any M in R(M,), :

ZM! = ZM,! 3)

The proof is made by left-multiplying both sides of (1) by Z, and by using (2). Thus, ZM"
is an invariant, i.e. a linear combination of the place markings that remains constant for any
sequence of transition firings.

A vector H is a t-invariant if:

(i) UH'=0, 4)

(1) H is a.n-vector whose components are non-negative integers,

(1i1) at least one of the components of H is strictly positive.

Let ¢ be a firing sequence and Vg the related firing count vector. If Vg is a t-invariant, Mo
the initial marking and M the marking obtained after firing the sequence o of transitions, then M =
Mo

2.2. Event graphs (or marked graphs)

An event graph is a Petri net such that each place has exactly one input and one output
transition. Furthermore, the weight associated with each arcis 1. Such a Petri net is represented in
Figure 2. Note that event graphs may contain elementary circuits. For example, the event graph of
Figure 2 contains three elementary circuits: namely y; = <py, t1, p2, t3, p3, 12>, Y2 = <pa, ts, p7, 4,
ps, t3> and Y3 = <pe, t5, p7, t4>.

It is easy to prove the following:

(i) If we assign one token to each place belonging to one of the elementary circuits and 0 to
the other places, then the vector whose elements are these values is a p-invariant. More precisely,
this vector is a minimal p-invariant, i.e. a p-invariant that contains no other p-invariant. That is,
the number of tokens is any elementary circuit is invariant by any transition firing. We owe this
result to COMMONER et al. [2].

(i) The n-vector whose components are all equal to 1 is a t-invariant. That is, the marking
returns to the initial marking after firing each transition exactly once.

The following result is also due to COMMONER ez al. [2].

Result 1: A strongly connected event graph is guaranteed to be deadlock-free if and only if
every elementary circuit contains at least one token.

Tn the example given in Figure 2, the token in p, concems 7y; while the token in p; concerns
Y, and y,. Thus, this event graph is deadlock-free.

We assume that the times associated to the transitions, i.e. the manufacturing times, are
deterministic. For any elementary circuit y, we define the cycle time C(Y) as follows:

C(Y) = u(y) / M(Y) | (5)

where p(y) is the sum of the firing times of the transitions belonging to v, and M(Y) is the
number of tokens circulating iny.

 If M, is the initial marking, we know that M(y) M.(y), for all M in R(M). Thus C(y) is
an invariant. Let C* be the maximal cycle time among all elementary circuits:

C*=max {C(y): yinT}, (6)

where I is the set of elementary circuits of the strongly connected event graph. Any yin I
such that C(y) = C* is called a critical circuit.

-l

" In order to guarantee that only a single firing of a certain transition may occur at time t, we
introduce a self-loop to each transition with mmally one token in each self-loop place.

Figure 2: An event graph

Consider the event graph of Figure 2. Suppose the markingis <2, 1,4, 0, 3, 2, 1 >, there is
a self-loop associated with each transition, and the place of this loop contains one token (the self-
loops are not represented in Figure 2), and the times assocxated with t), 15, t3, t, and ts are 5, 3, 1;
2, and 6 respectively.

In this case, C(‘yl)=9/7 C(v.)=9/4=3/2 and C(y;)=8/3. But the self-loops are also
elementary circuits. Thus their cycle times should also be taken into account. The greatest cycle
time among the self-loops is 6, which is the cycle time of the self-loop corresponding to t5. Since
this value is greater than C(y,)=9/7, C(y,)=9/4=3/2 and C(y;)=8/3, the maximal cycle time C*=6

Consider the firing policy called Earliest Operating Mode (EOM), where transitions fire as
soon as they are enabled. Under this policy, the operation of the system becomes periodic after a
ﬁmte time. Periodicity means that there exist two integers no and K such that:

Si(n + K) =S,(n) + KC* for all n > n, and all tin T.

where S,(k) is the starting time of the k-th firing of transmon t and K 1s the perlod

The following result is due to CHRETIENNE [4].

Result 2: Provided that the event graph is strongly connected and that the EOM pOlle
applies, the cycle time of the model is C* in a steady state. In other words, the finng rate of all

~ transitions in steady state is A =1/ C*.

This result provides the productivity of a manufacturing system that is modeled by a
strongly connected event graph, assuming that the WIP is known and that EOM applies.

Several algorithms have been proposed to reach a given cycle time while minimizing a linear
combination of the markings, the coefficients of which are the components of a p-invariant. They
can be found in LAFTIT et al. [5). In particular, an adjustment heuristic algorithm; which can be

used in practice for models of any size, is proposed in [5]. But, in this algorithm, the schedule is

given. Our goal is more ambitious since we are looking for the schedule that yields the maximal
~ productivity (or throughput) with minimal WIP.

3. MAXIMIZING PRODUCTIVITY FOR A GIVEN SCHEDULE

In this section, we consider the objective of maximizing the productivity. This is
equivalent to reducing the length of the cycle and utilizing the bottleneck machine fully. Two
approaches are proposed.

The first one, called the elementary approach, assigns the tasks to the rescurces in an
arbitrary order, without taking into account the WIP, and fixing the cycle time to the time required
by the bottleneck machine to complete a cycle if it is fully utilized. The W[P is adjusted to reach
this goal.

Any cyclic production system can be modeled as an event graph when the schedule is given
a priori, as showed in [6], [7] and [8]. It 1s then possible to derive the minimal WIP using the
properties of the event graphs. We refer to this approach as the event graph approach.

Before reminding the reader of these methods, we introduce a simple example, which will
be used in this paper to illustrate the proposed approaches.

3.1. Notation

We start by introducing some additional notation that precisely formulates the problem.

Let b =1, .., n be the index over the different products. (The cyclic production system
produces one unit of each product each cycle.)

Leti =1, .., p bethe index over all of the different tasks that need to be performed during
each cycle. Let r(i) be the resource that performs task i.

Let d(i) be the duration of task 1.

Let S(b) be the sequence of tasks required to. produce one unit of product b. Let q(b) be
the number of tasks required to produce one unit of product b. (We assume that there is a simple
sequence of tasks. One could easily extend our results to the case where some tasks can be done in
parallel.)

n . ﬁt‘:_.w.,st,‘ . e .)
Trat Bk ko sho -0t 2 OV N R ON wpuaid. () 1> i £(0), Uich waon j

follows task i in S(b). Then, 1 = succ(}), and j = pred(i).
Letr=1, ., R be the index over the resources.
x(i,r) = 1 if r(i) = r and O otherwise.
Then, let C(r) be the total processing requirements on resource r:
C(r) = x(1,r)d(1) + ... + x(p,r)d(p).
Let C* be the maximum processing requirements: C* = max {C(1), ..., C(R)}.

3.2. An Example

For the sake of clarity and simplicity, we consider a job shop that has R = 4 machines and
produces n = 3 products. There are p = 11 different tasks that need to be performed. The
following table lists the tasks (in sequence for each product), the resources that perform the tasks,
and the task durations. ‘

«

vl

Product @ Task Resource Duration
1 ' ’

\
BLoW O =

— = Ol a9 & n
VAW~ wals wo—
W N LI W»;m Qoo v — W

- O

We then derive the total processing requirements on each resource (machine) during a cycle:

C(1)=d(1)+d(7)=3+5=8. Similarly, C(2) =13, C(3) = 17, and C(4)=12. C* = C(3)
=17, so the bottleneck machine is machine 3, and the minimal cycle time is 17 time units. Thus,
the maximal productivity (throughput) is 3/17 items per time unit. ' '

3.2. The Elementary Approach :

We begin by presenting the algorithm. Afterwards, we will apply it to the example
presented above. This algorithm determines a feasible schedule and how many cycles are needed to
complete one item of each product, given that schedule. '

Algorithm 1. _

1. For each resource, schedule the tasks that require that resource in any order. Let b(i)
and c(i) denote the start and end times of task i. All tasks must start in the interval [0, C*], and
the resource can perform at most one task at a time. (Thus, if a task ends at time t > C*, the
resource can perform no other task during the interval [0, t-C*].) No tasks can be preempted.

2. For each product b =1, ..., n, perform Step 3 for the first task in S(b) and perform Step
4 for each remaining task.

3. Leti be the first task in S(b). Assign the label w(i) = 0 to this task.

4. Let i be the next unlabeled task in S(b) and let j = pred(i). Label task i as follows: If c(j)
> b(i), then let w(i) = w(j) + 1. Otherwise, let w(1) = w(j).

5. For each productb =1, ._, n, let g be the first task in S(b) and h be the last task in S(b).
Then, calculate the product cycle time as follows: :

T(b) = (w(h) - w(g))C* + c(h) - bg). -
Since w(g) = 0 by definition, :
T(b) = w(h)C* + c(h) - b(g).
6. The total average WIP is' (T(1) + ... + T(n) / C* items..

Let us apply- this algorithm to the example. Recall that C* = 17. In Step 1, we create the
following schedule arbitrarily: Machine 1 performs-task 1 and then task 7. Machine 2 performs

task 8, task 2, and then task 11. Machine 3 performs task 3, task 6, and then task 9. Machine 4
performs task 10, task 4, and finally task 5.
The following table lists the start and end times of each task on each machine.

Machine Task Start End
1 1 0 3
7 3 8
2 8 0 9
2 9 10
11 10 13
3 3 0 5
6 S 12
9 12 17
4 10 0 2
4 2 4
5 4 12

Now, we repeat Steps 2, 3, and 4 and label each task. Consider product 1. The production
system must perform tasks 1, 2, 3, and 4 to complete one item of product 1. Given the above
schedule, since task 2 starts after task 1 ends, a particular item can undergo both tasks in the same
cycle (which we call cycle 0). However, since task 3 starts before task 2 ends, the item must
undergo task 3 in the next cycle (cycle 1). Likewise, since task 4 starts before task 3 ends, the item
must undergo task 4 in the cycle after that (cycle 2). The total cycle time for that item T(1) =
2*17+4 - 0= 38 time units. Likewise, T(2) = 56, and T(3) = 18. The following table lists the
labels for each task.

Product Task Label
i 1 0
2 0
3 1
4 2
2 5 0
6 1
7 2
8 3
3 9 0
10 1
11 1

(8]

~ optimal solution to the problem.

4_
<
<
<
4
<
<4

o N
' i)
v @ v vy v v v - v
2

4 e 8 10 12 14 16 TIME
Machine 1 : :
3
L v v v v v ¥ + ¥ -
2 4 8 8
Machine 2 -
, S
v v v v >
2 4 8 8
Machine 3
o
+ +—t v v + + v + + +
8 8 10 12 14 . 18 TIME
Product 1
‘Product 2 Labels are underlined
Product 3

Fig. 3: The elementary approach applied to the illustrative example

The throughput for each product is one item per 17 time units. Since WIP equals cycle
time times throughput (by Little’s Law), there are, on average, 38/17 items of product 1 in the

system, 56/17 items of product 2, and 18/17 items of product 3. The total average WIP is thus
(38+56+18)/17 = 6.59 items

3.3. The Event Graph Approach

In this approach, the schedule is given a priori. The algorithm is based on an event graph
model of the cyclic manufacturing system. In this subsection, we show how to model a cyclic
production system using event graphs, and we use an adjustment algorithm to generate a near

~

3.3.1. Modeling the production system. ,
Create the event graph model of a cyclic production system as follows: _
(1) Model the manufacturing process of each product. Each transition represents a task and
each place a buffer. Each transition firing corresponds to the execution of a task and the firing time
of the transition is the time required to perform this task. Each manufacturing process is
reproduced as many times as necessary to vield the given-production ratios. For instance, in the
example introduced above, every manufacturing process is represented once, since one item of each

-product is completed during each cycle.

(it) Model the cyclic operation mode of the system by assuming that a new item is
available for processing as soon as an item of the same product is completed. This is modeled by
adding an output place to the last transition of each manufacturing process model and by
connecting this place to the first transition of the same model. Thus, we obtain elementary circuits
called process circuits. '
‘ (iii) The final step is to model the sequence of tasks on each resource. This is done by

connecting in a unique circuit all of the transitions that correspond to tasks performed by the same
resource. The order of transitions in these new elementary circuits (called command circuits) is
determined by the task sequence.

Tokens circulating in the process circuits represent products whereas tokens in the
command circuits represent resource status information. Note that there is exactly one token in
each command circuit, since a resource can perform at most one task at a time, and an elementary
circuit without a token blocks after a finite number of transition firings.

Mixed circuits are made with parts of command circuits and parts of process circuits.

The number of command circuits is equal to the number of resources, while the number of
process circuits is equal to the number of items produced during each cycle. The number of mixed
circuits depends on the number of resources, the number of products, and the schedule.

In Figure 4, we present the event graph model of the production system introduced in
Subsection 3.1. For the sake of clarity, we do not represent the command circuits corresponding to
machines 2 and 4. Since a place can always be defined by its input and output transitions, we do

not give names to the places.

)
-

t,
Product 1

fal

Product 2
t

Product 3

The machine numbers are underlined

The operation numbers are the indexes of the transitions

Fig. 4: Event graph model

10

X

In this model, <t;, t,, t3, t;> is a process circuit, <ts, t;, t,> is a command circuit, and <tj,
t, t7. 1), t2> 1s a mixed C1rcu1t

3.3.2. The adjustment algorithm _

Since this algorithm has been already presented in [S], we restrict ourselves to a brief
presentation of it. We know that only one token should be put in each command circuit. For a
given sequence of tasks, we know that this token should be in the input place of the transition
corresponding to the first task. Such a token represents information. To maximize productivity
(throughput), we need enough tokens in the process circuits so that the longest circuit is a
command circuit. In addition, we want to reach this goal with as few tokens as possible, since each

‘token introduced in a process circuit represents an item, and we want to fully utilize the bottleneck

machine while minimizing the WIP. »

This problem can be modeled as a 0-1 integer-programming problem. Unfortunately, the
size-of the problem increases proportionally to the number of elementary circuits, and the number
of mixed circuits increases exponentially with the number of transitions. Thus, heuristic algorithms
like the adjustment algorithm are necessary. The adjustment algorithm starts with a feasible
solution and then proceeds iteratively by removing tokens until this would create an infeasible

_ solution. It is based on the following result whose proof can be found in [5] and [7]. In this paper,

we restrict the formulation of the result to our speciﬁc need.

Result 1:

For a place p, a marking M, and a cycle ime C*, let w(M, p, C*)= min { M(y) - u(y)/C*
in I'p}, where M(Y) is the total number of tokens in the places belonging to circuit y, u(y) is the
total duration of the transitions in circuit Y, and I'p is the set of elementary circuits containing p.-

If M(C*) is the set of markings M such that 0 < w(M, p, C*) < 1 for all places p, then any
M in M(C*) is feasible (the system can achieve the maximal productivity). Furthermore, if M is in
M(C*), M, <M, and M, # M (i.e. M (p) < M(p) for all places p, and there exists at least one
place p; such that M (p;) < M(p,)), then M, is not feasible.

The adjustment algorithm can be summanzed as follows for the particular case under
consideration: :

' Algorithm 2

1. Generate a feasible marking M by placing one token in each place of the process circuits
in addition to the tokens which are in the command circuits.

2. If w(M, p, C*) < 1 for all places, then stop the computation and'keep M as the solution
of the problem. The number of tokens in the process circuits equals the average WIP in the\
system. '

3. OtherW1se let P1 be the set of places p such that w(M, p, C*) = 1. For each p in P1,
construct the following two markings: If M(p) > 0, let Ap = M; otherwise, let A, be a-marking in-
R(M) such that. A (p) > 0. Then, construct B, as follows B,(q) = A (q) for all q# p;, By(p) =
Ay(p) - 1. Now, define the function f(p) as follows

f(p) = Zqer [W(M, q, C*) - wW(B,, g, C*)]

Choose the p* in P1 that minimizes f(p).

4. Replace M by the marking B,,..

11

5. Goto Step 2.

3.3. Comparing the Event Graph and Elementary Approaches

Both methods require a given sequence of tasks for each resource. However, they compute
the WIP requirements differently. '

In the elementary approach, the start times of the tasks are calculated based on the given
sequences, and then the WIP is calculated. The event graph method determines the start times
based on the WIP (the tokens), which allows it to find better task start times. Consider for
instance Figure 3. If we postpone task 7 and start it at time 12 (instead of at time 3), we reduce
the number of cycles required to complete one item of product 2, and we reduce the WIP. (We
may be able to achieve the optimal solution by solving the integer-programming problem when the
size of the model is small enough.)

In this sense, we can claim that the event graph approach is preferable to the elementary
approach, but it requires more computation.

4. SUFFICIENT CONDITION FOR OPTIMALITY
"Definition |

Letb =1, ..., n be the set of products that are manufactured during each cycle, and let T(b)
be the total time necessary to complete one item of product b according to the cyclic schedule
under consideration. In other words, T(b) is the item cycle time. Then the WIP Q is defined as
(T(1) + ... + T(n))/C* , where C* is the duration of one cycle.

Result 2 '

Letb=1, 2, .., n be the set of products that are manufactured during each cycle, let C* be
the duration of the cycle, let T(b) be the item cycle times, and let P(b) be the sum of the durations
of the tasks required to produce one item of product b. If, for a given schedule, T(b)/C* <
[P(b)/C*] for all products b, then the schedule is optimal, in the sense that the maximum
productivity is obtained with the minimum WIP. Asusual, [a] is the smallest integer greater than
or equal to a.

Proof

[T(b)/C *] is the minimal number of cycle times required to complete a product of type i.
Thus, the best schedule possible to complete a product of type i during each cycle is a schedule for
which [T(b)/C*7 products of type i, at different stage of completion, can be observed in the
system during each cycle. In other words, the part of the WIP corresponding to 1 is less than or
equal to [T(b)/C*]. ‘ Q.ED.
~ This result provides the best possible WIP. It permits to decide if a solution is optimal
and, otherwise, to evaluate the maximal "distance" to the optimal solution.

5. ANEW APPROACH

This section presents an approach that extends the event graph approach presented
previously. Called the Construction Approach, it requires only a sequence of tasks for the
bottleneck resource and creates sequences for the other resources.

12

e

N

5.1. Introduction of the Construction Approach :

The event graph approach presented above requires, for each resource, the sequence of
tasks to be performed by each resource. The construction approach requires a sequence of tasks
for the bottleneck resource (or one of the bottleneck resources) only. Sequences for the other
resources are constructed by the algorithm.

The idea behind this algorithm is quite simple: since we want the bottleneck resource to be
fully utilized, the token assigned to that resource’s command circuit should never wait in a place.

As a consequence, as soon as a transition of this command’ circuit is fired, the next transition

should be enabled, and its firing must start immediately. Because each transition has two input
places (one belongmg to the command circuit and one to a process circuit), the input place
belonging to the process circuit should contain at least one token at the time the transition must
fire. We introduce this token to this place when it is needed. When a transition firing ends, one
token appears in the output place belonging to the process circuit and another token appears in the
output place belonging to the command circuit. We continue to fire the transitions in the command
circuit under consideration until one cycle 1s completed. This completes the first step of the
algorithm.

The second step of the algorithm simultaneously builds the command circuits of the other
resources (i.e. the remainder of the schedule) and determines the start times of the other tasks.

5.2 The Construction Algorithm

This section presents the algorithm. We will give some examples in the next section.

We assume that -transition t; corresponds to task i. Recall that r(i) is the resource that
performs task i. -

Algorithm 3 :

Given: A sequence of tasks for a bottleneck resource. \

Initialization: Construct all of the process circuits. The values z(i,j) for all places (i,j) in the
process circuits are undefined. For each transition tj, construct a second input place u;. These
control places will form the command circuits. The values w(uj) for all control places are
undefined. C* equals the total processmg time on the bottleneck resource.

Part A: Fire the transitions of the command circuit of a bottleneck resource. -
1. Construct a command circuit corresponding to the sequence of tasks that bottleneck resource
performs. If the resource performs tasks iy, iy, .. ,, 15 during each cycle, let Stat, et >

be the command circuit. Hereafter, letk+1=1ifk =nand k-1 =n ifk = 1. For k =1,..,n,
connect each transition t; to the input place U,.;- Introduce a token in place u; and set

w(y;) =0.
2.Fork=1,2,..,n, do the following steps:

2.1. Let b be the product that requires task i.. Let t; be the transition that
immediately precedes t;, in the process circuit for product b. Add a token to

place (t, t,) and set 2, i) = z(ix.1, iy).

13

2.2. Fire transition t; . Set z*(ix) = w(u;) + U(ix), where p(iy) is the duration of t, .
Remove one token from places u; and (t;, t;).

23. Let t, be the transition that immediately follows t, in the process circuit for
product b. |

2.4. Add one token to places u, ., and (t; , ty). Set w(u, ,;) = z*(ix). Set z(iy, h) =
z*(iy).

3. Let PN be the resulting event graph. Let Z be the set of values applied to places in the
process circuits. Let W be the set of values applied to the control places.

Part B. Perform a cycle while building the missing command circuits.

4. If there are any process circuits with no tokens, then, for each such circuit, add one token to '

the place (i,j) that is the input place for the first transition in that process circuit, and set'
2(1,))=0.

Mark with the label “NB” all of the places that belong to a process circuit and contain a
token, where “NB” stands for “not blocked”.

5. Let E be the set of places that belong to a process circuit, contain a token, and are labeled
NB. If E is empty, then go to Step 9. Otherwise, select the place (i, j) in E with the
minimal z(i,j). :

6. Consider transition t;, the resource r(j) that performs task j, and the other tasks that
resource 1(j) performs. Let F be the set of corresponding transitions.

If no transitions in F have been fired at this point, t; is the first transition of the
command circuit for r(j). Add a token to u;. If w(u;) is undefined, set w(u;) = z(i,)).

Otherwise, if t; is the transition in F that was fired last, t; follows t, in the command
circuit for r(j). Connect transition t, to place u;. Add a token to u;. Let w(y;) = z*(k).

In either case, let z*(j) = max {z(i,j), w(y;)} + 1().

If t; is the only unfired transition in F, then let t, be the transition (in this command
circuit) that was fired first. Connect transition t; to the place upy,.

Let t, be the transition that follows t; in the process circuit.

7. If z(j,s) is undefined, fire t;. Remove one token from the place (i,j) and remove one token
from the place u;. Add one token to the place (j, s). Define z(j,s) = z*(j). Remove the

. label NB from (i,j) and apply the label NB to (j,s). Go to Step 8.3.

8. Otherwise, z(j,s) is defined.

8.1. If z*(j) < z(j,s) + C*, then fire t;. Remove one token from the place (i,j) and
remove one token from the place u;. Add one token to the place (j, s). Redefine z(j,s) =
z*(j). Remove the label NB from (i,)) and apply the label B to (j,s). This means that
the new token in place (j,s) is blocked and cannot enable transition t;. Go to Step 8.3.
8.2 Otherwise, z*(j) > z(j,s) + C*. The solution is infeasible. Reset the event graph to
PN. Update M by adding a token to place (i,j). Reset the values on the process circuit
places to the set Z. Update Z by defining z(i,)) = z*(j) - u(j) - C*. Reset the values on
the control places to the set W. Return to Step 4. k
8.3 If t; was the last unfired transition in F, then let t, be the transition (in this
command circuit) that was fired first. If z*(j) > w(u,) + C*, then the PN was

14

{

@

infeasible. Reset the event graph to PN. Reset the values on the process circuit places
to the set Z. Reset the values on the control places to the set W. Update W by defining
W(Um) = z*(j) - C*. Return to Step 4. ‘ .
9. Create a feasible schedule as follows: Each task j ends at time z*(j). The task begins at time
z*(j) - u(). (Any task that starts outside [0, C*] can be shifted to this interval by adding
or subtracting a multiple of C*.) Use the elementary approach (Algorithm 1) to calculate

the cycle time and WIP of the-schedule. ‘

5.3 Example. - , ,

Consider, for instance, the example given in Figure 4. The bottleneck is: Machine 3, and we
are given the task sequence (3, 6, 9) for this resource.

Task 3 is the first task on Machine 3. Transition t; has two input places: place (2,3),
which is in the process circuit of Product 1, and place (9,3), which is in the command circuit of
Machine 3. (This place is also denoted u,.) ,

To enable transition t;, there must be at time O a token in both places. We introduce a
token in each place and label the places with time 0. w(u;) = 0. z(2,3) = 0. Because the firing time
of t3 is 5, a token appears at time z*(3) = S in place (t3, t), which belongs to the command circuit,
and in place (t3, t4), which belongs to the process circuit of Product 1.- w(ug)=5. z(3,4)=5.

For transition t; to fire immediately at time 5, there must be, at that time, a token in place
(5,6). Add a token there, and set z(5,6) = 5. Because the firing time of ts equals 7, a token appears
at time z*(6) = 12 in place (6,9) and in place (6,7). w(ug) =12. 2(6,7) = 12.

The last transition to fire is to. Since it should fire-at time 12, there must be, at that time, a.
token in place (11,9). Add a token there, and set z(11,9)= 12. Firing t, adds, at time z*(9) = 17,
one token to place (to, o) and one token to place (1, t;). w(u;) =17. 2(9,10)=17.

At the end of Part A, the state of the event graph can be summarized by Table 1, which
lists only the places belonging to the process circuits.’

Table 1: State of the system-at the end of the first step

Places (i) - z(i,j) Number of tokens
(1,2) -) '
(2,3) 0 0

3,4 5 1

(4, 1) - 0

(5, 6) 5 0

6,7 12 1

(7, 8) - 0

8,95) - 0

(9, 10) 17 1

(10, 11) . -0

(11,9) 12 0

- The second step of the algorithm builds the command circuits of the other machines and
determines the start times of the remaining tasks. We start by selecting the place (i,j) that belongs

15

to a process circuit, contains a token, and has the smallest value z(ij). In this example, that is
place (3,4).

Transition t, will be part of the command circuit for Machine 4, which performs task (i.e.,
r(4) = 4). The transitions in this circuit are t,, ts, and t;o. None have been fired, so t, is the first
transition in the circuit, and it can fire as soon as possible. So, add a token to ug, and set w(uy) =
z(3,4) = 5. Fire ty, which ends at z*(4) = 7. Remove the tokens in (3,4) and u,, and add a token to
(4,1), the next place in the process circuit. Set z(4,1) = 7.

Repeat the above steps for t1 and t2. w(u,) = 7. z*(1) = 10. z(1,2) = 10. w(uy) = 10.
z*(2) =11. Because z*(2) <z(2,3) + C* = 17, redefine z(2,3) = 11. The token that enters place
(2,3) becomes blocked because t; has fired previously.

Now consider place (6,7), with z(6,7) = 12. The other transition in the command circuit

for Machine 1 (r(7) = 1) is t,. Thus, connect t; to us, add a token to u,, and let w(u,) = z*(1) = 10..

This represents the fact that Machine 1 is available at time 10. Fire t;, which ends at z*(7) = 12+5
=17. Remove the tokens in (6,7) and u5, and add a token to (7,8). Set z(7,8) = 17. Note z*(7) <
w(u,) + C* = 24, so this command circuit is feasible.

Similarly, the next transition to fire is tg. w(ug) =z*(2)=11. z*(8) =17+9 = 26. A token
moves to place (8,5), and z(8,5) = 26. Then ty fires. w(u;o) =z*4)=7. z*(10)=17+2 =19. A
token moves to place (10,11), and z(10,11) = 19.

Now, consider t;;. w(u;;) = z*(8) = 26. z*(11) = 26+3 = 29. A token moves to place
(11,9), but z(11,9) = 12. Since z*(11) = z(11,9) + C* = 29, this is feasible, so redefine z(11,9) =
29. However, t;; was the last unfired transition in the command circuit for Machine 2. Transition
t, was the first transition fired. Because z*(11) > w(u,) + C* = 27, this command circuit is
infeasible. Reset the event graph to the state achieved at the end of Part A. However, now let
w(uy) = 29-17 = 12.

Returning to Step 4, transitions t,, t;, and t, fire. However, this time z*(2) = 12+1 = 13.
z*(2) < z(2,3) + C* = 17, so redefine z(2,3) = 13.

Then, transitions tg, t}o, and t;; fire as before. w(ug) = 13, but z(7,8) = 17 is larger, so
z*(8) remains 26. This time, z*(11) = w(u;) + C* =29,

Finally, consider place (8,5). z(8,5) = z*(8) = 26. ts is the last unfired transition in the
command circuit for Machine 4, so w(us) = z*(10) = 19. z*(5) = 26+8 =34 However, z(5,6) = 5.
Because z*(5) > z(5,6) + C* = 22, the solution is infeasible. Reset the event graph to the state
achieved at the end of Part A. Define z(8,5) = z*(5) - u(5) - C* =9, and add a token to place
(8,5). This will allow ts to fire at time 9.

Now, with both these changes in place, w(u;) = 12, and z(8,5) = 9, and there is a fourth
token in place (8,5).

Returning to Step 4, transitions t4 and t; fire. Now, consider place (4,5). z(4,5) = 9.
Because t4 has already fired, w(us) = z*(4) =7, and z*(5) = 9+8 = 17. Since z(5) < z(5,6) + C* =
22, this is feasible, but the token in (5,6) is blocked.

Next transition t, fires. z*(2) = 12+1=13. z*(2) <z(2,3) + C* = 17, so redefine z(2,3)

i

13.
Then, transitions tg, t,o, and t;; fire as before. w(ug) = 13, but z(7,8) = 17 is larger, so
z*(8) remains 26. Since z*(8) = z(8,5) + C* = 26, this is feasible, but the token in (8,5) 1s blocked.

16

£

~~

[

7

‘that is:

Since ts has already fired, w(uo) = z*(S) = 17. z*(10) remains 19. z*(lO) <w(uy) + C* =5+17 =

© 22, so this command circuit is feasible. Since z*(11) = w(u,) + C* = 29, this command circuit is

also feasible. And since z*(11) =2(11,9) + C* = 29, this process circuit is feasible. Thus, we
have a feasible solution. Table 2 lists the task start and end times (shifted to the interval [0,17]).
The command circuits follow: '
Machine 1: <tl, t7, t1>
Machine 2: <t8, t11, t2, t8>
“Machine 3: <t3, t6, t9, t3>
Machine 4: <t4, t5, t10, t4>

Table 2.
Machine Task Start End
1 1 7 10
. 7 12 17
2 8 0 9
11 9 12
2 12 13
3 3 0 5
6 5 12
9 12 17
4 10 0 2
4 5 ° 7
5 9 17

Given this schedule, the elementary algorithm yields the cycle time for each product. T(1)
=17. T(2Z) = 34. T(3) = 17. The total average WIP is thus (17+34+17)/17 = 4 items.

6. CONCLUSION

The approach presented in this algorithm is a heuristic approach. It requires the command’

circuit corresponding to one of the bottleneck resources. The first step of the algorithm consists in

placing the operations performed by the selected bottleneck machine according to the order defined -

by the selected command circuit. The second step is performed iteratively, adding one token in a
process circuit at each iteration until the number of tokens is great enough to perform all the
operations during one cycle C*. At each iteration of the second step, the algorithm places the
operations successively, firing first the transition having one token in its input place belonging to
the process circuit for the longest period. We thus try to reduce the production cycle applying.

local decision. When the algorithm fails to place all the operations during one cycle, the second

step restarts after relaxing the WIP in two ways: (i) one token is added, and (ii) this token is added
in the place where the event graph reached an unfeasible state in the previous iteration.
As the reader can see, two a priori decisions should be made when launching the algorithm,

17

(1) choose a command circuit for the bottleneck resource (or for one of the bottleneck
resources), :

(ii) introduce a rule to decide the order the transitions will be fired.
Using Result 2, we are able to claim that some of the results are optimal. In practice, we have been
able to claim that most of the results obtained using Algorithm 3 were optimal. The conclusion
remains open when the conditions presented in Result 2 do not apply.

Future researches will focus on these two aspects.

Furthermore, a sufficient' condition as been proposed to decide if a schedule is optimal.
This condition is based on a realistic hypothesis: if a product is completed during a cycle, it
becomes available only at the end of the cycle. "

It should be noticed that, to our knowledge, none of the existing heuristics is as flexible as
the one proposed in this paper. The algorithm reaches a solution that satisfies the sufficient
condition for optimality most of the time for one of the command circuits. The test has been made
on a Power Macintosh G3 for systems with up to eight machines and ten products, but the size of
these examples could be extended.

Bibliography
[1] Reisig W., "Petri Nets with Individual Tokens", Informatik-Fachberichte, vol. 66, no.

21, pp. 229-249, 1983.
[2] Commoner F., Holt A, Even S. and Pnueli A, "Marked Directed Graphs", Journal of

Computer and System Science, vol. 5, no. §, pp. 511-523, 1971. <

[3] Murata T., "Petri Nets: Properties, Analysis and Applications", Proceedings of the
IEEE, vol. 77, no. 4, pp. 541-580, April 1989.

[4] Chretienne P., Les réseaux de Petri temporisés, Université Panis VI, Pans, France,
Thése d'Etat, 1983.

(5] Laftit S, Proth J-M., Xie X-L., "Optimization of Invanant Critena for Event
Graphs, IEEE Transactions on Automatic Control, vol. 37, no. S, pp. 547-555, May
1992. ,

[6] Hillion HP., Proth J-M., "Performance Evaluation of Job-Shop Systems Using
Timed Event-Graphs, /[EEE Transactions on Automatic Control, vol. 34, no. 1, pp. 3-
9, January 1989.

(7] Proth J-M. and Xie X1., Pemri Nets. A lool for Design and Management of
Manufacturing Systems, J ohn Wiley and Sons Ltd, UK, 1996. _

[8] Minis I and Proth J-M., "Production Management in A Petri Net Environment",
Recherche . Opérationnelle/ Operations Research, vol. 29, no. 3, pp. 321-352, 1995.

18

~~

-

Unité de recherche INRIA Lorraine
Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers 1&s Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhéone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot St Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)
http://www.inria fr

ISSN 0249-6399

L)
RR.3I721=*

£

